IEC/TC - IEC/TC
IEC/TC
General Information
IEC TR 61169-1-8:2025 provides a test method for voltage standing wave ratio (VSWR, hereinafter) of single RF connector by double-connector method. This document is applicable to single RF cable connectors and single microstrip RF connectors as well as single adapters if an estimation of the VSWR of a single completely installed RF-connector is used and a time domain feature is not available on the vector network analyzer.
- Technical report18 pagesEnglish languagesale 15% off
IEC 62541-100:2025 defines the information model associated with Devices. This document describes three models which build upon each other as follows:
• The (base) Device Model is intended to provide a unified view of devices and their hardware and software parts irrespective of the underlying device protocols.
• The Device Communication Model adds Network and Connection information elements so that communication topologies can be created.
• The Device Integration Host Model finally adds additional elements and rules required for host systems to manage integration for a complete system. It enables reflecting the topology of the automation system with the devices as well as the connecting communication networks.
This document also defines AddIns that can be used for the models in this document but also for models in other information models. They are:
• Locking model – a generic AddIn to control concurrent access,
• Software update model – an AddIn to manage software in a Device.
This second edition cancels and replaces the first edition published in 2015. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a a ComponentType that can be used to model any HW or SW element of a device has been defined and a SoftwareType has been added as subtype of ComponentType;
b the new OPC UA interface concept and defined interfaces for Nameplate, DeviceHealth, and SupportInfo has been added.
c) a new model for Software Update (Firmware Update) has been added;
d) a new entry point for documents where each document is represented by a FileType instance has been specified;
e) a model that provides information about the lifetime, related limits and semantic of the lifetime of things like tools, material or machines has been added.
- Standard152 pagesEnglish languagesale 15% off
- Standard158 pagesFrench languagesale 15% off
- Standard310 pagesEnglish and French languagesale 15% off
IEC 62541-7: 2025 specifies value and structure of Profiles in the OPC Unified Architecture.
OPC UA Profiles are used to segregate features with regard to testing of OPC UA products and the nature of the testing. The scope of this document includes defining functionality that can only be tested. The definition of actual TestCases is not within the scope of this document, but the general categories of TestCases are covered by this document.
Most OPC UA applications will conform to several, but not all of the Profiles.
This fourth edition cancels and replaces the third edition published in 2020. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) Profiles and ConformanceUnits are not part of this document, but are solely managed in a public database as described in Clause 1.
- Standard160 pagesEnglish languagesale 15% off
- Standard173 pagesFrench languagesale 15% off
- Standard333 pagesEnglish and French languagesale 15% off
IEC 62541-10:2025 is available as IEC 62541-10:2025 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62541-10:2025 defines the Information Model associated with Programs in OPC Unified Architecture (OPC UA). This includes the description of the NodeClasses, standard Properties, Methods and Events and associated behaviour and information for Programs. The complete AddressSpace model including all NodeClasses and Attributes is specified in IEC 62541-3. The Services such as those used to invoke the Methods used to manage Programs are specified in IEC 62541-4. An example for a DomainDownload Program is defined in Annex A. This fourth edition cancels and replaces the third edition published in 2020. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
- StateMachine table format has been aligned.
- Standard42 pagesEnglish languagesale 15% off
- Standard45 pagesFrench languagesale 15% off
- Standard87 pagesEnglish and French languagesale 15% off
IEC 62541-13:2025 is available as IEC 62541-13:2025 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62541-13:2025 defines the information model associated with Aggregates. Programmatically produced aggregate examples are listed in Annex A. This third edition cancels and replaces the second edition published in 2020. This edition constitutes a technical revision.
This edition includes the following technical changes with respect to the previous edition:
a) Multiple fixes for the computation of aggregates
• The Raw status bit is always set for non-bad StatusCodes for the Start and End aggregates.
• Entries in the Interpolative examples Tables A2.2 Historian1, Historian2, and Historian3 have been changed from Good to Good, Raw status codes when the timestamp matches with the timestamp of the data source.
• Missing tables have been added for DurationInStateZero and DurationInStateNonZero.
• The value of zero has been removed for results with a StatusCode of bad.
• Data Type was listed as "Status Code" when it is "Double" for both Standard Deviation and both Variance Aggregates.
• Rounding Error in TimeAverage and TimeAverage2 have been corrected.
• The status codes have been corrected for the last two intervals and the value has been corrected in the last interval.
• The wording has been changed to be more consistent with the certification testing tool.
• UsedSlopedExtrapolation set to true for Historian2 and all examples locations needed new values or status' are modified.
• Values affected by percent good and percent bad have been updated.
• PercentGood/PercentBad are now accounted for in the calculation.
• TimeAverage uses SlopedInterpolation but the Time aggregate is incorrectly allowed to used Stepped Interpolation.
• Partial bit is now correctly calculated.
• Unclear sentence was removed.
• Examples have been moved to a CSV.
• The value and status code for Historian 3 have been updated.
• TimeAverage2 Historian1 now takes uncertain regions into account when calculating StatusCodes.
• TimeAverage2 Historian2 now takes uncertain regions into account when calculating StatusCodes.
