This choreographies document describes the exchange of information in the Fulfilment phase between seller and buyer where the seller wants to announce delivery of the ordered goods or services. The purpose of the fulfilment it is to monitor the executions of the contract. This process is the process between the ordering process and the billing process. The billing process can start when fulfilment has been initiated. The business value for this is:
— To prepare the buyers organization for the physical delivery;
— To enabling an automatic check of delivery for the buying organization before paying the received invoice;
— To match the ordered products with the physical deliveries, such as serial numbers, lot identifiers and other information that might not be present at the time the goods were ordered;
— The assist in getting an accurate calculation of the environmental footprint of the goods by including the emission during the transport;
— To feed data into the logistic process, so no retyping is needed during the transport of the goods.
The identifier of this set of choreographies is EN 17017-1:2025
How to claim conformance to a choreography variant defined in this document is described in 4.2.3.
- Standard28 pagesEnglish languagesale 10% offe-Library read for1 day
The present document specifies technical characteristics and methods of measurements for:
1) Indoor and outdoor amplifiers for broadcast TV and sound reception at UHF (470 MHz to 694 MHz) and at VHF (174 MHz to 230 MHz).
2) Indoor active antennas for broadcast TV and sound reception at UHF (470 MHz to 694 MHz) and at VHF (174 MHz to 230 MHz).
NOTE: The relationship between the present document and essential requirements of article 3.2 of Directive 2014/53/EU [i.1] is given in annex A.
- Standard31 pagesEnglish languagesale 15% off
- Standard31 pagesEnglish languagesale 15% off
- Standard31 pagesEnglish languagesale 10% offe-Library read for1 day
The present document specifies technical characteristics and methods of measurements in respect of ElectroMagnetic Compatibility (EMC) for the following equipment types:
1) digital cellular base station equipment, including BS with antenna ports and BS without antenna ports;
2) repeaters;
3) associated ancillary equipment.
Including individual and combinations of technologies listed in table 1.
Technical specifications related to conducted emission EMC requirements below 9 kHz on the AC mains port of radio equipment are not included in the present document.
NOTE 1: Such technical specifications are normally found in the relevant product family standards for AC mains powered equipment (e.g. EN 61000-3-2 [i.16] and EN 61000-3-3 [i.17]). Technical specifications related to the antenna port and emissions from the enclosure port of Base Station (BS), combinations of radio and associated ancillary equipment or repeaters are not included in the present document. Such technical specifications are found in the relevant product standards for the effective use of the radio spectrum. The environmental classification and the emission and immunity requirements used in the present document are as stated in ETSI EN 301 489-1 [1], except for any special conditions included in the present document.
NOTE 2: The relationship between the present document and essential requirements of article 3.1(b) of Directive 2014/53/EU [i.1] is given in Annex A.
- Standard41 pagesEnglish languagesale 15% off
- Standard41 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the methods for determination of the diameter and length of pellets. Concerning the pellet length, methods for the determination of fractions of specified lengths, such as pellets > 40 mm and particles < 10 mm and for determination of the average length are included.
- Standard27 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the safety requirements and means of verification in addition to EN 1459-1:2017+A1:2020 and EN 1459-2:2015+A1:2018 as applicable, for rough-terrain variable-reach trucks (hereafter referred to as trucks) designed and intended for handling suspended loads which can swing freely in one or more directions. It is applicable to trucks covered by EN 1459-1:2017+A1:2020 and EN 1459-2:2015+A1:2018.
This document does not apply to:
- the lifting of suspended loads which by design of the load or the lifting attachments does not allow the load to swing freely in any direction;
- the handling of flexible intermediate bulk containers, as defined in ISO 21898:2004, carried under the forks of the truck or with attachments intended for this purpose;
- any attachments / means used for lifting personnel;
- lifting accessories;
- freight container handling trucks;
- mobile cranes (covered by EN 13000:2010+A1:2014).
This document deals with all significant hazards, hazardous situations or hazardous events, related to trucks handling a freely suspended load, when they are used as intended and under conditions of misuse which are reasonably foreseeable by the manufacturer (see Annex A).
This document does not deal with load limiter for attachments.
This document is not applicable to rough-terrain variable-reach trucks designed and intended for handling suspended loads manufactured before the date of its publication.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60034-15: 2025 relates to AC machines incorporating form-wound stator coils that are intended to be connected to a standard grid supply. It specifies the test procedures and voltages to be applied to sample coils, as well as routine tests performed on coils mounted in the stator core. The purpose of this document is to show the ability of a stator winding to resist voltage transients originating from the grid the machine is connected to. Annex A gives further information. The stator windings and coils for converter-fed machines are excluded from the scope of this document. This document is not intended for use on complete windings since it is difficult to determine when the turn insulation has failed due to the test.
