IEC 62590-2-1:2025
(Main)Railway applications - Electronic power converters for fixed installations - Part 2-1: DC traction applications - Uncontrolled rectifiers
Railway applications - Electronic power converters for fixed installations - Part 2-1: DC traction applications - Uncontrolled rectifiers
IEC 62590-2-1:2025 This document includes the following significant technical changes with respect to IEC 62589 and the former IEC 62590:
a) Reduction of the requirements for uncontrolled rectifiers only;
b) Interface model for the different systems connected;
c) Energy efficiency addressed.
This part of IEC 62590 describes functions and working principles, specifies requirements, interfaces and test methods of uncontrolled rectifiers for DC electric traction power supply systems. Uncontrolled rectifiers connect a 3AC power network with a DC electric traction system with a unidirectional power flow using diode assemblies.
The coordination between the transformer and the rectifier diode assembly is included.
This document applies to fixed installations of following electric traction power supply systems:
• railway networks;
• metropolitan transport networks including metros, tramways, trolleybuses and fully automated transport systems, magnetic levitated transport systems, electric road systems.
This first edition of IEC 62590-2-1, in conjunction with the other parts of the IEC 62590 series, cancels and replaces the first edition of IEC 62589 published in 2010 and the second edition of IEC 62590 published in 2019.
Applications ferroviaires - Convertisseurs électroniques de puissance pour installations fixes - Partie 2-1: Applications de traction en courant continu - Redresseurs non commandés
IEC 62590-2-1:2025 Le présent document contient les modifications techniques majeures suivantes par rapport à l’IEC 62589 et l’ancienne IEC 62590:
a) réduction des exigences pour les redresseurs non commandés uniquement ;
b) modèle d'interface pour les différents systèmes connectés ;
c) efficacité énergétique abordée.
Le présent document décrit les fonctions et les principes de fonctionnement, spécifie les exigences, les interfaces et les méthodes d'essai des redresseurs non commandés pour les réseaux d'alimentation électrique de traction en courant continu. Les redresseurs non commandés connectent un réseau de distribution 3AC à un système de traction électrique en courant continu avec une circulation de puissance unidirectionnelle réalisée par des ensembles de diodes.
La coordination entre le transformateur et l'ensemble de diodes de redressement est incluse.
Le présent document s'applique aux installations fixes des réseaux d'alimentation électrique de traction suivants:
• réseaux ferroviaires,
• réseaux de transport métropolitains, y compris métros, tramways, trolleybus et systèmes de transport entièrement automatiques, systèmes de transport à sustentation magnétique et systèmes routiers électriques.
Cette première édition de l’IEC 62590-2-1, conjointement avec les autres parties de la série IEC 62590, annule et remplace la première édition de l’IEC 62589 publiée en 2010 et la deuxième édition de l’IEC 62590 publiée en 2019.
General Information
Relations
Overview
IEC 62590-2-1:2025 - Railway applications - Electronic power converters for fixed installations - Part 2-1: DC traction applications - Uncontrolled rectifiers specifies functions, working principles, requirements, interfaces and test methods for uncontrolled rectifiers used in DC traction power supply systems. Uncontrolled rectifiers connect a 3‑phase AC power network to a DC traction system using diode assemblies with unidirectional power flow. The document covers coordination between the rectifier and the converter transformer and addresses energy efficiency and an interface model for connected systems. This first edition replaces IEC 62589 (2010) and the earlier IEC 62590 (2019) editions.
Key topics and technical requirements
- Scope and system types: Applies to fixed installations for railway networks, metros, tramways, trolleybuses, automated transport, magnetic levitation and electric road systems.
- Functional principles: Describes diode‑based uncontrolled rectifier topology, unidirectional power flow and external voltage/current characteristics.
- Transformer‑rectifier coordination: Defines transformer main values, coupling factors and impedance/reactance relationships for stable operation.
- Interfaces and modeling: Introduces an interface model for interaction between the 3AC network, transformer and DC traction system to support interoperability and system integration.
- Energy efficiency: New requirements and tests to assess losses and power factor behaviour in traction rectifiers.
- Testing and verification: Specifies tests including visual inspection, insulation, protective functions, light‑ and full‑load tests, temperature‑rise, short‑time withstand current, power loss determination, harmonic and power factor measurements, audible sound and mechanical tests.
- Design and documentation: Defines required manufacturer data, user specification items, marking and rating plate information.
- Harmonics and power quality: Addresses DC harmonic content, 3AC harmonic currents and provides informative annexes with methods to determine voltage drop, short‑circuit currents and power factor examples.
Applications
- Use this standard for design, procurement, factory acceptance and commissioning of uncontrolled rectifiers in DC traction substations.
- Support compatibility studies when integrating rectifiers with traction converters, transformers and the public or dedicated 3‑phase supply.
- Inform energy efficiency assessments, loss budgeting and power quality mitigation in rail power systems.
- Provide test protocols for manufacturers, test laboratories and acceptance teams.
Who should use this standard
- Railway electrification engineers and system designers
- OEMs of rectifier assemblies, converter transformers and diode modules
- System integrators and installation contractors
- Procurement and specification writers for traction power equipment
- Test laboratories, certification bodies and maintenance planners
Related standards
- Other parts of the IEC 62590 series (electronic power converters for fixed installations)
- IEC 62589 (replaced by this edition) - historical reference
Keywords: IEC 62590-2-1:2025, uncontrolled rectifiers, DC traction, railway applications, rectifier transformer, diode assemblies, energy efficiency, traction power supply, test methods, harmonics.
Standards Content (Sample)
IEC 62590-2-1 ®
Edition 1.0 2025-12
INTERNATIONAL
STANDARD
Railway applications - Electronic power converters for fixed installations -
Part 2-1: DC traction applications - Uncontrolled rectifiers
ICS 45.060.01 ISBN 978-2-8327-0742-5
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
publications previews, graphical symbols and the glossary.
The advanced search enables to find IEC publications by a
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.
Electropedia - www.electropedia.org
The world's leading online dictionary on electrotechnology,
IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
once a month by email. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
CONTENTS
FOREWORD. 3
INTRODUCTION . 5
1 Scope . 6
2 Normative references . 6
3 Terms, definitions, symbols and abbreviated terms . 6
3.1 Terms and definitions . 6
3.2 Symbols . 9
3.3 Abbreviated terms . 9
4 System configurations and characteristics . 10
4.1 General . 10
4.2 Main interfaces . 10
4.3 Transformer main values . 11
4.3.1 General . 11
4.3.2 Impedance voltages . 11
4.3.3 Coupling factor . 12
4.4 Electrical connections . 13
4.5 Voltage characteristic . 14
4.6 Current characteristic . 15
4.7 Current imbalance . 16
4.8 Short time withstand capability . 16
4.9 Direct voltage harmonic content . 17
4.10 3AC power network harmonic current . 17
5 Design and integration . 17
5.1 General . 17
5.2 To be defined by user specification . 18
5.2.1 Electrical data . 18
5.2.2 Mechanical requirements . 19
5.3 To be indicated by manufacturer . 19
5.4 Marking . 20
5.4.1 Rating plate . 20
5.4.2 Main circuit terminals . 21
6 Tests . 21
6.1 General . 21
6.2 Test specifications . 22
6.2.1 Visual inspection . 22
6.2.2 Test of accessory and auxiliary components . 22
6.2.3 Insulation test . 23
6.2.4 Checking the protective functions . 23
6.2.5 Light load functional test . 23
6.2.6 Load test . 23
6.2.7 Inherent voltage drop . 23
6.2.8 Temperature-rise test . 25
6.2.9 Short time withstand current . 26
6.2.10 Power loss determination . 26
6.2.11 Audible sound . 27
6.2.12 Harmonic test . 27
6.2.13 Power factor measurement . 27
6.2.14 Mechanical test . 27
Annex A (informative) Determination of the voltage drop and the short-circuit currents
of uncontrolled rectifiers . 28
A.1 General . 28
A.2 Description of the method . 29
A.3 Example of a six-pulse rectifier or twelve-pulse rectifier with magnetically not
coupled transformer windings (K ≈ 0) . 34
A.4 Example of a twelve-pulse rectifier with closely coupled secondary windings
of the converter transformer (K ≈ 1) . 36
Annex B (informative) Examples of power factors of uncontrolled rectifiers . 39
B.1 General . 39
B.2 Considerations on the variation of the fundamental current and power factor
in rectifiers . 39
B.2.1 Basic considerations . 39
B.2.2 First working zone . 39
B.2.3 Second working zone . 40
Annex C (informative) Interphase transformer . 41
C.1 General . 41
C.2 Voltage and currents . 41
C.3 Intermittent current conditions . 42
C.4 Current imbalance . 42
Annex D (informative) Example of a protection curve . 43
Bibliography . 45
Figure 1 – General configuration . 10
Figure 2 – Reactances of a rectifier transformer . 11
Figure 3 – Voltage characteristic . 15
Figure 4 – Measurement of inherent voltage drop . 25
Figure A.1 – Typical characteristic of an uncontrolled rectifier . 29
Figure A.2 – External characteristics of six-pulse (three-phase bridge) rectifiers and
twelve-pulse rectifiers with magnetically non-coupled transformer windings (K = 0) . 32
Figure A.3 – External characteristics of twelve-pulse rectifiers with closely coupled
secondary windings of the converter transformer (K ≈ 1) . 33
Figure A.4 – Determination of the short-circuit currents of a six-pulse rectifier or a
twelve-pulse rectifier with magnetically not coupled transformer windings (K ≈ 0) . 36
Figure A.5 – Determination of the short-circuit currents of a twelve-pulse rectifier with
closely coupled transformer windings (K ≈ 1) . 38
Figure C.1 – Interphase transformer . 41
Figure D.1 – Example protection curve . 43
Table 1 – Connections and calculation factors for uncontrolled rectifiers . 14
Table 2 – Main rectifier design data . 18
Table 3 – Mechanical requirements . 19
Table 4 – Summary of tests . 22
Table A.1 – Method of use of the charts in Figure A.2 and Figure A.3 . 30
Table A.2 – Example of the application of Table A.1 for a six-pulse rectifier or a twelve-
pulse rectifier with magnetically not coupled transformer windings (K ≈ 0) . 34
Table A.3 – Example of the application of Table A.1 for a twelve-pulse rectifier with
closely coupled secondary windings of the converter transformer (K ≈ 1) . 37
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Railway applications -
Electronic power converters for fixed installations -
Part 2-1: DC traction applications - Uncontrolled rectifiers
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 62590-2-1 has been prepared by IEC technical committee 9: Electrical equipment and
systems for railways. It is an International Standard.
This first edition of IEC 62590-2-1, in conjunction with the other parts of the IEC 62590 series,
cancels and replaces the first edition of IEC 62589 published in 2010 and the second edition of
IEC 62590 published in 2019.
This document includes the following significant technical changes with respect to IEC 62589
and the former IEC 62590:
a) Reduction of the requirements for uncontrolled rectifiers only;
b) Interface model for the different systems connected;
c) Energy efficiency addressed.