• Total2 Historian1 now takes uncertain regions into account when calculating StatusCodes
• Total2 Historian2 now takes uncertain regions into account when calculating StatusCodes
• Maximum2 Historian1 now takes uncertain regions into account when calculating StatusCodes
• MaximumActualTime2 Historian1 now takes uncertain regions into account when calculating StatusCodes
• Minimum2 Historian1 now takes uncertain regions into account when calculating StatusCodes
• MinimumActualTime2 Historian1 now has the StatusCodes calculated while using the TreatUncertainAsBad flag.
• Range2 Historian1 now looks at TreatUncertainAsBad in the calculation of the StatusCodes.
• Clarifications have been made to the text defining how PercentGood/PercentBad are used. The table values and StatusCodes of the TimeAverage2 and Total2 aggregates have been corrected.
- Standard64 pagesEnglish languagesale 15% off
- Standard64 pagesFrench languagesale 15% off
- Standard128 pagesEnglish and French languagesale 15% off
IEC TS 62607-6-27:2025, which is a Technical Specification, establishes a standardized method to determine the key control characteristic
• field-effect mobility
for semiconducting two-dimensional (2D) materials by the
• field-effect transistor (FET) method.
For two-dimensional semiconducting materials, the field-effect mobility is determined by fabricating a FET test structure and measuring the transconductance in a four-terminal configuration.
- This method can be applied to layers of semiconducting two-dimensional materials, such as graphene, black phosphorus (BP), molybdenum disulfide (MoS₂), molybdenum ditelluride (MoTe₂), tungsten disulfide (WS₂), and tungsten diselenide (WSe₂).
- The four-terminal configuration improves accuracy by eliminating parasitic effects from the probe contacts and cables
- Technical specification19 pagesEnglish languagesale 15% off
IEC TS 62876-3-4:2025, which is a Technical Specification, establishes a standardized guideline to assess
• reliability of metallic interfaces
of Ohmic-contacted field-effect transistors (FETs) using 2D nano-materials by quantifying
• linearity of current-voltage (I-V) output curves
for devices with various materials combinations of van der Waals (vdW) interfaces.
For metallic interfaces with 2D materials (eg. graphene, MoS2, MoTe2, WS2, WSe2, etc) and metals (eg. Ti, Cr, Au, Pd, In, Sb, etc), the reliability of Ohmic contact is quantified.
For FETs consisting of 2D materials-based channels (eg. MoS2, MoTe2, WS2, WSe2, etc), the reliability of Ohmic contact when varying contacting metal, channel length, channel thickness, applied voltage, and surface treatment condition is quantified.
The reliability of the metallic contacts is quantified from the linearity of I-V characteristics measured over extended time periods.
- Technical specification24 pagesEnglish languagesale 15% off
IEC 63522-4:2025 is used for testing along with the appropriate severities and conditions for measurements and tests designed to assess the ability of DUTs to perform under expected conditions of transportation, storage and all aspects of operational use.
The object of this test is to define a standard test method for the dielectric strength test.
- Standard10 pagesEnglish languagesale 15% off
- Standard10 pagesFrench languagesale 15% off
- Standard20 pagesEnglish and French languagesale 15% off
IEC 62541-4:2025 is available as IEC 62541-4:2025 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62541-4:2025 defines the OPC Unified Architecture (OPC UA) Services. The Services defined are the collection of abstract Remote Procedure Calls (RPC) that are implemented by OPC UA Servers and called by OPC UA Clients. All interactions between OPC UA Clients and Servers occur via these Services. The defined Services are considered abstract because no particular RPC mechanism for implementation is defined in this document. IEC 62541‑6 specifies one or more concrete mappings supported for implementation. For example, one mapping in IEC 62541‑6 is to UA-TCP UA-SC UA-Binary. In that case the Services described in this document appear as OPC UA Binary encoded payload, secured with OPC UA Secure Conversation and transported via OPC UA TCP. Not all OPC UA Servers implement all of the defined Services. IEC 62541‑7 defines the Profiles that dictate which Services must be implemented in order to be compliant with a particular Profile. A BNF (Backus-Naur form) for browse path names is described in Annex A. This fourth edition cancels and replaces the third edition published in 2020. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) addition of new definitions to Method Call Service to allow optional Method arguments;
b)addition of reference to SystemStatusChangeEventType for event monitored item error scenarios;
c) enhancement of the general description of how determining if a Certificate is trusted;
d) addition of support for ECC;
e) addition of revisedAggregateConfiguration to AggregateFilterResult structure;
f) addition of INVALID to the BrowseDirection enumeration data type;
g) addition of INVALID to the TimestampsToReturn enumeration data type;
h) addition of definitions that make sure the subscription functionality works if retransmission queues are optional;
i) addition of client checks has been added to be symmetric to the Server Certificate check has been added;
j) clarification that ‘local’ top level domain is not appended by server into certificate and not checked by client when returned from LDS-ME;
k) addition of a definition for expiration behaviour of IssuedIdentityTokens;
l) addition of status code Good_PasswordChangeRequired to ActivateSession;
m) restriction of AdditionalInfo to servers in debug mode;
n) addition of new status code Bad_ServerTooBusy;
o) addition of definition for cases where server certificate must be contained in GetEndpoints response.