This fourth edition cancels and replaces the third edition published in 2009. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
- harmonize the standard test levels with IEEE Std 522TM [2];
- introduce an enhanced surge impulse voltage withstand level;
- introduce the option to test up to the point of electrical breakdown;
- improve the evaluation of the recorded impulses in case of oscillations and overshoot;
- indicate that converter fed machines are excluded from the scope;
- provide guidance on the execution of impulse tests.
- Standard46 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies safety requirements for the following non-fixed load lifting attachments for cranes, hoists and manually controlled load manipulating devices:
a) plate clamps;
b) vacuum lifters:
1) self-priming;
2) non-self-priming (pump, venturi, turbine);
c) lifting magnets:
1) electric lifting magnets (battery fed and mains-fed);
2) permanent lifting magnets;
3) electro-permanent lifting magnets;
d) lifting beams;
e) C-hooks;
f) lifting forks;
g) clamps;
h) lifting insert systems for use in normal weight concrete,
as defined in Clause 3.
This document does not give requirements for:
- non-fixed load lifting attachments in direct contact with foodstuffs or pharmaceuticals requiring a high level of cleanliness for hygiene reasons;
- hazards resulting from handling specific hazardous materials (e.g. explosives, hot molten masses, radiating materials);
- hazards caused by operation in an explosive atmosphere;
- hazards caused by noise;
- hazards relating to the lifting of persons;
- electrical hazards;
- hazards due to hydraulic and pneumatic components.
For high risk applications not covered by this standard, EN 13001-2:2014, 4.3.2 gives guidance to deal with them.
This document covers the proof of static strength, the elastic stability and the proof of fatigue strength.
This document does not generally applies to attachments intended to lift above people. Some attachments are suitable for that purpose if equipped with additional safety features. In such cases the additional safety features are specified in the specific requirements.
This document does not cover slings, ladles, expanding mandrels, buckets, grabs, or grab buckets. This document does not cover power operated container handling spreaders, which are in the scope of EN 15056.
This document is not applicable to non-fixed load attachments manufactured before the date of its publication.
- Standard117 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60436:2025 applies to electric dishwashers for household and similar use that are supplied with hot and/or cold water. The object of this document is to state and define the principal performance characteristics of electric dishwashers for household and similar use and to describe the standard methods of measuring these characteristics. This document is concerned neither with safety nor with minimum performance requirements.
This fifth edition cancels and replaces the fourth edition published in 2015, and Amendment 1:2020. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) Implementation of a new reference machine, which better reflects modern dishwasher energy and water saving technologies. Its ability to function as a reference machine for the cleaning assessment was assessed in a Round Robin Test.
b) Implementation of the new reference detergent type E, which better reflects market detergents formulations. It includes upgraded enzymes and a lower content of silicates to reduce the alkalinity which simplifies the world wide transportation by avoiding dangerous goods labelling and therefore improves the usage all over the world.
c) Implementation of an alignment factor for the cleaning performance assessment as proposed in a scientific study done by an university to align test results of the previous version to the new version of this document with the new reference system described above.
d) Introduction of replacements and alternatives for the pan and knives as the production of the current ones was stopped.
e) Improvement of the room temperature control by a temperature measurement inside the dishwasher directly prior to the start of the test programme.
f) Update of the weight of different load items and the specified ranges to anneal the requirements in the document to the actual weight of the items.
g) Introduction of an updated method to assess low power modes providing a step-by-step measurement description and including new modes, e.g. network standby which are of increased importance for dishwasher offering additional services via internet connection. Additionally, reactions to different interactions with the appliance can be assessed in a better way and learnings of Round Robin Test are included.
h) Inclusion of additional method for dishwasher testing which allows the assessment of variations of dishwasher units from one model.
i) New requirements for the loading and handling instructions for tests institutes.
j) Implementation of testing methodology for multi-compartment dishwashers.
k) Improvement of ballast soil preparation process in Annex V.
- Standard141 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63380-3:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager.