The text of this International Standard is based on the following documents:
Draft Report on voting
9/3224/FDIS 9/3265/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts in the IEC 62590 series, published under the general title Railway applications -
Fixed installations - Electronic power converters, can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
– reconfirmed,
– withdrawn, or
– revised.
INTRODUCTION
Electronic power converters for traction power supply differ from other converters for industrial
use due to special electrical service conditions and due to the large range of load variations
and the peculiar characteristics of the load.
For these reasons IEC 60146-1-1 does not fully cover the requirements of railway applications
and the decision was taken to have a specific standard for this use.
Uncontrolled rectifiers consist of a rectifier diode assembly and a transformer. Both fulfil
common requirements. The transformer determines the voltage versus current characteristic.
Converter transformers for fixed installations of railway applications are covered by IEC 62695.
1 Scope
This part of IEC 62590 describes functions and working principles, specifies requirements,
interfaces and test methods of uncontrolled rectifiers for DC electric traction power supply
systems. Uncontrolled rectifiers connect a 3AC power network with a DC electric traction system
with a unidirectional power flow using diode assemblies.
The coordination between the transformer and the rectifier diode assembly is included.
This document applies to fixed installations of following electric traction power supply systems:
• railway networks;
• metropolitan transport networks including metros, tramways, trolleybuses and fully
automated transport systems, magnetic levitated transport systems, electric road systems.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 62695, Railway applications - Fixed installations - Traction transformers
IEC 62590-1:2025, Railway applications - Electronic power converters for fixed installations -
Part 1: General requirements
3 Terms, definitions, symbols and abbreviated terms
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
– IEC Electropedia: available at https://www.electropedia.org/
– ISO Online browsing platform: available at https://www.iso.org/obp
3.1 Terms and definitions
3.1.1
semiconductor device
device whose essential characteristics are due to the flow of charge carriers within a
semiconductor
Note 1 to entry: The definition includes devices whose essential characteristics are only in part due to the flow of
charge carriers in a semiconductor but that are considered as semiconductor devices for the purpose of specification.
[SOURCE: IEC 60050-521:2002, 521-04-01]
3.1.2
rectifier
AC/DC converter for rectification
[SOURCE: IEC 60050-551:1998, 551-12-07, modified – The figure has been omitted.]
3.1.3
rectifier diode assembly
valve device assembly for rectification
Note 1 to entry: Often the term rectifier is used instead of rectifier diode assembly.
3.1.4
ideal no-load direct voltage
U
di
theoretical no-load mean direct voltage of a converter assuming no reduction by phase control,
no voltage drop in the assemblies, and no voltage rise at small loads
[SOURCE: IEC 60050-551:1998, 551-17-15, modified – “mean” has been added. “AC/DC” has
been removed. “no threshold voltages of electronic valve devices” has been replaced with “no
voltage drop in the assemblies.]
3.1.5
real no-load direct voltage
U
d00
actual mean direct voltage at zero direct current
[SOURCE: IEC 60050-551:1998, 551-17-19]
3.1.6
ideal crest no-load voltage
U
iM
crest value of the voltage, appearing between the end terminals of an arm neglecting internal
and external voltage surge and voltage drops in valves, at no load
3.1.7
inherent voltage drop
direct voltage drop related to the ideal no load voltage excluding the effect of the 3AC system
impedance
3.1.8
transition current
mean direct current of a converter connection when the direct current(s) of the commutation
group(s) become(s) intermittent when decreasing the current
[SOURCE: IEC 60050-551:1998, 551-17-20]
3.1.9
leakage reactance of the primary winding
X
P
difference between the mean of the short-circuit reactance
values measured between the primary winding and each secondary winding and one half of the
short-circuit reactance measured between the two secondary windings
3.1.10
leakage reactance of each of the secondary windings
X , X
S1 S2
sum of the half difference of the short-circuit reactance values
measured between the primary winding and each secondary winding and one half of the short-
circuit reactance measured between the two secondary windings
3.1.11
reactance ratio
coupling factor
K
ratio between the leakage reactance of the primary winding
and the sum of the leakage reactances of the primary winding and secondary winding
Note 1 to entry: In case of a traction transformer with two secondary windings, used for a twelve-pulse converter,
the reactance ratio is designed to have the same no-load secondary voltages and the same impedance between the
primary winding and each secondary winding, in order to obtain an even sharing of the current on both bridges in
case the DC outputs are paralleled. Then X = X = X and K = X / (X + X ).
S1 S2 S p S p
3.1.12
interphase transformer
electromagnetic device enabling the operation in parallel of two or more phase displaced
commutating groups through inductive coupling between the windings placed on the same core
[SOURCE: IEC 60050-551:1998, 551-14-16]
3.1.13
rated 3AC voltage
rated voltage of the rectifier on the 3AC power network side
3.1.14
rated 3AC voltage of a rectifier diode assembly
highest value of the transformer traction side no-load voltage that a rectifier diode assembly is
designed for
3.1.15
rated current
rated load
I
Nd
value of a DC current that a rectifier is designed for
Note 1 to entry: All rated values of the components are derived from this value.
Note 2 to entry: A rectifier can have a rated continuous load and rated currents in conjunction with a duty class.
3.1.16
rated power
rated direct current multiplied by DC voltage at rated current
3.1.17
rated AC short-circuit current
short-circuit withstand current on the AC side of a rectifier diode
assembly for every 3AC connection
Note 1 to entry: For a twelve-pulse connection the rated short-circuit current is applicable for each individual six-
pulse diode assembly.
Note 2 to entry: It is an initial short-circuit current according to IEC 60909-0.
3.1.18
rated DC short-circuit current
short-circuit withstand current on the DC side of a rectifier diode
assembly
3.2 Symbols
d resistive direct voltage drop of the rectifier related to U at rated current
rN di
d inductive direct voltage drop of the rectifier related to U at rated current
xN di
f frequency of the 3AC power network
N
I direct current
d
I maximum current value of the range of linear voltage drop
dlinmax
I rated DC current on the traction side of the rectifier
Nd
I transformer phase current on the valve side
v
K coupling factor
p number of pulses
U real no-load direct voltage, theoretically resulting from peak value of a symmetrical
d00
sinusoidal 3AC voltage U
v0
U ideal no-load direct voltage
di
U ideal crest no-load voltage
iM
u impedance voltage of the transformer
kt
u , u impedance voltage of a three-winding transformer with one secondary winding
kt1 kt2
shorted for winding 1 (u ) or winding 2 (u )
kt1 kt2
U DC voltage at rated DC current in V
Nd
U no-load phase to phase voltage of the transformer valve side
v0
X leakage reactance of the primary winding (for three-winding transformer)
P
X mean value of the leakage reactance of each of the secondary windings (for three-
S
winding transformer)
X X leakage reactance of each of the secondary windings (for transformer with two
S1 S2
secondary windings)
X short-circuit reactance between the primary winding and secondary winding 1
scP/S1
(for transformer with two secondary windings)
X short-circuit reactance between the primary winding and secondary winding 2
scP/S2
(for transformer with two secondary windings)
X short-circuit reactance between both secondary windings (for transformer with two
scS1/S2
secondary windings)
X short-circuit reactance between the primary winding and both secondary windings
scP/S1S2
(for transformer with two secondary windings)
3.3 Abbreviated terms
3AC three phase AC
AC alternating current
DC direct current
RMS root mean square
4 System configurations and characteristics
4.1 General
DC railway systems are normally fed by a 3AC power network via a rectifier, see Figure 1.
Figure 1 – General configuration
Diode rectifiers allow for a power flow from 3AC power network to the DC traction system only.
The voltage versus current characteristic is determined by the connection and the transformer
main data.
Rectifier diode assemblies and their transformers can be specified separately if a few
parameters are clear:
– load conditions for the transformer and rectifier diode assembly;
– short-circuit withstand of the rectifier diode assembly;
– short-circuit current limited by the transformer;
– maximum U valve side no-load voltage of transformer.
v0
The optional interphase transformer for connection 9 is considered to be part of the rectifier
diode assembly.
Protection at 3AC power network side is normally realized by a circuit breaker and a dedicated
protection relay. In rare cases a combination of load break switch and fuse can be used.
Protection on the DC side is ensured by DC switchgear according to the IEC 61992 series.
4.2 Main interfaces
The interface to the 3AC power network is characterized by:
– rated voltage of the 3AC power network;
– short-circuit power of the 3AC power network;
– voltage imbalance of the 3AC power network;
– harmonic predistortion of the 3AC power network;
– current harmonics by the rectification.
A method to determine the power factor at the 3AC connection of the rectifier is described in
Annex B.
The interface to the DC traction network is characterized by:
– voltage characteristic of the rectifier;
– voltage harmonics by the rectification.
4.3 Transformer main values
4.3.1 General
A rectifier transformer is characterized by the following main values:
– 3AC power network voltage;
– traction side no-load voltage;
– impedance voltages;
– coupling factor.
The traction side no-load voltage is a main value for calculation of all other voltages.
The impedance voltage is only one value for two-winding transformers. For three-winding
transformers there is more than one value for the impedance voltage.
For a complete transformer specification, other values are necessary. IEC 62695 shall be used.
4.3.2 Impedance voltages
The impedance voltage can be derived from short-circuit tests of the transformer. It can also be
expressed as an impedance. For practical purpose the reactance is far more important than the
resistance as for the interesting power range the X/R ratio is 8 or higher.
For connection 8 from Table 1, only one reactance is applicable. Only one test is applicable.
For connection 9 and 12 from Table 1 two reactances are applicable, see Figure 2. All of the
following 4 tests are applicable.
Figure 2 – Reactances of a rectifier transformer
The different reactances can be determined by measurements.
Test 1: application of a voltage on primary side and short-circuit on secondary side winding 1
X = X + X is measured. The corresponding impedance voltage is u . For u 50 % of
scP/S1 P S1 kt1 kt1
the transformer power is applicable.
Test 2: application of a voltage on primary side and short-circuit on secondary side winding 2
X = X + X is measured. The corresponding impedance voltage is u . For u 50 % of
scP/S2 P S2 kt2 kt2
the transformer power is applicable.
Both values shall almost be the same. For tolerances IEC 62695 shall apply. Otherwise, the
transformer is not symmetric and a current imbalance between the two secondary windings and
their connected rectifier diode bridges will occur.
These measured reactances are determining the linear behaviour of the rectifier from low load
to overload.
Test 3: application of a voltage on the primary side and short-circuit on both secondary
windings. X = X + X /2 is measured. The corresponding impedance voltage is u . For
scP/S1S2 P S kt
u the full transformer power is applicable.
kt
This reactance is determining the short-circuit current of the rectifier in connection 9.
Test 4: application of a voltage on secondary side winding 1 and short-circuit on secondary
winding 2 or vice versa. For the resulting impedance voltage 50 % of the transformer power is
applicable.
X = X + X is measured.
scS1/S2 S1 S2
More accurate results are possible taking into account the resistances and the short-circuit
impedance of the feeding 3AC power network. The connection between the transformer and
rectifier diode assembly may have an influence.
With the measured values, the values from the equivalent circuit, see Figure 2, can be
calculated. The measurements are redundant.