- Standard245 pagesEnglish languagesale 15% off
- Standard257 pagesFrench languagesale 15% off
- Standard502 pagesEnglish and French languagesale 15% off
IEC 61757-1-4:2025 defines the terminology, structure, and measurement methods of distributed fibre optic sensors for absolute strain measurements based on spectral correlation analysis of Rayleigh backscattering signatures in single-mode fibres, where the fibre is the distributed strain measurement element in a measurement range from about 10 m to tens of km. This document also applies to hybrid sensor systems that combine the advantages of Brillouin and Rayleigh backscattering effects to obtain optimal measurement quality. This document also specifies the most important features and performance parameters of these distributed fibre optic strain sensors defines procedures for measuring these features and parameters. This part of IEC 61757 does not apply to point measurements or to dynamic strain measurements. Distributed strain measurements using Brillouin scattering in single-mode fibres are covered in IEC 61757-1-2. The most relevant applications of this strain measurement technique are listed in Annex A, while Annex B provides a short description of the underlying measurement principle.
- Standard27 pagesEnglish languagesale 15% off
- Standard29 pagesFrench languagesale 15% off
- Standard56 pagesEnglish and French languagesale 15% off
IEC TS 63414:2025 is applicable for the determination of the AC and DC pollution flashover and withstand voltage characteristics of insulators with polymeric housing, to be used outdoors in HV applications and exposed to polluted environments. This is also applicable for insulators with hydrophobic coatings. This document refers to AC systems with a rated voltage greater than 1 000 V and DC systems with a rated voltage greater than 1 500 V.
The object of this technical specification is to prescribe standardized test methods, requirements and procedures for artificial pollution tests applicable to polymeric insulators for overhead lines including traction lines, station post and hollow insulators of equipment. Available test experience with polymeric station post and hollow insulators, especially for DC applications, is limited.
The proposed tests are not applicable to ceramic and glass insulators without polymeric housing, to greased insulators or to special types of insulators (e.g., insulators with semiconducting glaze).
Differently to ceramic and glass insulators without polymeric housing:
- The pollution performance of insulators with polymeric housing varies with the hydrophobicity condition of the surface. The specific conditions simulated by standardized tests might not represent the actual dynamic field conditions.
- The determination of the flashover and/or withstand voltage under pollution conditions is not enough for dimensioning. Additional constraints related to possible ageing are also to be considered.
- If the Hydrophobicity Transfer Material (HTM) test according to IEC TR 62039 confirms that an insulator is non-HTM, it can be tested according to IEC 60507 or IEC TS 61245.
- Technical specification39 pagesEnglish languagesale 15% off
IEC 63093-2:2025 specifies the dimensions that are of importance for mechanical interchangeability for a preferred range of pot-cores made of ferrite, and the dimensional limits for coil formers to be used with them, as well as the effective parameter values to be used in calculations involving them. It also gives guidelines on the allowable limits of surface irregularities applicable to pot-cores in accordance with the relevant generic specification. The selection of core sizes and shapes for this document is based on the philosophy of including those sizes which are industrial standards, either by inclusion in a national standard, or by broad-based use in industry. The general considerations upon which the design of this range of cores is based are given in Annex A.
This edition includes the following significant technical changes with respect to the previous edition:
a) revision of Table 4 and Table 5 according to IEC 60205:2016.
- Standard18 pagesEnglish languagesale 15% off
IEC 62548-1:2023 sets out design requirements for photovoltaic (PV) arrays including DC array wiring, electrical protection devices, switching and earthing provisions. The scope includes all parts of the PV array and final power conversion equipment (PCE), but not including energy storage devices, loads or AC or DC distribution network supplying loads. The object of this document is to address the design safety requirements arising from the particular characteristics of photovoltaic systems. This document also includes extra protection requirements of PV arrays when they are directly connected with batteries at the DC level.
This first edition cancels and replaces IEC 62548 published in 2016. This edition includes the following significant technical changes with respect to the previous edition:
a) Revised provisions for systems including DC to DC conditioning units.
b) Revision of mounting structure requirements.
c) Revised cable requirements.
d) Revision of Clause 6 on safety issues which includes provisions for protection against electric shock including array insulation monitoring and earth fault detection.
e) Revision of 7.2.7 and 7.3 with respect to isolation means.
f) Provisions for use of bifacial modules and modules mounted in non-optimal orientations.
g) New Annex F containing: KI factor calculations for bifacial and non-optimally oriented systems; anti-PID equipment and arc flash.
- Standard104 pagesEnglish languagesale 15% off
- Standard213 pagesEnglish languagesale 15% off
IEC 63093-5:2025 specifies the dimensions that are of importance for mechanical interchangeability for a preferred range of EP-cores made of ferrite, the essential dimensions of coil formers to be used with them and the locations of their terminal pins on a 2,50 mm printed wiring grid in relation to the base outlines of the cores and the effective parameter values to be used in calculations involving them. It also gives guidelines on allowable limits of surface irregularities applicable to EP-cores. The specifications contained in this document are useful in negotiations between ferrite core suppliers and users about surface irregularities. The general considerations upon which the design of this range of cores is based are as given in Annex A.
This edition includes the following significant technical changes with respect to the previous edition:
a) revision of Table 2 according to IEC 60205:2016.
- Standard15 pagesEnglish languagesale 15% off
Applies to radio receives and tuners for the reception of frequency- modulated sound-broadcasting emissions with rated maximum system deviations of ±75 kHz and ±50 kHz in ITU Band 8. Deals mainly with methods of measurement using radiofrequency signals applied to the antenna terminals of the receiver.