This document specifies the application of relevant transport protocols; in this case, SPINE (smart premises interoperable neutral-message exchange), SHIP (smart home IP), and ECHONET Lite. Other communication protocols can be defined in future editions
- Standard184 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60704-2-3:2025 applies to single unit electric dishwashers for household and similar use, with or without automatic programme control, for cold and/or warm water supply, for detachable or permanent connection to water supply or sewage systems, intended for placing on the floor against a wall, for building-in or placing under a counter, a kitchen worktop or under a sink, for wall-mounting or on a counter. This fourth edition cancels and replaces the third edition published in 2017. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) alignment to IEC 60704-1:2021,
b) change of the position of the test sample in the test enclosure (aligned to IEC 60704 1:2021),
c) detergent changed (aligned to IEC 60436:2025).
This International Standard is intended to be used in conjunction with the fourth edition of IEC 60704-1:2021.
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60730-2-13:2025 applies to automatic electrical humidity sensing controls • for use in, on, or in association with equipment for household appliance and similar use; NOTE 1 Throughout this document, the word "equipment" means "appliance and equipment" and "controls" means "humidity sensing control". • for building automation within the scope of ISO 16484 series and IEC 63044 series (HBES/BACS); • for equipment that is used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications; EXAMPLE 1 Humidity sensing controls for commercial catering, heating and air-conditioning equipment. • that are smart enabled controls; EXAMPLE 2 Smart grid control, remote interfaces/control of energy-consuming equipment including computer or smart phone. • that are AC or DC powered controls with a rated voltage not exceeding 690 V AC or 600 V DC; • used in, on, or in association with equipment that use electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof; • utilized as part of a control system or controls which are mechanically integral with multifunctional controls having non-electrical outputs; • using NTC or PTC thermistors and to discrete thermistors, requirements for which are contained in Annex J; • that are mechanically or electrically operated, responsive to or controlling such characteristics as temperature, pressure, passage of time, humidity, light, electrostatic effects, flow, or liquid level, current, voltage, acceleration, or combinations thereof; • as well as manual controls when such are electrically and/or mechanically integral with automatic controls. NOTE 2 Requirements for manually actuated mechanical switches not forming part of an automatic control are contained in IEC 61058-1-1. This document applies to – the inherent safety of automatic electrical humidity sensing controls, and – functional safety of automatic electrical humidity sensing controls and safety related systems, – humidity sensing controls where the performance (for example the effect of EMC phenomena) of the product can impair the overall safety and performance of the controlled system, – the operating values, operating times, and operating sequences where such are associated with equipment safety. This document specifies the requirements for construction, operation and testing of automatic electrical humidity sensing controls used in, on, or in association with an equipment. This document does not • apply to automatic electrical humidity sensing controls intended exclusively for industrial process applications unless explicitly mentioned in the relevant part 2 or the equipment standard. However, this document can be applied to evaluate humidity sensing controls intended specifically for industrial applications in cases where no relevant safety standard exists; • take into account the response value of an automatic action of a humidity sensing control, if such a response value is dependent upon the method of mounting the humidity sensing control in the equipment. Where a response value is of significant purpose for the protection of the user, or surroundings, the value defined in the appropriate equipment standard or as determined by the manufacturer will apply; • address the integrity of the output signal to the network devices, such as interoperability with other devices unless it has been evaluated a
- Draft26 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62541-18: 2025 defines an Information Model. The Information Model describes the basic infrastructure to model role-based security. NOTE In the previous version, Role-Based Security was in IEC 62541-5:2020, Annex F.
- Draft26 pagesEnglish languagesale 10% offe-Library read for1 day
This part of IEC 61340 provides test methods and procedures for evaluating and selecting air ionization equipment and systems (ionizers). This document establishes measurement techniques, under specified conditions, to determine offset voltage (ion balance) and decay (charge neutralization) time for ionizers. This document does not include measurements of electromagnetic interference (EMI), or the use of ionizers in connection with ordnance, flammables, explosive items or electrically initiated explosive devices. As contained in this document, the test methods and test conditions can be used by manufacturers of ionizers to provide performance data describing their products. Users of ionizers are urged to modify the test methods and test conditions for their specific application in order to qualify ionizers for use, or to make periodic verifications of ionizer performance. The user will decide the extent of the data required for each application. See Annex A for information regarding theoretical background and additional information on the standard test method for the performance of ionizers. CAUTION: Procedures and equipment described in this document can expose personnel to hazardous electrical and non-electrical conditions. Users of this document are responsible for selecting equipment that complies with applicable laws, regulatory codes and both external and internal policy. Users are cautioned that this document cannot replace or supersede any requirements for personnel safety. See Annex C for safety considerations.