XX+ X
scP/S1 scP/S2 scS1/S2
X − (1)
p
XX− X
scP/S1 scP/S2 scS1/S2
(2)
X +
S1
XX− X
scP/S2 scP/S1 scS1/S2
X + (3)
S2
4.3.3 Coupling factor
The definition of the coupling factor in 3.1.11 leads to Formula (4) and Formula (5).
K = X / (X + X )
(4)
P S P
u
kt
K −1
(5)
u
kt1
Solving Formulae (1), (2) and (3), the coupling factor can be calculated.
=
=
=
=
The coupling factor can be adjusted by the winding arrangement within the transformer. A
closely coupled transformer needs specially integrated low voltage windings and a K around
0,9 is possible. To achieve a low coupling factor two separate transformers can be used or a
split high voltage winding connected in parallel. Without any special measure the coupling factor
can vary in a wide range.
4.4 Electrical connections
Standard design of uncontrolled rectifiers is based on a six-pulse bridge connection. Two or
more six-pulse bridges can be connected in parallel or series to achieve a twelve-pulse or 24-
pulse characteristic.
Every six-pulse bridge requires an own three-phase system on the traction side of the
transformer. A twelve-pulse behaviour is achieved by a phase shift of 30° which is realized by
a star and a delta winding with the same vector group on the 3AC power network side of the
transformer.
Combinations of six-pulse bridges are used to eliminate low order current harmonics on the AC
side and low order voltage harmonics on the DC side.
Twelve-pulse and 24-pulse behaviour can be achieved with this combination including a phase
shift between the transformer windings. For a 24-pulse behaviour, two transformers with a
phase shift of +7,5° and −7,5° are used to achieve a phase shift of total 15°.
Table 1 gives values of calculation factors for the most used connections of uncontrolled
rectifiers. For other connections IEC 60146-1-1 and IEC TR 60146-1-2 assists.
IEC TR 60146-1-2 describes the ideal harmonic behaviour under symmetric and sinusoidal 3AC
network conditions as well as a perfect symmetrical transformer. In practice a current or voltage
imbalance can be expected, and the perfect elimination of the harmonics cannot be achieved.
Current imbalance consequences are described in 4.7.
Table 1 – Connections and calculation factors for uncontrolled rectifiers
Con- Transformer
U U U
di d00
iM
I /I d /u d /u
nection connection Valve connection p
v d xN kt1 xN kt
U U U
no. valve side v0 di di
0,816 1,35
1,05 1,05
1 or 1
8 1 2 3 6 0,5 0,5
2 32 π π
3 2 2
3 π 3 3
1,35
0,408 1,05
1,05
1 2
a
9 1 3 5 2 4 6 12 0,5
1 32 0,26
π π
5 3 4
π
3 3
6
0,816 2,7
1,05 0,524
1 2
6 a
1 3 5 2 4 6
12 12 0,5 0,26
2 62 π π
5 3 4
3 π 3 6
NOTE 1 Connection 9 can be used with or without interphase transformer. For high coupling factors an interphase
transformer is normally used. For low coupling factor no interphase transformer is used except for low transition
current requirements.
NOTE 2 Additionally to preceding standards, d /u is given as it provides a factor independent from the coupling
xN kt1
factor.
NOTE 3 The connection numbers are the same as those used in IEC 60146-1-1.
NOTE 4 The interphase transformer can be arranged in the positive or the negative polarity.
NOTE 5 The real no load voltage U can rise to higher values than indicated due to capacitive effects. In these
d00
cases a base load resistor is commonly used.
a
The factor of 0,26 is given for an ideal coupling. The value is a function of the coupling factor. The range can
have any value between 0,26 and 0,5. Values used in practice are 0,26 and 0,5.
4.5 Voltage characteristic
The typical voltage characteristic with its characteristic values is shown in Figure 3. A method
to determine voltage versus current characteristic for higher currents, is described in Annex A.
The basic value is the transformer no-load voltage on the valve side of the rectifier transformer.
The ideal no-load voltage can be taken from Table 1.
The real no-load voltage is higher than the ideal no-load voltage.
The current at which the waveform changes from intermitting to continuous is called transition
current. The transition current is dependent on the rectifier connection. For connection 8 and
12 from Table 1 it is a few amperes. It depends on the smoothing effect of snubber circuits.
For connection 9 from Table 1 the transition current depends on the coupling factor and the
application of an interphase transformer. The effect of interphase transformers is described in
Annex C.
There is no general rule for the choice of the transition current value. An intermittent current
increases the resistance borne losses in the rectifier diode assembly and the transformer. This
is not important for low current. The total voltage versus current characteristic may be nonlinear.
There is a negligible effect on 3AC as well as DC harmonics. A value of transition current less
than 30 % of rated current can be considered as a guideline. A special requirement should be
specified by the user.
For a current higher than the transition current the characteristic is linear up to a value where
the current waveshape changes significantly. More details are shown in Annex A. The voltage
drop in the linear range is determined by the impedance voltage measured with one traction
side winding shorted.
du= 0,5
xN kt1
At full short-circuit the current waveshape of the supply phases is almost sinusoidal. The value
of the short-circuit current is determined by the impedance voltage with all traction side windings
shorted.
Figure 3 – Voltage characteristic
4.6 Current characteristic
The quotient of the RMS value I of the current on the AC side and the direct current I is listed
v d
in Table 1 on the assumption of smooth direct current and rectangular waveshape of the
alternating currents.
This precondition is not given for currents lower than the transition current.
At short circuits the AC current is almost sinusoidal.
4.7 Current imbalance
Every deviation of the 3AC power network sinusoidal waveform and symmetry leads to a current
imbalance between the arms of the rectifier diode assembly. Disturbances are transferred to
the DC side as additional harmonic voltages.
Special attention is required for twelve-pulse converter in parallel connection (connection 9).
An unsymmetrical load sharing between the two three-phase bridges of up to ±5 % of I shall
Nd
be considered as normal condition.
The following circumstances can cause unsymmetrical load sharing between the two three-
phase bridges and should be considered when determining the converter rating:
• harmonic distortion of the 3AC power network voltage;
• different impedance voltages, u and u , of the transformer;
kt1 kt2
• no-load voltage imbalances in the transformer;
• different lengths of the cables between transformer and rectifier diode assembly;
• different cable laying conditions for cables between transformer and rectifier diode
assembly;
• unequal number of converters with different transformer connections in a substation.
A fifth and seventh voltage harmonic exceeding 1 % in the 3AC power network can deviate the
current balance significantly. Interphase transformers do not provide mitigation for current
imbalance. They may go into saturation. Possible mitigation measures are filtering of the 3AC
power network or use of a twelve-pulse series connection or an over dimensioning of the
rectifier.
NOTE The limits specified in IEC 61000-2-12 are too high to provide an acceptable balance for a twelve pulse
parallel connection
4.8 Short time withstand capability
Short circuits on the DC side of the rectifier are more likely than in most other applications. The
protection is given by a DC circuit breaker and by a circuit breaker at the 3AC power network
side.
The rectifier shall withstand a full DC short circuit
• after continuous operation at rated current, and
• for a duration of 150 ms, and
• with a factor of 1,6 between sustained current and peak current
without any loss of function.
This includes that fuses of the rectifier diode assembly, if any, are not melted.
If it is ensured that a protection device is faster than 150 ms, this time requirement may be
reduced. The aim of the overall design is to confirm coordination between thermal limits of the
converter and delay of activation of protection in order to reduce the time.
NOTE 1 The 150 ms requirements comes from the standard scenario of a DC short circuit with a failing DC circuit
breaker and an operating 3AC circuit breaker on the 3AC network side of the transformer as a backup protection.
The sustained prospective short-circuit current on the DC side of a 6-pulse rectifier diode
assembly is 1,35 times the sustained short-circuit current of the 3AC side of the rectifier diode
assembly. For parallel connections the DC short-circuit current is multiplied with the number of
parallel units. The rated DC short-circuit current of a rectifier diode assembly can be used
equivalently to the rated AC short-circuit current.
The short-circuit withstand capability of the rectifier is a property of the rectifier diode assembly
and is related to the rated short-circuit current of the rectifier diode assembly. A type test for
rated short-circuit value is described in 6.2.9. The impedance of the transformer including the
network impedance and the resulting short-circuit current on the traction side of the transformer
shall be coordinated with the rectifier diode assembly.
NOTE 2 If the network impedance is not available and set to 0 Ω, a calculation with only the transformer is sufficient
and on the safe side.
An example of a protection coordination is given in Annex D.
4.9 Direct voltage harmonic content
For perfectly balanced supply voltages the frequency of the direct current and direct voltage
harmonic content is given by:
f = K××p f
h,dc N
where K is an integer (1.n)
An imbalanced supply voltage causes a negative sequence voltage. The negative sequence
voltage produces an additional harmonic component at a frequency 2× f , which cannot be
N
cancelled by an appropriate design of the converter unless a lar
...
IEC 62590-2-1 ®
Edition 1.0 2025-12
NORME
INTERNATIONALE
Applications ferroviaires - Convertisseurs électroniques de puissance pour
installations fixes -
Partie 2-1: Applications de traction en courant continu - Redresseurs non
commandés
ICS 45.060.01 ISBN 978-2-8327-0742-5
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Recherche de publications IEC - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.
Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
SOMMAIRE
AVANT-PROPOS . 4
INTRODUCTION . 6
1 Domaine d'application . 7
2 Références normatives . 7
3 Termes, définitions, symboles et termes abrégés . 7
3.1 Termes et définitions . 7
3.2 Symboles . 10
3.3 Abréviations . 11
4 Configurations et caractéristiques du système . 11
4.1 Généralités . 11
4.2 Interfaces principales . 12
4.3 Valeurs principales du transformateur . 12
4.3.1 Généralités . 12
4.3.2 Tensions de court-circuit . 12
4.3.3 Facteur de couplage . 14
4.4 Connexions électriques . 14
4.5 Caractéristique de tension . 15
4.6 Caractéristiques du courant . 16
4.7 Déséquilibre du courant. 17
4.8 Capacité de tenue de courte durée . 17
4.9 Résidu harmonique de la tension continue . 18
4.10 Courant harmonique du réseau de distribution 3AC . 18
5 Conception et intégration . 19
5.1 Généralités . 19
5.2 À définir par l'utilisateur dans la spécification . 19
5.2.1 Données électriques . 19
5.2.2 Exigences mécaniques . 20
5.3 À indiquer par le constructeur: . 20
5.4 Marquage . 21
5.4.1 Plaque signalétique . 21
5.4.2 Bornes du circuit principal . 22
6 Essais . 22
6.1 Généralités . 22
6.2 Spécifications d'essai . 23
6.2.1 Examen visuel . 23
6.2.2 Essai des accessoires et composants auxiliaires . 23
6.2.3 Essai d'isolement . 24
6.2.4 Vérification des fonctions de protection . 24
6.2.5 Essai de fonctionnement à puissance réduite . 24
6.2.6 Essai sous charge . 24
6.2.7 Chute de tension inhérente . 24
6.2.8 Essai d'échauffement . 26
6.2.9 Courant de courte durée admissible . 27
6.2.10 Détermination des pertes de puissance . 27
6.2.11 Signaux sonores . 28
6.2.12 Essai d'harmoniques . 28
6.2.13 Mesurage du facteur de puissance . 28
6.2.14 Essai mécanique . 28
Annexe A (informative) Détermination de la chute de tension et des courants de court-
circuit pour les redresseurs non commandés . 29
A.1 Généralités . 29
A.2 Description de la méthode . 30
A.3 Exemple d'un redresseur héxaphasé ou d'un redresseur dodécaphasé avec
enroulements de transformateur non couplés magnétiquement (K ≈ 0) . 36
A.4 Exemple d'un redresseur dodécaphasé avec enroulements secondaires du
transformateur convertisseur étroitement couplés (K ≈ 1) . 38
Annexe B (informative) Exemples de facteurs de puissance pour les redresseurs non
commandés . 41
B.1 Généralités . 41
B.2 Considérations relatives à la variation du courant fondamental et du facteur
de puissance dans les redresseurs . 41
B.2.1 Considérations de base . 41
B.2.2 Première zone de travail . 41
B.2.3 Seconde zone de travail . 42
Annexe C (informative) Transformateur interphase . 43
C.1 Généralités . 43
C.2 Tension et courants . 43
C.3 Conditions de courant intermittent . 44
C.4 Déséquilibre du courant. 44
Annexe D (informative) Exemple de courbe de protection . 45
Bibliographie . 47
Figure 1 – Configuration générale . 11
Figure 2 – Réactances d'un transformateur redresseur . 13
Figure 3 – Caractéristique de tension . 16
Figure 4 – Mesurage de la chute de tension inhérente . 26
Figure A.1 – Caractéristiques type d'un redresseur non commandé . 30
Figure A.2 – Caractéristiques externes des redresseurs héxaphasés (pont triphasé) et
des redresseurs dodécaphasés avec enroulements du transformateur non couplés
magnétiquement (K = 0) . 34
Figure A.3 – Caractéristiques externes des redresseurs dodécaphasés avec
enroulements secondaires du transformateur convertisseur étroitement couplés (K ≈ 1) . 35
Figure A.4 – Détermination des courants de court-circuit pour un redresseur
héxaphasé ou un redresseur dodécaphasé avec enroulements du transformateur non
couplés magnétiquement (K ≈ 0) . 38
Figure A.5 – Détermination des courants de court-circuit pour un redresseur
dodécaphasé avec enroulements du transformateur étroitement couplés (K ≈ 1) . 40
Figure C.1 – Transformateur interphase . 43
Figure D.1 – Exemple de courbe de protection . 45
Tableau 1 – Montages et facteurs de calcul pour les redresseurs non commandés . 15
Tableau 2 – Données de conception du redresseur principal . 19
Tableau 3 – Exigences mécaniques . 20
Tableau 4 – Récapitulatif des essais . 23
Tableau A.1 – Méthode d'utilisation des graphiques de la Figure A.2 et de la
Figure A.3 . 31
Tableau A.2 – Exemple d'application du Tableau A.1 pour un redresseur héxaphasé ou
un redresseur dodécaphasé avec enroulements de transformateur non couplés
magnétiquement (K ≈ 0) . 36
Tableau A.3 – Exemple d'application du Tableau A.1 pour un redresseur dodécaphasé
avec enroulements secondaires du transformateur convertisseur étroitement couplés
(K ≈ 1) . 39
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
Applications ferroviaires -
Convertisseurs électroniques de puissance pour installations fixes -
Partie 2-1: Applications de traction en courant continu -
Redresseurs non commandés
AVANT-PROPOS
1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée
de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l’IEC). L’IEC a pour objet de
favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de
l'électricité et de l'électronique. A cet effet, l’IEC – entre autres activités – publie des Normes internationales,
des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des
Guides (ci-après dénommés «Publication(s) de l’IEC»). Leur élaboration est confiée à des comités d'études, aux
travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations
internationales, gouvernementales et non gouvernementales, en liaison avec l’IEC, participent également aux
travaux. L’IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des
conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de l’IEC concernant les questions techniques représentent, dans la mesure du
possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l’IEC intéressés
sont représentés dans chaque comité d’études.
3) Les Publications de l’IEC se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de l’IEC. Tous les efforts raisonnables sont entrepris afin que l’IEC
s'assure de l'exactitude du contenu technique de ses publications; l’IEC ne peut pas être tenue responsable de
l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l’IEC s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de l’IEC dans leurs publications nationales
et régionales. Toutes divergences entre toutes Publications de l’IEC et toutes publications nationales ou
régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) L’IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants
fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de
conformité de l’IEC. L’IEC n'est responsable d'aucun des services effectués par les organismes de certification
indépendants.
6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à l’IEC, à ses administrateurs, employés, auxiliaires ou mandataires,
y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l’IEC,
pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque
nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses
découlant de la publication ou de l'utilisation de cette Publication de l’IEC ou de toute autre Publication de l’IEC,
ou au crédit qui lui est accordé.
8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
L’IEC attire l’attention sur le fait que la mise en application du présent document peut entraîner l’utilisation d’un ou
de plusieurs brevets. L’IEC ne prend pas position quant à la preuve, à la validité et à l’applicabilité de tout droit
de brevet revendiqué à cet égard. À la date de publication du présent document, l’IEC n'avait pas reçu notification
qu’un ou plusieurs brevets pouvaient être nécessaires à sa mise en application. Toutefois, il y a lieu d’avertir les
responsables de la mise en application du présent document que des informations plus récentes sont
susceptibles de figurer dans la base de données de brevets, disponible à l'adresse https://patents.iec.ch. L'IEC
ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et averti de leur
existence.
L’IEC 62590-2-1 a été établie par le comité d'études 9 de l'IEC: Matériels et systèmes
électriques ferroviaires. Il s’agit d’une Norme internationale.
Cette première édition de l’IEC 62590-2-1, conjointement avec les autres parties de la série
IEC 62590, annule et remplace la première édition de l’IEC 62589 publiée en 2010 et la
deuxième édition de l’IEC 62590 publiée en 2019.
Le présent document contient les modifications techniques majeures suivantes par rapport à
l’IEC 62589 et l’ancienne IEC 62590:
a) réduction des exigences pour les redresseurs non commandés uniquement ;
b) modèle d'interface pour les différents systèmes connectés ;
c) efficacité énergétique abordée.
Le texte de cette Norme internationale est issu des documents suivants:
Projet Rapport de vote
9/3224/FDIS 9/3265/RVD
Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant
abouti à l'approbation de cette norme.
La langue employée pour l'élaboration de cette Norme internationale est l'anglais.
Cette publication a été rédigée selon les Directives ISO/IEC, Partie 2, et élaborée selon les
Directives ISO/IEC, Partie 1 et les Directives ISO/IEC, Supplément IEC, disponibles à l'adresse
suivante: www.iec.ch/members_experts/refdocs. Les principaux types de documents élaborés
par l'IEC sont décrits plus en détail sur le site internet: www.iec.ch/publications.
Une liste de toutes les parties de la série IEC 62590, publiées sous le titre général Applications
ferroviaires - Installations fixes - Convertisseurs électroniques de puissance, se trouve sur le
site web de l'IEC.
Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de
stabilité indiquée sur le site web de l'IEC sous webstore.iec.ch dans les données relatives au
document recherché. A cette date, la publication sera
– reconduite,
– supprimée, ou
– révisée.
INTRODUCTION
Les convertisseurs électroniques de puissance d'alimentation de traction diffèrent des autres
convertisseurs à usage industriel en raison des conditions électriques particulières rencontrées
en service, des grandes variations des charges et des caractéristiques particulières de la
charge.
Pour ces raisons, les exigences propres aux applications ferroviaires ne sont pas intégralement
traitées dans l'IEC 60146-1-1 et il a été décidé de les traiter dans une norme spécifique.
Les redresseurs non commandés sont constitués d'un ensemble de diodes de redressement et
d'un transformateur. Les deux éléments répondent à des exigences communes. La
caractéristique tension/courant est déterminée par le transformateur.
L'IEC 62695 couvre les transformateurs convertisseurs pour les installations ferroviaires fixes.
1 Domaine d'application
Le présent document décrit les fonctions et les principes de fonctionnement, spécifie les
exigences, les interfaces et les méthodes d'essai des redresseurs non commandés pour les
réseaux d'alimentation électrique de traction en courant continu. Les redresseurs non
commandés connectent un réseau de distribution 3AC à un système de traction électrique en
courant continu avec une circulation de puissance unidirectionnelle réalisée par des ensembles
de diodes.
La coordination entre le transformateur et l'ensemble de diodes de redressement est incluse.
Le présent document s'applique aux installations fixes des réseaux d'alimentation électrique de
traction suivants:
• réseaux ferroviaires,
• réseaux de transport métropolitains, y compris métros, tramways, trolleybus et systèmes de
transport entièrement automatiques, systèmes de transport à sustentation magnétique et
systèmes routiers électriques.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie
de leur contenu, des exigences du présent document. Pour les références datées, seule
l’édition citée s’applique. Pour les références non datées, la dernière édition du document de
référence s'applique (y compris les éventuels amendements).
IEC 62695, Applications ferroviaires - Installations fixes - Transformateurs de traction
IEC 62590-1:2025, Applications ferroviaires - Convertisseurs électroniques de puissance pour
installations fixes - Partie 1: Exigences générales
3 Termes, définitions, symboles et termes abrégés
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées
en normalisation, consultables aux adresses suivantes:
– IEC Electropedia: disponible à l'adresse https://www.electropedia.org/
– ISO Online browsing platform: disponible à l'adresse https://www.iso.org/obp
3.1 Termes et définitions
3.1.1
dispositif à semiconducteurs
dispositif dont les caractéristiques essentielles sont dues au flux de porteurs de charges à
l'intérieur d'un semiconducteur
Note 1 à l'article: Cette définition comprend les dispositifs dont les caractéristiques essentielles sont dues en partie
seulement au flux de porteurs de charges dans un semiconducteur mais qui sont considérés comme des dispositifs
à semiconducteurs pour la spécification.
[SOURCE: IEC 60050-521:2002, 521-04-01]
3.1.2
redresseur
convertisseur alternatif/continu assurant le redressement
[SOURCE: IEC 60050-551:1998, 551-12-07, modifiée – La figure n'a pas été reprise.]
3.1.3
ensemble de diodes de redressement
ensemble de valves assurant le redressement
Note 1 à l'article: Souvent, le terme «redresseur» est utilisé à la place du terme «ensemble de diodes de
redressement».
3.1.4
tension continue fictive à vide
U
di
valeur moyenne de la tension continue à vide théorique d'un convertisseur, en supposant qu'il
n'y a ni réduction de tension par réglage de phase, ni chute de tension dans les ensembles, ni
remontée de tension aux faibles charges
[SOURCE: IEC 60050-551:1998, 551-17-15, modifiée – le mot «moyenne» a été ajouté.
«Alternatif‑continu» a été supprimé. L’expression « tensions de seuil des valves électroniques»
a été remplacée par «chute de tension dans les ensembles».]