- Standard150 pagesEnglish languagesale 15% off
- Standard147 pagesEnglish and French languagesale 15% off
- Standard3 pagesEnglish languagesale 15% off
- Standard3 pagesFrench languagesale 15% off
- Standard6 pagesEnglish and French languagesale 15% off
IEC TR 63400:2025 augments that description to enable users of individual IEC SC 45A standards to obtain a more comprehensive understanding of the overall structure of the series and its relationship with other standards bodies and standards. The publication of this document and its subsequent editions should also enable minor changes in the structure to be described without the need for amending the common description that is included in the Introduction, item d), of all IEC SC 45A documents.
- Technical report69 pagesEnglish languagesale 15% off
IEC/IEEE 61869-21:2025 provides the requirements, the methods and the guidelines to be applied on the evaluation of uncertainty in testing the accuracy of instrument transformers (IT) with an analogue or a digital secondary signal for measuring, protection and control purposes, with rated frequencies from 15 Hz to 400 Hz.
This document covers the uncertainty evaluation in testing the accuracy of IT (including on-site testing of accuracy) independently of the technology used (either inductive or non-inductive).
This document reports on how to take into account the sources of uncertainty in the setups for accuracy and how to combine their effects in order to evaluate the uncertainty in the test results.
- Standard40 pagesEnglish languagesale 15% off
IEC 61811-1:2015 applies to electromechanical telecom elementary relays. Relays according to this standard are provided for the operation in telecommunication applications. However, as electromechanical elementary relays, they are also suitable for particular industrial and other applications. This standard selects from IEC 61810 series and other sources the appropriate methods of test to be used in detail specifications derived from this specification, and contains basic test schedules to be used in the preparation of such specifications in accordance with this standard. Detailed test schedules are contained in the detail specifications. This second edition of IEC 61811-1 cancels and replaces IEC 61811-1 published in 1999, IEC 61811-10 published in 2002, IEC 61811-11 published in 2002, IEC 61811-50 published in 2002, IEC 61811-51 published in 2002, IEC 61811-52 published in 2002, IEC 61811-53 published in 2002, IEC 61811-54 published in 2002, IEC 61811-55 published in 2002, and constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous editions:
a) to get one document for telecom relays;
b) update all relevant references.
- Standard108 pagesEnglish languagesale 15% off
- Standard114 pagesEnglish and French languagesale 15% off
IEC 61300-3-50:2025 describes the procedure to measure the crosstalk of optical signals between the ports of a multiport M x N (M input ports and N output ports) fibre optic spatial switch. This second edition cancels and replaces the first edition published in 2013. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) revising structure of the document.
- Standard11 pagesEnglish languagesale 15% off
- Standard12 pagesFrench languagesale 15% off
- Standard23 pagesEnglish and French languagesale 15% off
- Standard11 pagesEnglish languagesale 15% off
- Standard2 pagesEnglish languagesale 15% off
- Standard2 pagesFrench languagesale 15% off
- Standard4 pagesEnglish and French languagesale 15% off
IEC 60730-2-12:2025 applies to automatic electrically operated door locks
• for use in, on, or in association with equipment for household appliance and similar use, including equipment for heating, air-conditioning and similar applications;
NOTE 1 Throughout this document, the word "equipment" means "appliance and equipment" and "controls" means "door locks".
NOTE 2 Throughout this document, the word "door" means "door, cover or lid". The words "door lock" means "electrically operated door lock".
• for equipment that is used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications;
EXAMPLE 1 Controls for commercial catering, heating and air-conditioning equipment.
• that are AC or DC powered controls with a rated voltage not exceeding 690 V AC or 600 V DC;
• used in, on, or in association with equipment that use electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof;
• utilized as part of a control system or controls which are mechanically integral with multifunctional controls having non-electrical outputs;
• using NTC or PTC thermistors and to discrete thermistors, requirements for which are contained in Annex J;
• that have electrical circuits and control circuits which are, for example, operated by bimetals, magnet coils, memory metals, pressure elements, temperature-sensitive expansion elements or electronic elements.
NOTE 3 Requirements for manually actuated mechanical switches not forming part of an automatic control are contained in IEC 61058-1-1.
This document applies to
- the inherent safety of electrically operated door locks, and
- functional safety of electrically operated door locks and safety related systems,
- electrically operated door locks where the performance (for example the effect of EMC phenomena) of the product can impair the overall safety and performance of the controlled system,
- the operating values, operating times, and operating sequences where such are associated with equipment safety.
This document specifies the requirements for construction, operation and testing of automatic electrical controls used in, on, or in association with an equipment.
This document does not
• apply to electrically operated door locks intended exclusively for industrial process applications unless explicitly mentioned in the relevant part 2 or the equipment standard. However, this document can be applied to evaluate automatic electrical controls intended specifically for industrial applications in cases where no relevant safety standard exists;
• take into account the response value of an automatic action of a control, if such a response value is dependent upon the method of mounting the control in the equipment. Where a response value is of significant purpose for the protection of the user, or surroundings, the value defined in the appropriate equipment standard or as determined by the manufacturer will apply;
• address the integrity of the output signal to the network devices, such as interoperability with other devices unless it has been evaluated as part of the control system.