- Draft32 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62453-1:2025 is available as IEC 62453-1:2025 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62453-1:2025 presents an overview and guidance for the IEC 62453 series. It • explains the structure and content of the IEC 62453 series (see Clause 5); • provides explanations of some aspects of the IEC 62453 series that are common to many of the parts of the series; • describes the relationship to some other standards; • provides definitions of terms used in other parts of the IEC 62453 series. This third edition cancels and replaces the first edition published in 2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) introduction of a new implementation technology (defined in IEC TS 62453-43); b) introduction of an OPC UA information model for FDT (defined in IEC 62453-71).
- Draft51 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60730-2-6:2025 applies to automatic electrical pressure sensing controls • for use in, on, or in association with equipment for household appliance and similar use; NOTE 1 Throughout this document, the word "equipment" means "appliance and equipment" and "controls" means "pressure sensing controls". • for building automation within the scope of ISO 16484 series and IEC 63044 series (HBES/BACS); EXAMPLE 1 Independently mounted automatic electrical pressure sensing controls, controls in smart grid systems and controls for building automation systems within the scope of ISO 16484-2. • for equipment that is used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications; EXAMPLE 2 Automatic electrical pressure sensing controls for commercial catering, heating and air-conditioning equipment. • that are smart enabled automatic electrical pressure sensing controls; EXAMPLE 3 Smart grid automatic electrical pressure sensing controls, remote interfaces/control of energy-consuming equipment including computer or smart phone. • that are AC or DC powered controls with a rated voltage not exceeding 690 V AC or 600 V DC; • used in, on, or in association with equipment that use electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof; • utilized as part of a control system or controls which are mechanically integral with multifunctional controls having non-electrical outputs; • using NTC or PTC thermistors and to discrete thermistors, requirements for which are contained in Annex J; • that are mechanically or electrically operated, responsive to or controlling a pressure or vacuum; • as well as manual controls when such are electrically and/or mechanically integral with automatic controls. NOTE 2 Requirements for manually actuated mechanical switches not forming part of an automatic control are contained in IEC 61058-1-1. This document is also applicable to individual pressure sensing controls utilized as part of a control system or pressure sensing controls which are mechanically integral with multi-functional controls having non-electrical outputs. This document is also applicable to pressure sensing controls for appliances within the scope of IEC 60335-1. This document applies to - the inherent safety of pressure sensing controls, and - functional safety of pressure sensing controls and safety related systems, - pressure sensing controls where the performance (for example the effect of EMC phenomena) of the product can impair the overall safety and performance of the controlled system, - the operating values, operating times, and operating sequences where such are associated with equipment safety. This document specifies the requirements for construction, operation and testing of automatic electrical controls used in, on, or in association with an equipment. This document does not • apply to pressure sensing controls intended exclusively for industrial process applications unless explicitly mentioned in the relevant part 2 or the equipment standard. However, this document can be applied to evaluate automatic electrical controls intended specifically for industrial applications in cases where no relevant safety standard exists; • take into account the response value of an automatic action of a pressure sensing control, if such a response value is dependent upon
- Draft38 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60127-9:2025 This part covers requirements for miniature fuse-links for special applications with partial-range breaking capacity. This document is applicable to fuse-links with a rated voltage not exceeding 1 000 V, a rated current not exceeding 150 A and a rated breaking capacity not exceeding 50 kA.