3.1.5
tension continue réelle à vide
U
d00
valeur moyenne de la tension continue effective pour un courant continu nul
[SOURCE: IEC 60050-551:1998, 551-17-19]
3.1.6
tension crête fictive à vide
U
iM
valeur crête de la tension, apparaissant aux bornes d'extrémité d'un bras sans tenir compte de
la tension de choc interne et externe ni des chutes de tension dans les valves, en
fonctionnement à vide
3.1.7
chute de tension inhérente
baisse de tension continue par rapport à la tension fictive à vide, excluant l'effet de l'impédance
du système 3AC
3.1.8
courant critique
valeur moyenne du courant continu d'un montage convertisseur au-dessous de laquelle le
courant continu des groupes commutants devient intermittent, lorsqu'on fait décroître le courant
[SOURCE: IEC 60050-551:1998, 551-17-20]
3.1.9
réactance de fuite de l'enroulement primaire
X
P
différence entre la moyenne des valeurs de
réactance de court-circuit mesurées entre l'enroulement primaire et chaque enroulement
secondaire et la moitié de la réactance de court-circuit mesurée entre les deux enroulements
secondaires
3.1.10
réactance de fuite de chaque enroulement secondaire
X , X
S1 S2
somme de la moitié de la différence des valeurs de
réactance de court-circuit mesurées entre l'enroulement primaire et chaque enroulement
secondaire et la moitié de la réactance de court-circuit mesurée entre les deux enroulements
secondaires
3.1.11
rapport de réactance
facteur de couplage
K
rapport entre la réactance de fuite de l'enroulement
primaire et la somme des réactances de fuite de l'enroulement primaire et de l'enroulement
secondaire
Note 1 à l'article: Dans le cas d'un transformateur de traction à deux enroulements secondaires utilisé pour un
convertisseur dodécaphasé, le rapport de réactance est conçu pour avoir les mêmes tensions secondaires à vide et
la même impédance entre l'enroulement primaire et chaque enroulement secondaire afin d'obtenir une répartition
égale du courant sur les deux ponts lorsque les sorties en courant continu sont couplées en parallèle. Alors X =
S1
X = X et K = X / (X + X ).
S2 S p S p
3.1.12
transformateur interphase
dispositif électromagnétique utilisé pour assurer, au moyen de couplages inductifs entre les
enroulements placés sur le même noyau, le fonctionnement en parallèle de deux ou de
plusieurs groupes commutants présentant entre eux une différence de phase
[SOURCE: IEC 60050-551:1998, 551-14-16]
3.1.13
tension assignée 3AC
tension assignée du redresseur côté réseau de distribution 3AC
3.1.14
tension assignée 3AC d'un ensemble de diodes de redressement
valeur la plus élevée de la tension à vide du transformateur côté traction pour laquelle un
ensemble de diodes de redressement est conçu
3.1.15
courant assignée
charge assigné
I
Nd
valeur d'un courant continu pour laquelle un redresseur est conçu
Note 1 à l'article: Toutes les valeurs assignées des composants sont déterminées à partir de cette valeur.
Note 2 à l'article: Un redresseur peut avoir une charge continue assignée et des charges assignées, associées à
une classe de service.
3.1.16
puissance assignée
courant continu assigné multiplié par une tension continue au courant
assigné
3.1.17
courant de court-circuit alternatif assigné
courant de courte durée admissible côté alternatif
d'un ensemble de diodes de redressement pour chaque connexion 3AC
Note 1 à l'article: Pour un montage dodécaphasé, le courant de court-circuit assigné est applicable pour chaque
ensemble de diodes héxaphasé individuel.
Note 2 à l'article: Il s'agit d'un courant de court-circuit initial conformément à l'IEC 60909-0.
3.1.18
courant de court-circuit continu assigné
courant de courte durée admissible côté continu
d'un ensemble de diodes de redressement
3.2 Symboles
d chute de tension continue résistive du redresseur par rapport à U au courant
rN di
assigné
d chute de tension continue inductive du redresseur par rapport à U au courant
xN di
assigné
f fréquence du réseau de distribution 3AC
N
I courant continu
d
I valeur de courant maximale de la plage de chute de tension linéaire
dlinmax
I courant continu assigné côté traction du redresseur
Nd
I courant de phase côté valves du transformateur
v
K facteur de couplage
p nombre d’impulsions
U tension continue réelle à vide, déterminée théoriquement à partir de la valeur de
d00
crête d'une tension 3AC sinusoïdale symétrique U
v0
U tension continue fictive à vide
di
U tension crête fictive à vide
iM
u tension de court-circuit du transformateur
kt
u , u tension de court-circuit d'un transformateur à trois enroulements lorsque
kt1 kt2
l'enroulement secondaire 1 (u ) ou 2 (u ) est en court-circuit
kt1 kt2
U tension continue au courant continu assigné, en V
Nd
U tension à vide entre phases côté valves du transformateur
v0
X réactance de fuite de l'enroulement primaire (d'un transformateur à trois
P
enroulements)
X valeur moyenne de la réactance de fuite de chaque enroulement secondaire (d'un
S
transformateur à trois enroulements)
X X réactance de fuite de chaque enroulement secondaire (d'un transformateur à deux
S1 S2
enroulements secondaires)
X réactance de court-circuit entre l'enroulement primaire et l'enroulement
scP/S1
secondaire 1
(d'un transformateur à deux enroulements secondaires)
X réactance de court-circuit entre l'enroulement primaire et l'enroulement
scP/S2
secondaire 2
(d'un transformateur à deux enroulements secondaires)
X réactance de court-circuit entre les deux enroulements secondaires
scS1/S2
(d'un transformateur à deux enroulements secondaires)
X réactance de court-circuit entre l'enroulement primaire et les deux enroulements
scP/S1S2
secondaires (d'un transformateur à deux enroulements secondaires)
3.3 Abréviations
3AC Courant alternatif triphasé
CA Courant alternatif
CC Courant continu
RMS (Root Mean Square) Valeur efficace
4 Configurations et caractéristiques du système
4.1 Généralités
Les systèmes ferroviaires en courant continu sont normalement alimentés par un réseau de
distribution 3AC par l'intermédiaire d'un redresseur (voir la Figure 1).
Figure 1 – Configuration générale
Les redresseurs à diodes permettent une circulation de puissance entre le réseau de
distribution 3AC et le système de traction en courant continu uniquement. La caractéristique
tension/courant est déterminée par la connexion et les données principales du transformateur.
Les ensembles de diodes de redressement et leurs transformateurs peuvent être spécifiés
séparément, si certains paramètres sont connus:
– conditions de charge pour le transformateur et l'ensemble de diodes de redressement ;
– courant de tenue au court-circuit de l'ensemble de diodes de redressement ;
– courant de court-circuit limité par le transformateur ;
– tension maximale à vide côté valves du transformateur U .
v0
Le transformateur interphase facultatif pour le montage n° 9 est considéré comme faisant partie
de l'ensemble de diodes de redressement.
La protection côté réseau de distribution 3AC est normalement assurée par un disjoncteur et
un relais de protection dédié. Dans de rares cas, il est possible de combiner un interrupteur
coupe-charge et un fusible.
La protection côté courant continu est assurée par un appareillage à courant continu
conformément à la série IEC 61992.
4.2 Interfaces principales
L'interface avec le réseau de distribution 3AC est caractérisée par les éléments suivants:
– Tension assignée du réseau de distribution 3AC
– Puissance de court-circuit du réseau de distribution 3AC
– Déséquilibre de tension du réseau de distribution 3AC
– Prédistortion harmonique du réseau de distribution 3AC
– Harmoniques de courant par le redressement
L'Annexe B décrit une méthode permettant de déterminer le facteur de puissance au point de
connexion 3AC du redresseur.
L'interface avec le réseau de traction en courant continu est caractérisée par les éléments
suivants:
– Caractéristique de tension du redresseur
– Harmoniques de tension par le redressement
4.3 Valeurs principales du transformateur
4.3.1 Généralités
Un transformateur redresseur est caractérisé par les valeurs principales suivantes:
– Tension du réseau de distribution 3AC
– Tension à vide côté traction
– Tensions de court-circuit
– Facteur de couplage
La tension à vide côté traction constitue une valeur principale pour le calcul de toutes les autres
tensions.
Pour les transformateurs à deux enroulements, il existe une seule valeur de tension de court-
circuit. Pour les transformateurs à trois enroulements, il existe plusieurs valeurs de tension de
court-circuit.
Pour une spécification complète des transformateurs, d'autres valeurs sont nécessaires.
L'IEC 62695 doit être utilisé.
4.3.2 Tensions de court-circuit
La tension de court-circuit peut être déterminée à partir des essais de court-circuit du
transformateur. Elle peut également être exprimée sous la forme d'une impédance. Dans la
pratique, la réactance est significativement supérieure à la résistance, car pour la plage de
puissance considérée, le rapport X/R est supérieur ou égal à 8.
Pour le montage n° 8 du Tableau 1, une seule réactance est utilisée. Un seul essai est effectué.
Pour les montages n° 9 et 12 du Tableau 1, deux réactances sont utilisées. Voir la Figure 2.
Les 4 essais suivants sont effectués.
Figure 2 – Réactances d'un transformateur redresseur
Les différentes réactances peuvent être déterminées par mesurage.
Essai 1: application d'une tension côté primaire et d'un court-circuit sur l'enroulement
secondaire 1 X = X + X est mesuré. La tension de court-circuit correspondante est
scP/S1 P S1
u . Pour u , 50 % de la puissance du transformateur s'applique.
kt1 kt1
Essai 2: application d'une tension côté primaire et d'un court-circuit sur l'enroulement
secondaire 2 X = X + X est mesuré. La tension de court-circuit correspondante est
scP/S2 P S2
u . Pour u , 50 % de la puissance du transformateur s'applique.
kt2 kt2
Les deux valeurs doivent être sensiblement identiques. L'IEC 62695 doit s'appliquer pour les
tolérances. Dans le cas contraire, le transformateur n'est pas symétrique et un déséquilibre de
courant entre les deux enroulements secondaires et leurs ponts de diodes de redressement
connectés se produit.
Les réactances mesurées déterminent le comportement linéaire du redresseur sous une charge
variant d'une faible valeur et à une valeur élevée.
Essai 3: application d'une tension côté primaire et d'un court-circuit sur les deux enroulements
secondaires. X = X + X /2 est mesuré. La tension de court-circuit correspondante est
scP/S1S2 P S
u . Pour u , la puissance totale du transformateur s'applique.
kt kt
Cette réactance détermine le courant de court-circuit du redresseur dans le montage n° 9.
Essai 4: application d'une tension sur l'enroulement secondaire 1 et d'un court-circuit sur
l'enroulement secondaire 2, ou inversement. Pour la tension de court-circuit résultante, 50 %
de la puissance du transformateur s'applique.
X = X + X est mesuré.
scS1/S2 S1 S2
Il est possible d'obtenir des résultats plus précis en tenant compte des résistances et de
l'impédance en court-circuit du réseau de distribution 3AC. La connexion entre le
transformateur et l'ensemble de diodes de redressement peut avoir une influence.