This fourth edition cancels and replaces the third edition published in 2015. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
Adoption of IEC 60730-1:2022 with all of its significant changes to IEC 60730-1:2013, IEC 60730-1:2013/AMD1:2015 and IEC 60730-1:2013/AMD2:2020
- Standard23 pagesEnglish languagesale 15% off
- Standard24 pagesFrench languagesale 15% off
- Standard47 pagesEnglish and French languagesale 15% off
IEC 61300-3-7:2021 describes methods available to measure the wavelength dependence of attenuation and return loss of two-port, single mode passive optical components. It is not, however, applicable to dense wavelength division multiplexing (DWDM) devices. Measurement methods of wavelength dependence of attenuation of DWDM devices are described in IEC 61300-3-29. There are two measurement cases described in this document:
a) measurement of attenuation only;
b) measurement of attenuation and return loss at the same time.
This third edition cancels and replaces the second edition published in 2009. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) reduction of the number of alternative methods proposed to bring in-line with industry practice;
b) re-statement of the equations for insertion loss and return loss using logarithmic forms more common in the industry;
c) additional recommendations with respect to the creation of fibre terminations;
d) additional discussion on the characterization of the optical sources used in this document;
e) simplification of bi-directional testing;
f) removal of separate return loss only measurement procedures.
- Standard31 pagesEnglish languagesale 15% off
- Standard62 pagesEnglish languagesale 15% off
- Standard64 pagesEnglish and French languagesale 15% off
IEC 62541-17:2025 provides a definition of AliasNames functionality. AliasNames provide a manner of configuring and exposing an alternate well-defined name for any Node in the system. This is analogous to the way domain names are used as an alias to IP addresses in IP networks. Like a DNS Server, an OPC UA Server that supports AliasNames provides a lookup Method that will translate an AliasName to a NodeId of the related Node on a Server. An aggregating Server can collect these AliasNames from multiple Servers and provide a lookup Method to allow Client applications to discover NodeIds on a system wide basis. An aggregating Server could also define AliasNames for Nodes in other Servers that do not support AliasNames. A GDS can be constructed that would automatically aggregate all AliasNames that are defined on any Server that has registered with the GDS. In this case, the GDS also provides the lookup mechanism for Clients at a well-known endpoint and address.
- Standard24 pagesEnglish languagesale 15% off
- Standard24 pagesFrench languagesale 15% off
- Standard48 pagesEnglish and French languagesale 15% off
IEC 61757-8-1:2025 defines the terminology, structure, and measurement methods of optical pressure sensors for gases or liquids based on a diaphragm in combination with fibre Bragg gratings (FBGs) as the sensing element. This document also specifies the most important features and characteristics of these fibre optic pressure sensors and defines procedures for measuring these features and characteristics.
- Standard24 pagesEnglish languagesale 15% off
- Standard26 pagesFrench languagesale 15% off
- Standard50 pagesEnglish and French languagesale 15% off
IEC 60216-1:2025 specifies the general ageing conditions and procedures to be used for deriving thermal endurance characteristics and gives guidance in using the detailed instructions and guidelines in the other parts of IEC 60216. Although originally developed for use with electrical insulating materials and simple combinations of such materials, the procedures are considered to be of more general applicability and are widely used in the assessment of materials not intended for use as electrical insulation. In the application of this document, it is assumed that a practically linear relationship exists between the logarithm of the time required to cause the predetermined property change and the reciprocal of the corresponding absolute temperature (Arrhenius relationship). For the valid application of this document, no transition, in particular no first-order transition, is expected to occur in the temperature range under study.
This edition includes the following significant technical changes with respect to the previous edition:
a) the definition for temperature index (TI) has been updated;
b) requirements for selection of related materials used, e.g. in different colours (5.1.2), have been added;
c) test procedure for thickness sensitivity (5.5 et 6.6) has been added;
d) Annex C "Concepts in earlier editions" has been deleted.
- Standard30 pagesEnglish languagesale 15% off
- Standard31 pagesFrench languagesale 15% off
- Standard61 pagesEnglish and French languagesale 15% off
IEC 61300-3-7: 2025 Amendment 1
- Standard2 pagesEnglish languagesale 15% off
IEC TS 63493-1:2025 specifies the main parameters to facilitate interchangeability or at least to define some frame conditions of MV bushings:
- with Um from 12 kV up to and including 52 kV;
- Ir from 630 A up to and including 3 150 A.
This document deals with non-capacitance graded bushings for Power Transformers, according to the IEC 60076 series (usually for transformer with conservator).
In this document only liquid to air bushings are considered. Bushings of liquid-to-liquid and air-to-air type and bushings for transformers with air-cushion in tank are not considered.
MV is considered up to 52 kV; this value is used to cover specific insulation levels or for high pollution levels, even if the field of application is very restricted.
Both solutions with external insulation in porcelain and polymeric can be used and need to enable interchangeability (in terms of mechanical and electrical performance).
- Technical specification11 pagesEnglish languagesale 15% off
IEC 61076-2-111:2025 This part of IEC 61076‑2 describes 4- to 6-way circular connectors with M12 screw-locking with current ratings 8, 12 or 16 A per contact and voltage ratings of 50 V AC / 60 V or 630 V according to their coding, that are typically used for power supply and power applications in industrial premises.
- Standard67 pagesEnglish languagesale 15% off
- Standard69 pagesFrench languagesale 15% off
- Standard136 pagesEnglish and French languagesale 15% off
IEC TS 62257-350:2025 specifies the criteria for selecting and sizing inverters suitable for different off-grid applications integrating solar as an energy source. As well as off-grid systems, this document can also apply to inverters where a utility grid connection is available as a backup for charging batteries, but it is not intended to cover applications in which inverters synchronize and inject energy back into a utility grid, even though this capability can incidentally be a part of the functionality of the inverters. Single and multi-phase applications are included.