- Draft31 pagesEnglish languagesale 10% offe-Library read for1 day
- Draft4 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61496-3:2025 specifies additional requirements for the design, construction and testing of non‑contact electro-sensitive protective equipment (ESPE) designed specifically to detect persons or parts of persons as part of a safety-related system, employing active opto-electronic protective devices responsive to diffuse reflection (AOPDDRs) for the sensing function. Special attention is directed to requirements which ensure that an appropriate safety-related performance is achieved. An ESPE can include optional safety-related functions, the requirements for which are given both in Annex A of this document and in Annex A of IEC 61496‑1:2020. NOTE "Non-contact" means that physical contact is not required for sensing. This document does not specify the dimensions or configurations of the detection zone and its disposition in relation to hazardous parts for any particular application, nor what constitutes a hazardous state of any machine. It is restricted to the functioning of the ESPE and how it interfaces with the machine. AOPDDRs are devices that have either - one or more detection zone(s) specified in two dimensions (AOPDDR-2D), or - one or more detection zone(s) specified in three dimensions (AOPDDR-3D) wherein radiation in the near infrared range is emitted by an emitting element(s). When the emitted radiation impinges on an object (for example, a person or part of a person), a portion of the emitted radiation is reflected to a receiving element(s) by diffuse reflection. This reflection is used to determine the position of the object. Opto-electronic devices that perform only a single one-dimensional spot-like distance measurement, for example, optical proximity switches, are not covered by this document. This document is limited to ESPE that do not require human intervention for detection. It is limited to ESPE that detect objects entering into or being present in a detection zone(s). This document does not address those aspects required for complex classification or differentiation of the object detected. This document does not address requirements and tests for outdoor application. Excluded from this document are AOPDDRs employing radiation with the peak of wavelength outside the range 820 nm to 1 100 nm, and those employing radiation other than that generated by the AOPDDR itself. For sensing devices that employ radiation of wavelengths outside this range, this document can be used as a guide. This document is relevant for AOPDDRs having a minimum detectable object size in the range from 30 mm to 200 mm. This document can be relevant to applications other than those for the protection of persons, for example, for the protection of machinery or products from mechanical damage. In those applications, different requirements can be appropriate, for example when the materials that are recognized by the sensing function have different properties from those of persons and their clothing. This document does not deal with electromagnetic compatibility (EMC) emission requirements. This fourth edition cancels and replaces the third edition published in 2018. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) some requirement clauses and test procedures have been adapted or removed because they have been consolidated in IEC 61496-1:2020 (e.g. 5.4.6.2 Light sources and Clause A.9); b) change of the minimum probability of detection and fault detection requirements for Type 2 AOPDDR;
- Draft85 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63522-21:2025 This part is used for testing along with the appropriate severities and conditions for measurements and tests designed to assess the ability of DUTs to perform under expected conditions of transportation, storage and all aspects of operational use. This document defines a standard test method for evaluation of resistance against high temperature for long periods.
- Draft11 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60730-2-11:2025 applies to energy regulators • for use in, on, or in association with equipment for household appliance and similar use; NOTE 1 Throughout this document, the word "equipment" means "appliance and equipment" and "controls" means "energy regulators". • for equipment that is used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications; EXAMPLE 1 Energy regulators for commercial catering, heating and air-conditioning equipment. • that are smart enabled energy regulators; EXAMPLE 2 Smart grid control, remote interfaces/control of energy-consuming equipment including computer or smart phone. • that are AC or DC powered controls with a rated voltage not exceeding 690 V AC or 600 V DC; • used in, on, or in association with equipment that use electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof; • utilized as part of a control system or controls which are mechanically integral with multifunctional controls having non-electrical outputs; • using NTC or PTC thermistors and to discrete thermistors, requirements for which are contained in Annex J; • that are mechanically or electrically operated, responsive to or controlling such characteristics as temperature, pressure, passage of time, humidity, light, electrostatic effects, flow, or liquid level, current, voltage, acceleration, or combinations thereof; • as well as manual controls when such are electrically and/or mechanically integral with automatic controls. NOTE 2 Requirements for manually actuated mechanical switches not forming part of an automatic control are contained in IEC 61058-1-1. This document applies to - the inherent safety of energy regulators, and - functional safety of energy regulators of low complexity safety related systems and controls, - controls where the performance (for example the effect of EMC phenomena) of the product can impair the overall safety and performance of the controlled system, - the operating values, operating times, and operating sequences where such are associated with equipment safety. - manual energy regulators which are electrically and/or mechanically integral with automatic controls. - energy regulators incorporating electronic devices, requirements for which are contained in Annex H. - the electrical and functional safety of controls capable of receiving and responding to communications signals, including signals for power billing rate and demand response. The signals can be transmitted to or received from external units being part of the control (wired), or to and from external units which are not part of the control (wireless) under test. This document specifies the requirements for construction, operation and testing of automatic energy regulators used in, on, or in association with an equipment. This document does not • apply to automatic energy regulators intended exclusively for industrial process applications unless explicitly mentioned in the relevant part 2 or the equipment standard. However, this document can be applied to evaluate automatic energy regulators intended specifically for industrial applications in cases where no relevant safety standard exists. • take into account the response value of an automatic action of an energy regulator, if such a response value is dependent upon the method of mounting the energy regulator
- Draft19 pagesEnglish languagesale 10% offe-Library read for1 day
This test method specifies a test method for the verification of the resistance to cutting damage of leading wires and shock tubes of leading wires of electric and electronic detonators as well as shock tubes of non-electric detonators, surface connectors and electronic detonators.