Les valeurs sur le circuit équivalent (voir la Figure 2) peuvent être calculées à partir des valeurs
mesurées. Les mesures sont redondantes.
XX+ X
scP/S1 scP/S2 scS1/S2
X − (1)
p
XX− X
scP/S1 scP/S2 scS1/S2
X + (2)
S1
=
=
XX− X
scP/S2 scP/S1 scS1/S2
X + (3)
S2
4.3.3 Facteur de couplage
La définition du facteur de couplage au 3.1.11 permet d'exprimer les Formules (4) et (5).
K = X / (X + X )
(4)
P S P
u
kt
K −1
(5)
u
kt1
En résolvant les Formules (1), (2) et (3), le facteur de couplage peut être calculé.
Le facteur de couplage peut être ajusté en fonction de la disposition des enroulements à
l'intérieur du transformateur. Un transformateur à couplage étroit nécessite des enroulements
à basse tension spécialement intégrés et un K d'environ 0,9 est possible. Pour obtenir un
facteur de couplage faible, deux transformateurs distincts peuvent être utilisés ou un
enroulement à haute tension partagé peut être monté en parallèle. Sans mesure particulière,
le facteur de couplage peut varier de manière considérable.
4.4 Connexions électriques
La conception normalisée des redresseurs non commandés repose sur un montage en pont
héxaphasé. Deux ponts héxaphasés ou plus peuvent être montés en parallèle ou en série afin
d'atteindre une caractéristique à 12 ou 24 impulsions.
Chaque pont héxaphasé exige un système triphasé propre côté traction du transformateur. Un
comportement à 12 impulsions est obtenu avec un déphasage de 30° réalisé par une connexion
des enroulements en étoile et en triangle avec le même couplage côté réseau de distribution
3AC du transformateur.
La combinaison de ponts héxaphasés permet d'éliminer les harmoniques de courant de rang
inférieur côté courant alternatif et les harmoniques de tension de rang inférieur côté courant
continu.
Un comportement à 12 et à 24 impulsions peut être obtenu avec cette combinaison comportant
un déphasage entre les enroulements du transformateur. Pour un comportement à
24 impulsions, deux transformateurs avec un déphasage de +7,5° et -7,5° sont utilisés pour
réaliser un déphasage total de 15°.
Le Tableau 1 donne les valeurs des facteurs de calcul pour les montages de redresseurs non
commandés les plus utilisés. Pour d'autres montages, voir l'IEC 60146-1-1 et
l'IEC TR 60146-1-2.
L'IEC/TR 60146-1-2 décrit le comportement harmonique idéal dans des conditions de réseau
3AC symétriques et sinusoïdales, ainsi qu'un transformateur parfaitement symétrique. Dans la
pratique, un déséquilibre de courant ou de tension peut être attendu, et l'élimination parfaite
des harmoniques ne peut pas être réalisée. Les conséquences des déséquilibres de courant
sont décrites au 4.7.
=
=
Tableau 1 – Montages et facteurs de calcul pour les redresseurs non commandés
Couplage des
U U U
di d00
N° du iM
I /I d /u d /u
transformateurs Couplage p
v d xN kt1 xN kt
montage
U U U
côté valves v0 di di
0,816 1,35
1,05 1,05
1 ou 1
8 1 2 3 6 2 32 0,5 0,5
π π
3 2 2
3 π 3 3
1,35
0,408 1,05 1,05
1 2
a
9 1 3 5 2 4 6 12 0,5
1 32 π π 0,26
5 3 4
π
6 3 3
0,816 2,7
1,05 0,524
1 2
6 a
1 3 5 2 4 6
12 12 2 62 0,5 0,26
π π
5 3 4
3 π 3 6
NOTE 1 Le montage n° 9 peut être utilisé avec ou sans transformateur interphase. Pour les facteurs de couplage
élevés, un transformateur interphase est normalement utilisé. Pour un facteur de couplage faible, aucun
transformateur interphase n'est utilisé, sauf lorsque les exigences relatives au courant critique faible s'appliquent.
NOTE 2 En plus des normes précédentes, d /u est donné, car il fournit un facteur indépendant du facteur de
xN kt1
couplage.
NOTE 3 Les numéros des montages sont les mêmes que ceux utilisés dans l'IEC 60146-1-1.
NOTE 4 Le transformateur interphase peut être réglé en polarité positive ou négative.
NOTE 5 La tension réelle à vide U peut atteindre des valeurs plus élevées que celles indiquées en raison des
d00
effets capacitifs. Dans ces cas, une résistance de charge de base est couramment utilisée.
a
Le facteur de 0,26 est donné pour un couplage idéal. La valeur est une fonction du facteur de couplage. La
plage peut inclure n'importe quelle valeur entre 0,26 et 0,5. Les valeurs utilisées en pratique sont 0,26 et 0,5.
4.5 Caractéristique de tension
La Figure 3 représente la caractéristique de tension type avec ses valeurs représentatives.
L'Annexe A décrit une méthode permettant de déterminer la caractéristique tension/courant
pour les courants plus élevés.
La valeur de base est la tension à vide côté valves du transformateur redresseur.
La tension fictive à vide peut être prise dans le Tableau 1.
La tension réelle à vide est supérieure à la tension fictive à vide.
Le courant auquel la forme d'onde passe d'intermittente à continue est appelé «courant
critique». Le courant critique dépend du montage du redresseur. Pour les montages n° 8 et 12
du Tableau 1, l'intensité est de quelques ampères. Cela dépend de l'effet de lissage des circuits
d'amortissement.
Pour le montage n° 9 du Tableau 1, le courant critique dépend du facteur de couplage et de
l'application d'un transformateur interphase. L'effet des transformateurs interphase est décrit à
l'Annexe C.
Il n'existe pas de règle générale pour le choix de la valeur de courant critique. Le courant
intermittent augmente les pertes dues à la résistance dans l'ensemble de diodes de
redressement et dans le transformateur. Cela n'est pas important pour les courants de faible
intensité. La caractéristique tension/courant totale peut ne pas être linéaire. L'effet sur les
harmoniques 3AC et CC est négligeable. Une valeur de courant critique < 30 % du courant
assigné peut constituer une recommandation. Il convient que l'utilisateur spécifie une exigence
particulière.
Pour un courant d'intensité supérieure au courant critique, la caractéristique est linéaire jusqu'à
une valeur où la forme d'onde du courant varie de manière significative. Pour plus de détails,
voir l'Annexe A. La chute de tension dans la plage linéaire est déterminée par la tension de
court-circuit mesurée lorsqu'un enroulement côté traction est en court-circuit.
du= 0,5
xN kt1
En cas de court-circuit complet, la forme d'onde du courant des phases d'alimentation est
quasiment sinusoïdale. La valeur du courant de court-circuit est déterminée par la tension de
court-circuit lorsque tous les enroulements côté traction sont en court-circuit.
Figure 3 – Caractéristique de tension
4.6 Caractéristiques du courant
Le quotient de la valeur efficace I du courant coté alternatif et du courant redressé I est
v d
indiqué dans le Tableau 1 en retenant l'hypothèse que le courant redressé est lissé et que les
coura
...
IEC 62590-2-1 ®
Edition 1.0 2025-12
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Railway applications - Electronic power converters for fixed installations -
Part 2-1: DC traction applications - Uncontrolled rectifiers
Applications ferroviaires - Convertisseurs électroniques de puissance pour
installations fixes -
Partie 2-1: Applications de traction en courant continu - Redresseurs non
commandés
ICS 45.060.01 ISBN 978-2-8327-0742-5
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.
Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished The world's leading online dictionary on electrotechnology,
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
Also known as the International Electrotechnical Vocabulary
once a month by email.
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Recherche de publications IEC - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.
Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
CONTENTS
FOREWORD. 3
INTRODUCTION . 5
1 Scope . 6
2 Normative references . 6
3 Terms, definitions, symbols and abbreviated terms . 6
3.1 Terms and definitions . 6
3.2 Symbols . 9
3.3 Abbreviated terms . 9
4 System configurations and characteristics . 10
4.1 General . 10
4.2 Main interfaces . 10
4.3 Transformer main values . 11
4.3.1 General . 11
4.3.2 Impedance voltages . 11
4.3.3 Coupling factor . 12
4.4 Electrical connections . 13
4.5 Voltage characteristic . 14
4.6 Current characteristic . 15
4.7 Current imbalance . 16
4.8 Short time withstand capability . 16
4.9 Direct voltage harmonic content . 17
4.10 3AC power network harmonic current . 17
5 Design and integration . 17
5.1 General . 17
5.2 To be defined by user specification . 18
5.2.1 Electrical data . 18
5.2.2 Mechanical requirements . 19
5.3 To be indicated by manufacturer . 19
5.4 Marking . 20
5.4.1 Rating plate . 20
5.4.2 Main circuit terminals . 21
6 Tests . 21
6.1 General . 21
6.2 Test specifications . 22
6.2.1 Visual inspection . 22
6.2.2 Test of accessory and auxiliary components . 22
6.2.3 Insulation test . 23
6.2.4 Checking the protective functions . 23
6.2.5 Light load functional test . 23
6.2.6 Load test . 23
6.2.7 Inherent voltage drop . 23
6.2.8 Temperature-rise test . 25
6.2.9 Short time withstand current . 26
6.2.10 Power loss determination . 26
6.2.11 Audible sound . 27
6.2.12 Harmonic test . 27
6.2.13 Power factor measurement . 27
6.2.14 Mechanical test . 27
Annex A (informative) Determination of the voltage drop and the short-circuit currents
of uncontrolled rectifiers . 28
A.1 General . 28
A.2 Description of the method . 29
A.3 Example of a six-pulse rectifier or twelve-pulse rectifier with magnetically not
coupled transformer windings (K ≈ 0) . 34
A.4 Example of a twelve-pulse rectifier with closely coupled secondary windings
of the converter transformer (K ≈ 1) . 36
Annex B (informative) Examples of power factors of uncontrolled rectifiers . 39
B.1 General . 39
B.2 Considerations on the variation of the fundamental current and power factor
in rectifiers . 39
B.2.1 Basic considerations . 39
B.2.2 First working zone . 39
B.2.3 Second working zone . 40
Annex C (informative) Interphase transformer . 41
C.1 General . 41
C.2 Voltage and currents . 41
C.3 Intermittent current conditions . 42
C.4 Current imbalance . 42
Annex D (informative) Example of a protection curve . 43
Bibliography . 45
Figure 1 – General configuration . 10
Figure 2 – Reactances of a rectifier transformer . 11
Figure 3 – Voltage characteristic . 15
Figure 4 – Measurement of inherent voltage drop . 25
Figure A.1 – Typical characteristic of an uncontrolled rectifier . 29
Figure A.2 – External characteristics of six-pulse (three-phase bridge) rectifiers and
twelve-pulse rectifiers with magnetically non-coupled transformer windings (K = 0) . 32
Figure A.3 – External characteristics of twelve-pulse rectifiers with closely coupled
secondary windings of the converter transformer (K ≈ 1) . 33
Figure A.4 – Determination of the short-circuit currents of a six-pulse rectifier or a
twelve-pulse rectifier with magnetically not coupled transformer windings (K ≈ 0) . 36
Figure A.5 – Determination of the short-circuit currents of a twelve-pulse rectifier with
closely coupled transformer windings (K ≈ 1) . 38
Figure C.1 – Interphase transformer . 41
Figure D.1 – Example protection curve . 43
Table 1 – Connections and calculation factors for uncontrolled rectifiers . 14
Table 2 – Main rectifier design data . 18
Table 3 – Mechanical requirements . 19
Table 4 – Summary of tests . 22
Table A.1 – Method of use of the charts in Figure A.2 and Figure A.3 . 30
Table A.2 – Example of the application of Table A.1 for a six-pulse rectifier or a twelve-
pulse rectifier with magnetically not coupled transformer windings (K ≈ 0) . 34
Table A.3 – Example of the application of Table A.1 for a twelve-pulse rectifier with
closely coupled secondary windings of the converter transformer (K ≈ 1) . 37
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Railway applications -
Electronic power converters for fixed installations -
Part 2-1: DC traction applications - Uncontrolled rectifiers
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 62590-2-1 has been prepared by IEC technical committee 9: Electrical equipment and
systems for railways. It is an International Standard.