- Technical specification21 pagesEnglish languagesale 15% off
IEC TS 62607-6-26:2025, which is a Technical Specification, establishes a standardized method to determine the mechanical key control characteristics (KCCs)
• Young's modulus (or elastic modulus),
• residual strain,
• residual stress, and
• fracture stress
of 2D materials and nanoscale films using the
• bulge test.
The bulge test is a reliable method where a pressure differential is applied to a freestanding film, and the resulting deformation is measured to derive the mechanical properties.
• This method is applicable to a wide range of freestanding 2D materials, such as graphene, and nanometre-thick films with thicknesses typically ranging from 1 nm to several hundred nanometres.
• This document ensures the characterization of mechanical properties essential for assessing the structural integrity and performance of materials in applications such as composite additives, flexible electronics, and energy harvesting devices.
- Technical specification26 pagesEnglish languagesale 15% off
IEC 61874:2025 applies to equipment consisting of:
- a borehole logging probe equipped with a collimated radioisotope (gamma) source (during the actual measurements only) and a detector unit to measure scattered gamma radiation;
- a hoisting system and depth measuring system;
- other instruments and devices (power supply, pulse converter/amplifier, ratemeter, recorder, signal processing and readout units).
This document defines the terminology, specifies the types of apparatus, design and general technical requirements, specific radiation performance, electrical, mechanical, safe and environmental performance requirements. It also defines test and calibration procedures and covers electrical safety and radiation protection issues. Further, it gives recommendations about items included in the manufacturer's operation and maintenance documentation (or certificate).
The purpose of this document is to specify design requirements and performance characteristics of nuclear instrumentation used in boreholes to determine bulk rock density in situ. With suitable response charts the measurements can be equated to rock lithology and porosity.
- Standard14 pagesEnglish languagesale 15% off
IEC 62933-5-2:2025 primarily describes safety aspects for people and, where appropriate, safety matters related to the surroundings and living beings for grid-connected energy storage systems where an electrochemical storage subsystem is used. This document is applicable to the entire life cycle of BESS (from design to end of service life management). This document provides further safety provisions that arise due to the use of an electrochemical storage subsystem (e.g. battery system) in EES systems that are beyond the general safety considerations described in IEC 62933-5-1. This document specifies the safety requirements of an "electrochemical" energy storage system as a "system" to reduce the risk of harm or damage caused by the hazards of an electrochemical energy storage system due to interactions between the subsystems as presently understood.
- Standard111 pagesEnglish languagesale 15% off
- Standard125 pagesFrench languagesale 15% off
- Standard236 pagesEnglish and French languagesale 15% off
IEC 60749-23:2025 specifies the test used to determine the effects of bias conditions and temperature on solid state devices over time. It simulates the device operating condition in an accelerated way and is primarily for device qualification and reliability monitoring. A form of high temperature bias life using a short duration, popularly known as "burn-in", can be used to screen for infant-mortality related failures. The detailed use and application of burn-in is outside the scope of this document.
This edition includes the following significant technical changes with respect to the previous edition:
a) absolute stress test definitions and resultant test durations have been updated.
- Standard29 pagesEnglish languagesale 15% off
IEC 60749-21:2025 establishes a standard procedure for determining the solderability of device package terminations that are intended to be joined to another surface using tin-lead (SnPb) or lead-free (Pb-free) solder for the attachment. This test method provides a procedure for “dip and look” solderability testing of through hole, axial and surface mount devices (SMDs) as well as an optional procedure for a board mounting solderability test for SMDs for the purpose of allowing simulation of the soldering process to be used in the device application. The test method also provides optional conditions for ageing. This test is considered destructive unless otherwise detailed in the relevant specification.
NOTE 1 This test method does not assess the effect of thermal stresses which can occur during the soldering process. More details can be found in IEC 60749‑15 or IEC 60749‑20.
NOTE 2 If a qualitative test method is preferred, the Wetting balance test method can be found in IEC 60068-2-69.
This edition includes the following significant technical changes with respect to the previous edition:
- revision to certain operating conditions in line with current working practices.
- Standard61 pagesEnglish languagesale 15% off
IEC TR 63633:2025 provides information on safety related aspects relevant for the design and application of LED lamps that can be used as a replacement for lamps of different technology (for example, incandescent, fluorescent or HID).
- Technical report6 pagesEnglish languagesale 15% off
IEC 62083:2025, with the inclusion of type tests and site tests, applies to the design, manufacture, installation, and maintenance of the radiotherapy treatment planning system.
This document applies to the communication of the radiotherapy treatment planning system with other devices
– used in medical practice,
– that imports data either through input by the operator or from other devices,
– that outputs data to other devices, and
– that is intended to be
- for normal use, under the authority of appropriately qualified persons, by operators having the required skills and training,
- used and maintained in accordance with the recommendations given in the instructions for use, and
– used within the environmental conditions specified in the technical description.
This document applies to any software application that is used for the development, evaluation, or approval of a treatment plan, whether stand-alone or part of another system.