This first edition of IEC 62590-2-1, in conjunction with the other parts of the IEC 62590 series,
cancels and replaces the first edition of IEC 62589 published in 2010 and the second edition of
IEC 62590 published in 2019.
This document includes the following significant technical changes with respect to IEC 62589
and the former IEC 62590:
a) Reduction of the requirements for uncontrolled rectifiers only;
b) Interface model for the different systems connected;
c) Energy efficiency addressed.
The text of this International Standard is based on the following documents:
Draft Report on voting
9/3224/FDIS 9/3265/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts in the IEC 62590 series, published under the general title Railway applications -
Fixed installations - Electronic power converters, can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
– reconfirmed,
– withdrawn, or
– revised.
INTRODUCTION
Electronic power converters for traction power supply differ from other converters for industrial
use due to special electrical service conditions and due to the large range of load variations
and the peculiar characteristics of the load.
For these reasons IEC 60146-1-1 does not fully cover the requirements of railway applications
and the decision was taken to have a specific standard for this use.
Uncontrolled rectifiers consist of a rectifier diode assembly and a transformer. Both fulfil
common requirements. The transformer determines the voltage versus current characteristic.
Converter transformers for fixed installations of railway applications are covered by IEC 62695.
1 Scope
This part of IEC 62590 describes functions and working principles, specifies requirements,
interfaces and test methods of uncontrolled rectifiers for DC electric traction power supply
systems. Uncontrolled rectifiers connect a 3AC power network with a DC electric traction system
with a unidirectional power flow using diode assemblies.
The coordination between the transformer and the rectifier diode assembly is included.
This document applies to fixed installations of following electric traction power supply systems:
• railway networks;
• metropolitan transport networks including metros, tramways, trolleybuses and fully
automated transport systems, magnetic levitated transport systems, electric road systems.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 62695, Railway applications - Fixed installations - Traction transformers
IEC 62590-1:2025, Railway applications - Electronic power converters for fixed installations -
Part 1: General requirements
3 Terms, definitions, symbols and abbreviated terms
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
– IEC Electropedia: available at https://www.electropedia.org/
– ISO Online browsing platform: available at https://www.iso.org/obp
3.1 Terms and definitions
3.1.1
semiconductor device
device whose essential characteristics are due to the flow of charge carriers within a
semiconductor
Note 1 to entry: The definition includes devices whose essential characteristics are only in part due to the flow of
charge carriers in a semiconductor but that are considered as semiconductor devices for the purpose of specification.
[SOURCE: IEC 60050-521:2002, 521-04-01]
3.1.2
rectifier
AC/DC converter for rectification
[SOURCE: IEC 60050-551:1998, 551-12-07, modified – The figure has been omitted.]
3.1.3
rectifier diode assembly
valve device assembly for rectification
Note 1 to entry: Often the term rectifier is used instead of rectifier diode assembly.
3.1.4
ideal no-load direct voltage
U
di
theoretical no-load mean direct voltage of a converter assuming no reduction by phase control,
no voltage drop in the assemblies, and no voltage rise at small loads
[SOURCE: IEC 60050-551:1998, 551-17-15, modified – “mean” has been added. “AC/DC” has
been removed. “no threshold voltages of electronic valve devices” has been replaced with “no
voltage drop in the assemblies.]
3.1.5
real no-load direct voltage
U
d00
actual mean direct voltage at zero direct current
[SOURCE: IEC 60050-551:1998, 551-17-19]
3.1.6
ideal crest no-load voltage
U
iM
crest value of the voltage, appearing between the end terminals of an arm neglecting internal
and external voltage surge and voltage drops in valves, at no load
3.1.7
inherent voltage drop
direct voltage drop related to the ideal no load voltage excluding the effect of the 3AC system
impedance
3.1.8
transition current
mean direct current of a converter connection when the direct current(s) of the commutation
group(s) become(s) intermittent when decreasing the current
[SOURCE: IEC 60050-551:1998, 551-17-20]
3.1.9
leakage reactance of the primary winding
X
P
difference between the mean of the short-circuit reactance
values measured between the primary winding and each secondary winding and one half of the
short-circuit reactance measured between the two secondary windings
3.1.10
leakage reactance of each of the secondary windings
X , X
S1 S2
sum of the half difference of the short-circuit reactance values
measured between the primary winding and each secondary winding and one half of the short-
circuit reactance measured between the two secondary windings
3.1.11
reactance ratio
coupling factor
K
ratio between the leakage reactance of the primary winding
and the sum of the leakage reactances of the primary winding and secondary winding
Note 1 to entry: In case of a traction transformer with two secondary windings, used for a twelve-pulse converter,
the reactance ratio is designed to have the same no-load secondary voltages and the same impedance between the
primary winding and each secondary winding, in order to obtain an even sharing of the current on both bridges in
case the DC outputs are paralleled. Then X = X = X and K = X / (X + X ).
S1 S2 S p S p
3.1.12
interphase transformer
electromagnetic device enabling the operation in parallel of two or more phase displaced
commutating groups through inductive coupling between the windings placed on the same core
[SOURCE: IEC 60050-551:1998, 551-14-16]
3.1.13
rated 3AC voltage
rated voltage of the rectifier on the 3AC power network side
3.1.14
rated 3AC voltage of a rectifier diode assembly
highest value of the transformer traction side no-load voltage that a rectifier diode assembly is
designed for
3.1.15
rated current
rated load
I
Nd
value of a DC current that a rectifier is designed for
Note 1 to entry: All rated values of the components are derived from this value.
Note 2 to entry: A rectifier can have a rated continuous load and rated currents in conjunction with a duty class.
3.1.16
rated power
rated direct current multiplied by DC voltage at rated current
3.1.17
rated AC short-circuit current
short-circuit withstand current on the AC side of a rectifier diode
assembly for every 3AC connection
Note 1 to entry: For a twelve-pulse connection the rated short-circuit current is applicable for each individual six-
pulse diode assembly.
Note 2 to entry: It is an initial short-circuit current according to IEC 60909-0.
3.1.18
rated DC short-circuit current
short-circuit withstand current on the DC side of a rectifier diode
assembly
3.2 Symbols
d resistive direct voltage drop of the rectifier related to U at rated current
rN di
d inductive direct voltage drop of the rectifier related to U at rated current
xN di
f frequency of the 3AC power network
N
I direct current
d
I maximum current value of the range of linear voltage drop
dlinmax
I rated DC current on the traction side of the rectifier
Nd
I transformer phase current on the valve side
v
K coupling factor
p number of pulses
U real no-load direct voltage, theoretically resulting from peak value of a symmetrical
d00
sinusoidal 3AC voltage U
v0
U ideal no-load direct voltage
di
U ideal crest no-load voltage
iM
u impedance voltage of the transformer
kt
u , u impedance voltage of a three-winding transformer with one secondary winding
kt1 kt2
shorted for winding 1 (u ) or winding 2 (u )
kt1 kt2
U DC voltage at rated DC current in V
Nd
U no-load phase to phase voltage of the transformer valve side
v0
X leakage reactance of the primary winding (for three-winding transformer)
P
X mean value of the leakage reactance of each of the secondary windings (for three-
S
winding transformer)
X X leakage reactance of each of the secondary windings (for transformer with two
S1 S2
secondary windings)
X short-circuit reactance between the primary winding and secondary winding 1
scP/S1
(for transformer with two secondary windings)
X short-circuit reactance between the primary winding and secondary winding 2
scP/S2
(for transformer with two secondary windings)
X short-circuit reactance between both secondary windings (for transformer with two
scS1/S2
secondary windings)
X short-circuit reactance between the primary winding and both secondary windings
scP/S1S2
(for transformer with two secondary windings)
3.3 Abbreviated terms
3AC three phase AC
AC alternating current
DC direct current
RMS root mean square
4 System configurations and characteristics
4.1 General
DC railway systems are normally fed by a 3AC power network via a rectifier, see Figure 1.
Figure 1 – General configuration
Diode rectifiers allow for a power flow from 3AC power network to the DC traction system only.
The voltage versus current characteristic is determined by the connection and the transformer
main data.
Rectifier diode assemblies and their transformers can be specified separately if a few
parameters are clear:
– load conditions for the transformer and rectifier diode assembly;
– short-circuit withstand of the rectifier diode assembly;
– short-circuit current limited by the transformer;
– maximum U valve side no-load voltage of transformer.
v0
The optional interphase transformer for connection 9 is considered to be part of the rectifier
diode assembly.
Protection at 3AC power network side is normally realized by a circuit breaker and a dedicated
protection relay. In rare cases a combination of load break switch and fuse can be used.
Protection on the DC side is ensured by DC switchgear according to the IEC 61992 series.
4.2 Main interfaces
The interface to the 3AC power network is characterized by:
– rated voltage of the 3AC power network;
– short-circuit power of the 3AC power network;
– voltage imbalance of the 3AC power network;
– harmonic predistortion of the 3AC power network;
– current harmonics by the rectification.
A method to determine the power factor at the 3AC connection of the rectifier is described in
Annex B.
The interface to the DC traction network is characterized by:
– voltage characteristic of the rectifier;
– voltage harmonics by the rectification.
4.3 Transformer main values
4.3.1 General
A rectifier transformer is characterized by the following main values:
– 3AC power network voltage;
– traction side no-load voltage;
– impedance voltages;
– coupling factor.
The traction side no-load voltage is a main value for calculation of all other voltages.
The impedance voltage is only one value for two-winding transformers. For three-winding
transformers there is more than one value for the impedance voltage.
For a complete transformer specification, other values are necessary. IEC 62695 shall be used.
4.3.2 Impedance voltages
The impedance voltage can be derived from short-circuit tests of the transformer. It can also be
expressed as an impedance. For practical purpose the reactance is far more important than the
resistance as for the interesting power range the X/R ratio is 8 or higher.
For connection 8 from Table 1, only one reactance is applicable. Only one test is applicable.