IEC 62083:2025 cancels and replaces the second edition published in 2009. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
– modification of the title from Medical electrical system - Requirements for the safety of radiotherapy treatment planning systems, to Medical device software - Requirements for the safety of radiotherapy treatment planning systems;
– Adaptive radiotherapy is added with Clause 16;
– The title reflects different implementations of radiotherapy treatment planning systems.
- Standard57 pagesEnglish languagesale 15% off
- Standard63 pagesFrench languagesale 15% off
- Standard120 pagesEnglish and French languagesale 15% off
IEC 61267:2025 applies to test procedures which, for the determination of characteristics of systems or components of medical diagnostic X-ray equipment, require well-defined X-ray radiation conditions. This document deals with methods for generating X-ray radiation conditions which can be used under test conditions typically found in test laboratories or in manufacturing facilities for the determination of characteristics of medical diagnostic X-ray equipment.
IEC 61267:2025 cancels and replaces the second edition published 2005. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) removing former Annex C “Measurement of the practical peak voltage”;
b) inserting informative “Tabulated values for the squared signal-to-noise ratio per air kerma (SNR2in)” and normative “Additional X-ray radiation conditions as used in mammography and determination of the corresponding nominal aluminium half-value layers”;
c) revision of X-ray radiation conditions;
d) new method for verification of X-ray radiation conditions;
e) change of term definitions.
- Standard44 pagesEnglish languagesale 15% off
- Standard47 pagesFrench languagesale 15% off
- Standard91 pagesEnglish and French languagesale 15% off
IEC 60335-2-116:2025 deals with the safety of furniture with electrically motorized parts intended for household and similar purposes, their rated voltage being not more than 250 V including direct current (DC) supplied furniture and battery-operated furniture.
Furniture incorporating electrically motorized parts not intended for normal household use but which nevertheless can be a source of danger to the public, such as furniture intended to be used by laymen in shops, offices, hotels, restaurants, cinemas, hospitals, schools, in light industry and on farms, are within the scope of this standard.
Examples of furniture incorporating electrically motorized parts, are
– electrically operated/height adjustable tables and desks;
– electrically operated/adjustable stands and wall attachment for e.g.TV sets and monitors;
– electrically operated/adjustable seating;
– beds with incorporated ventilators and filters;
– electrically operated/adjustable beds;
– electrically operated/adjustable storage units including kitchen units;
– electrically operated/adjustable furniture intended to be secured to the wall or ceiling;
– electrically operated extension elements (drawers and doors);
– electric check-out furniture in hotels and shops;
– furniture delivered in parts (ready to assemble or knock-down furniture).
This standard deals with the reasonably foreseeable hazards presented by furniture incorporating electrically motorized parts that are encountered by all persons. However, in general, it does not take into account
– persons whose physical, sensory or mental capabilities; or lack of experience and knowledge prevents them from using the furniture incorporating electric appliances, parts or components safely without supervision or instruction;
– children playing with furniture incorporating electrically motorized parts.
Additional requirements can be necessary for furniture incorporating electrically motorized parts intended to be used in vehicles or on board ships or aircraft. In many countries, additional requirements are specified by the national health authorities, the national authorities responsible for the protection of labour, the national authorities for fire protection and similar authorities.
This standard does not apply to:
– furniture containing heating elements;
– furniture intended to be used in locations where special conditions prevail, such as the presence of a corrosive or explosive atmosphere (dust, vapour or gas);
– massage beds and massage chairs (IEC 60335-2-32);
– medical electrical equipment (IEC 60601 series);
– audio/video, information and communication technology equipment (IEC 62368-1);
– electrical wheel chairs;
– special furniture incorporating electric appliances, parts or components, which are part of industrial production equipment;
– electric child care articles except electrical height adjustable changing (nursing) tables;
– furniture especially for use by children;
– furniture for outdoor use.
Massage beds and massage chairs with motorized parts, other than those performing the massaging function, are also evaluated to the applicable requirements of this standard.
This second edition cancels and replaces the first edition published in 2019. This edition constitutes a technical revision. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) alignment with IEC 60335-1:2020;
b) deletion or conversion of some notes to normative text (Clause 1);
c) introduction of surface temperature limits (11.3, 11.8);
d) introduction of test probe 19 (8.1.1, 20.2);
e) revision of Clause 20.2.105 with a new entrapment force test method, including time-force profiles and updated force limits.
This part 2 is to be used in conjunction with the latest edition of IEC 60335-1 and its amendments unless that edition precludes it; in that case, the latest edition that does not preclude it is us
- Standard24 pagesEnglish languagesale 15% off
- Standard25 pagesFrench languagesale 15% off
- Standard49 pagesEnglish and French languagesale 15% off
IEC 61300-3-14:2025 provides a method to measure the error and repeatability of the attenuation value settings of a variable optical attenuator (VOA). There are two control technologies for VOAs: manually controlled and electrically controlled. This document covers both VOA control technologies and also both single-mode fibres and multimode fibres VOAs. For electrically controlled VOAs, the hysteresis characteristics of attenuation are sometimes important. The hysteresis characteristics can be measured as stated in Annex B. This fourth edition cancels and replaces the third edition published in 2014.
This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) addition of IEC 61315, Calibration of fibre-optic power meters as normative reference;
b) addition of Clause 3 containing terms, definitions and abbreviated terms;
c) addition of notes for permission of repeatability definition with 2σ;
d) correction of error in Figure 1 a) and Figure 1 b);
e) addition of a clear statement on EF launch condition requirement for MM source;
f) change of “Detector” to “Power meter”;
g) combination of Clause 7 and Clause 8 into a new Clause 8 titled “Details to be specified and reported”;
h) addition of uncertainty considerations in Clause 7;
i) correction of error in Formula (B.3).