For connection 9 and 12 from Table 1 two reactances are applicable, see Figure 2. All of the
following 4 tests are applicable.
Figure 2 – Reactances of a rectifier transformer
The different reactances can be determined by measurements.
Test 1: application of a voltage on primary side and short-circuit on secondary side winding 1
X = X + X is measured. The corresponding impedance voltage is u . For u 50 % of
scP/S1 P S1 kt1 kt1
the transformer power is applicable.
Test 2: application of a voltage on primary side and short-circuit on secondary side winding 2
X = X + X is measured. The corresponding impedance voltage is u . For u 50 % of
scP/S2 P S2 kt2 kt2
the transformer power is applicable.
Both values shall almost be the same. For tolerances IEC 62695 shall apply. Otherwise, the
transformer is not symmetric and a current imbalance between the two secondary windings and
their connected rectifier diode bridges will occur.
These measured reactances are determining the linear behaviour of the rectifier from low load
to overload.
Test 3: application of a voltage on the primary side and short-circuit on both secondary
windings. X = X + X /2 is measured. The corresponding impedance voltage is u . For
scP/S1S2 P S kt
u the full transformer power is applicable.
kt
This reactance is determining the short-circuit current of the rectifier in connection 9.
Test 4: application of a voltage on secondary side winding 1 and short-circuit on secondary
winding 2 or vice versa. For the resulting impedance voltage 50 % of the transformer power is
applicable.
X = X + X is measured.
scS1/S2 S1 S2
More accurate results are possible taking into account the resistances and the short-circuit
impedance of the feeding 3AC power network. The connection between the transformer and
rectifier diode assembly may have an influence.
With the measured values, the values from the equivalent circuit, see Figure 2, can be
calculated. The measurements are redundant.
XX+ X
scP/S1 scP/S2 scS1/S2
X − (1)
p
XX− X
scP/S1 scP/S2 scS1/S2
(2)
X +
S1
XX− X
scP/S2 scP/S1 scS1/S2
X + (3)
S2
4.3.3 Coupling factor
The definition of the coupling factor in 3.1.11 leads to Formula (4) and Formula (5).
K = X / (X + X )
(4)
P S P
u
kt
K −1
(5)
u
kt1
Solving Formulae (1), (2) and (3), the coupling factor can be calculated.
=
=
=
=
The coupling factor can be adjusted by the winding arrangement within the transformer. A
closely coupled transformer needs specially integrated low voltage windings and a K around
0,9 is possible. To achieve a low coupling factor two separate transformers can be used or a
split high voltage winding connected in parallel. Without any special measure the coupling factor
can vary in a wide range.
4.4 Electrical connections
Standard design of uncontrolled rectifiers is based on a six-pulse bridge connection. Two or
more six-pulse bridges can be connected in parallel or series to achieve a twelve-pulse or 24-
pulse characteristic.
Every six-pulse bridge requires an own three-phase system on the traction side of the
transformer. A twelve-pulse behaviour is achieved by a phase shift of 30° which is realized by
a star and a delta winding with the same vector group on the 3AC power network side of the
transformer.
Combinations of six-pulse bridges are used to eliminate low order current harmonics on the AC
side and low order voltage harmonics on the DC side.
Twelve-pulse and 24-pulse behaviour can be achieved with this combination including a phase
shift between the transformer windings. For a 24-pulse behaviour, two transformers with a
phase shift of +7,5° and −7,5° are used to achieve a phase shift of total 15°.
Table 1 gives values of calculation factors for the most used connections of uncontrolled
rectifiers. For other connections IEC 60146-1-1 and IEC TR 60146-1-2 assists.
IEC TR 60146-1-2 describes the ideal harmonic behaviour under symmetric and sinusoidal 3AC
network conditions as well as a perfect symmetrical transformer. In practice a current or voltage
imbalance can be expected, and the perfect elimination of the harmonics cannot be achieved.
Current imbalance consequences are described in 4.7.
Table 1 – Connections and calculation factors for uncontrolled rectifiers
Con- Transformer
U U U
di d00
iM
I /I d /u d /u
nection connection Valve connection p
v d xN kt1 xN kt
U U U
no. valve side v0 di di
0,816 1,35
1,05 1,05
1 or 1
8 1 2 3 6 0,5 0,5
2 32 π π
3 2 2
3 π 3 3
1,35
0,408 1,05
1,05
1 2
a
9 1 3 5 2 4 6 12 0,5
1 32 0,26
π π
5 3 4
π
3 3
6
0,816 2,7
1,05 0,524
1 2
6 a
1 3 5 2 4 6
12 12 0,5 0,26
2 62 π π
5 3 4
3 π 3 6
NOTE 1 Connection 9 can be used with or without interphase transformer. For high coupling factors an interphase
transformer is normally used. For low coupling factor no interphase transformer is used except for low transition
current requirements.
NOTE 2 Additionally to preceding standards, d /u is given as it provides a factor independent from the coupling
xN kt1
factor.
NOTE 3 The connection numbers are the same as those used in IEC 60146-1-1.
NOTE 4 The interphase transformer can be arranged in the positive or the negative polarity.
NOTE 5 The real no load voltage U can rise to higher values than indicated due to capacitive effects. In these
d00
cases a base load resistor is commonly used.
a
The factor of 0,26 is given for an ideal coupling. The value is a function of the coupling factor. The range can
have any value between 0,26 and 0,5. Values used in practice are 0,26 and 0,5.
4.5 Voltage characteristic
The typical voltage characteristic with its characteristic values is shown in Figure 3. A method
to determine voltage versus current characteristic for higher currents, is described in Annex A.
The basic value is the transformer no-load voltage on the valve side of the rectifier transformer.
The ideal no-load voltage can be taken from Table 1.
The real no-load voltage is higher than the ideal no-load voltage.
The current at which the waveform changes from intermitting to continuous is called transition
current. The transition current is dependent on the rectifier connection. For connection 8 and
12 from Table 1 it is a few amperes. It depends on the smoothing effect of snubber circuits.
For connection 9 from Table 1 the transition current depends on the coupling factor and the
application of an interphase transformer. The effect of interphase transformers is described in
Annex C.
There is no general rule for the choice of the transition current value. An intermittent current
increases the resistance borne losses in the rectifier diode assembly and the transformer. This
is not important for low current. The total voltage versus current characteristic may be nonlinear.
There is a negligible effect on 3AC as well as DC harmonics. A value of transition current less
than 30 % of rated current can be considered as a guideline. A special requirement should be
specified by the user.
For a current higher than the transition current the characteristic is linear up to a value where
the current waveshape changes significantly. More details are shown in Annex A. The voltage
drop in the linear range is determined by the impedance voltage measured with one traction
side winding shorted.
du= 0,5
xN kt1
At full short-circuit the current waveshape of the supply phases is almost sinusoidal. The value
of the short-circuit current is determined by the impedance voltage with all traction side windings
shorted.
Figure 3 – Voltage characteristic
4.6 Current characteristic
The quotient of the RMS value I of the current on the AC side and the direct current I is listed
v d
in Table 1 on the assumption of smooth direct current and rectangular waveshape of the
alternating currents.
This precondition is not given for currents lower than the transition current.
At short circuits the AC current is almost sinusoidal.
4.7 Current imbalance
Every deviation of the 3AC power network sinusoidal waveform and symmetry leads to a current
imbalance between the arms of the rectifier diode assembly. Disturbances are transferred to
the DC side as additional harmonic voltages.
Special attention is required for twelve-pulse converter in parallel connection (connection 9).
An unsymmetrical load sharing between the two three-phase bridges of up to ±5 % of I shall
Nd
be considered as normal condition.
The following circumstances can cause unsymmetrical load sharing between the two three-
phase bridges and should be considered when determining the converter rating:
• harmonic distortion of the 3AC power network voltage;
• different impedance voltages, u and u , of the transformer;
kt1 kt2
• no-load voltage imbalances in the transformer;
• different lengths of the cables between transformer and rectifier diode assembly;
• different cable laying conditions for cables between transformer and rectifier diode
assembly;
• unequal number of converters with different transformer connections in a substation.
A fifth and seventh voltage harmonic exceeding 1 % in the 3AC power network can deviate the
current balance significantly. Interphase transformers do not provide mitigation for current
imbalance. They may go into saturation. Possible mitigation measures are filtering of the 3AC
power network or use of a twelve-pulse series connection or an over dimensioning of the
rectifier.
NOTE The limits specified in IEC 61000-2-12 are too high to provide an acceptable balance for a twelve pulse
parallel connection
4.8 Short time withstand capability
Short circuits on t
...
Frequently Asked Questions
IEC 62590-2-1:2025 is a standard published by the International Electrotechnical Commission (IEC). Its full title is "Railway applications - Electronic power converters for fixed installations - Part 2-1: DC traction applications - Uncontrolled rectifiers". This standard covers: IEC 62590-2-1:2025 This document includes the following significant technical changes with respect to IEC 62589 and the former IEC 62590: a) Reduction of the requirements for uncontrolled rectifiers only; b) Interface model for the different systems connected; c) Energy efficiency addressed. This part of IEC 62590 describes functions and working principles, specifies requirements, interfaces and test methods of uncontrolled rectifiers for DC electric traction power supply systems. Uncontrolled rectifiers connect a 3AC power network with a DC electric traction system with a unidirectional power flow using diode assemblies. The coordination between the transformer and the rectifier diode assembly is included. This document applies to fixed installations of following electric traction power supply systems: • railway networks; • metropolitan transport networks including metros, tramways, trolleybuses and fully automated transport systems, magnetic levitated transport systems, electric road systems. This first edition of IEC 62590-2-1, in conjunction with the other parts of the IEC 62590 series, cancels and replaces the first edition of IEC 62589 published in 2010 and the second edition of IEC 62590 published in 2019.
IEC 62590-2-1:2025 This document includes the following significant technical changes with respect to IEC 62589 and the former IEC 62590: a) Reduction of the requirements for uncontrolled rectifiers only; b) Interface model for the different systems connected; c) Energy efficiency addressed. This part of IEC 62590 describes functions and working principles, specifies requirements, interfaces and test methods of uncontrolled rectifiers for DC electric traction power supply systems. Uncontrolled rectifiers connect a 3AC power network with a DC electric traction system with a unidirectional power flow using diode assemblies. The coordination between the transformer and the rectifier diode assembly is included. This document applies to fixed installations of following electric traction power supply systems: • railway networks; • metropolitan transport networks including metros, tramways, trolleybuses and fully automated transport systems, magnetic levitated transport systems, electric road systems. This first edition of IEC 62590-2-1, in conjunction with the other parts of the IEC 62590 series, cancels and replaces the first edition of IEC 62589 published in 2010 and the second edition of IEC 62590 published in 2019.
IEC 62590-2-1:2025 is classified under the following ICS (International Classification for Standards) categories: 45.060.01 - Railway rolling stock in general. The ICS classification helps identify the subject area and facilitates finding related standards.
IEC 62590-2-1:2025 has the following relationships with other standards: It is inter standard links to IEC 62590:2019, IEC 62589:2010. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase IEC 62590-2-1:2025 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of IEC standards.












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...