- Standard44 pagesEnglish languagesale 15% off
IEC/IEEE 80005-3:2025 specifies provisions for the design, installation and testing of low-voltage shore connection (LVSC) systems, onboard ships and on shore, to supply the ship with electrical power from shore.
This document is applicable to:
- ships requiring up to 1 MVA while at berth;
- three-phase shore connection systems rated 250 A and above, and with a nominal voltage rating of 400 V AC to 1 000 V AC;
- shore-side connection systems;
- shore-to-ship connection and interface equipment;
- transformers and reactors;
- semiconductor and rotating frequency convertors;
- ship-side connection systems;
- protection, control, monitoring, interlocking and power management systems.
This document does not apply to:
- inland navigation vessels;
- high-voltage shore connection systems, including ships built in accordance with the annexes of IEC/IEEE 80005-1;
- the electrical power supply during docking periods, for example dry docking and other out-of-service maintenance and repair;
- systems to be operated by ordinary persons as defined in 3.19.
- Standard47 pagesEnglish languagesale 15% off
IEC TS 62627-09:2016, which is a Technical Specification, applies to passive optical devices (components). It provides the definitions which are commonly used in the generic specifications, performance standards and tests and measurement standards for passive optical devices (components) prepared by SC 86B. It has the following three types of terms and definitions:
- basic terms and definitions;
- component terms and definitions;
- performance parameter terms and definitions. The generic specifications for passive optical devices (components) are listed in Annex A.
Keywords: terms and definitions for passive optical devices
- Technical specification17 pagesEnglish languagesale 15% off
- Technical specification32 pagesEnglish languagesale 15% off
IEC TS 62629-09: 2025 Amendment 1
- Technical specification2 pagesEnglish languagesale 15% off
- Standard3 pagesEnglish and French languagesale 15% off
- Standard1 pageEnglish and French languagesale 15% off
IEC 62024-1:2024 specifies the electrical characteristics and measuring methods for the nanohenry range chip inductor that is normally used in the high frequency (over 100 kHz) range.
This edition includes the following significant technical changes with respect to the previous edition:
a) addition of S parameter measurement;
b) addition of the inductance, Q-factor and impedance of an inductor which are measured by the reflection coefficient method with a network analyzer;
c) addition of the resonance frequency of an inductor which is measured by a two-port network analyzer;
d) addition of the mounting method for a surface mounting inductor with Pb-free solder.
- Standard2 pagesEnglish and French languagesale 15% off
IEC 62541-19: 2025 defines an Information Model of the OPC Unified Architecture. The Information Model describes the basic infrastructure to reference from an OPC UA Information Model to external dictionaries like IEC Common Data Dictionary or ECLASS.
- Standard15 pagesEnglish languagesale 15% off
- Standard15 pagesFrench languagesale 15% off
- Standard30 pagesEnglish and French languagesale 15% off
IEC 62541-16:2025 defines an Information Model. The Information Model describes the basic infrastructure to model state machines.
NOTE State Machines were dealt with in IEC 62541‑5:2020, Annex B. In newer versions of IEC 62541‑5 this Annex B was removed and replaced by this document
- Standard35 pagesEnglish languagesale 15% off
- Standard37 pagesFrench languagesale 15% off
- Standard72 pagesEnglish and French languagesale 15% off
IEC 60601-2-64:2025 applies to the BASIC SAFETY and essential performance of LIGHT ION BEAM ME EQUIPMENT, hereafter referred to as ME EQUIPMENT, used for treatment of patients. If a clause or subclause is specifically intended to be applicable to ME EQUIPMENT only, or to ME SYSTEMS only, the title and content of that clause or subclause will say so. If that is not the case, the clause or subclause applies both to ME EQUIPMENT and to ME SYSTEMS, as relevant.
This document, with the inclusion of TYPE TESTS and SITE TESTS, applies respectively to the manufacturer and specified installation aspects of LIGHT ION BEAM ME EQUIPMENT
– intended for RADIOTHERAPY in human medical practice, including those in which the selection and DISPLAY of operating parameters can be controlled automatically by PROGRAMMABLE ELECTRONIC SUBSYSTEMS (PESS),
– that, in NORMAL USE, deliver a RADIATION BEAM of LIGHT IONS having ENERGY PER NUCLEON in the range 10 MeV/n to 500 MeV/n,
and
– intended to be
• for NORMAL USE, operated under the authority of appropriately licensed or QUALIFIED PERSONS by OPERATORS having the required skills for a particular medical application, for particular SPECIFIED clinical purposes maintained in accordance with the recommendations given in the INSTRUCTIONS FOR USE,
• subject to regular quality assurance performance and calibration checks by a QUALIFIED PERSON.
IEC 60601-2-64:2025 cancels and replaces the first edition published in 2014. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) harmonization with IEC 60601-1:2005, IEC 60601-1:2005/AMD1:2011 and IEC 60601-1:2005/AMD2:2020;
b) harmonization with IEC 62667:2017 for defined terms and definitions;
c) address revision to neutrons outside the field of irradiation.
- Standard185 pagesEnglish languagesale 15% off