This document does not apply to detonating cord relays and electronic initiation systems.
- Draft13 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a test method for the verification of the transmission of deflagration of black powder used for blasting.
This document applies only to black powder in granular form or in compressed form.
- Draft8 pagesEnglish languagesale 10% offe-Library read for1 day
The standard shall describe the necessary steps and conditions for the measurement of the parameters, which are relevant for rechargeable batteries with internal energy storage used for road vehicles. The parameters shall reflect current industry practice for the applications based on existing international standards. The standard shall consider the most appropriate metric based on application and the objective of the metric to enable comparison of electrical performance between different models/products on the market. It shall in particular take into account the following:
- rated capacity (in Ah);
- rated power (in W);
- internal resistance (in ꭥ);
- energy round trip efficiency (in %).
The measurement tests of the standard shall be relevant for batteries, battery packs, and battery modules intended for the following applications:
- motor vehicles, including M and N categories referred to in Article 2 of Regulation (EU) 2018/858 of the European Parliament and of the Council with traction battery;
- L-category vehicles referred to in Article 2 of Regulation EU 168/2013 of the European Parliament and of the Council with traction battery of more than 25kg.
- Draft28 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of resistance to electrostatic energy for propellants containing a mass fraction of at least 5 % of particles which pass through a 1 mm sieve. This method does not apply to black powder.
NOTE If the mass fraction of particles smaller than 1 mm size is less than 5 % the propellant is considered to be insensitive to electrostatic energy and this test is not performed.
- Draft14 pagesEnglish languagesale 10% offe-Library read for1 day
This test method specifies a test method for the verification of the resistance to abrasion of leading wires of electric and electronic detonators as well as shock tubes of non-electric detonators, surface connectors and electronic detonators.
This document does not apply to detonating cord relays and electronic initiation systems.
- Draft17 pagesEnglish languagesale 10% offe-Library read for1 day
- Draft16 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the measurement and test methods for general characteristics of cold formed cylindrical helical torsion springs made from round wire, excluding dynamic testing.
- Draft35 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the verification of the shock wave velocity of shock tubes.
This document is applicable to shock tubes of non-electric detonators, surface connectors and electronic detonators, and on shock tube as bulk product.
This document does not apply to electric detonators, plain detonators, semi-finished detonators, detonating cord relays and electronic initiation systems.
- Draft9 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a test method for the verification of the insensitiveness to impact of detonating cords.
This document does not apply to safety fuses.
- Draft12 pagesEnglish languagesale 10% offe-Library read for1 day
This document gives requirements and guidance for the assessment of conformity of formulations, products and assemblies in accordance with EN 1401-1 intended to be included in the manufacturer’s quality plan as part of the quality management system and for the establishment of third-party certification procedures.
NOTE 1 The quality management system is expected to conform to or is no less stringent than the relevant requirements to EN ISO 9001 [1].
NOTE 2 If third party certification is involved, the certification body is expected to be compliant with either EN ISO/IEC 17065 [2] or EN ISO/IEC 17021-series [3], as applicable.
NOTE 3 In order to help the reader, a basic test matrix is given in Annex A.
In conjunction with EN 1401-1, this document is applicable to piping systems made of unplasticized poly(vinyl chloride) (PVC-U) intended for non-pressure underground drainage and sewerage:
- buried in ground outside the building structure (application area code "U");
- both buried in ground within the building structure and outside the building structure (application area code "UD").
- Draft23 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies conformance tests in the form of an abstract test suite (ATS) for a system under test (SUT) that implements an electric-vehicle communication controller (EVCC) or a supply-equipment communication controller (SECC) for all common requirements specified in ISO 15118-20 that are independent of a particular charging type (AC, DC, ACD, WPT charging). These conformance tests specify the testing of capabilities and behaviours of an SUT, as well as checking what is observed against the conformance requirements specified in ISO 15118-20 and against what the implementer states the SUT implementation's capabilities are. The capability tests within the ATS check that the observable capabilities of the SUT are in accordance with the static conformance requirements specified in ISO 15118-20. The behaviour tests of the ATS examine an implementation as thoroughly as practical over the full range of dynamic conformance requirements specified in ISO 15118-20 and within the capabilities of the SUT. A test architecture is described in correspondence to the ATS. The abstract test cases in this document are described leveraging this test architecture and are specified in descriptive tabular format covering the ISO/OSI layer 3 to 7 (network to application layers). In terms of coverage, this document only covers normative sections and requirements in ISO 15118-20. This document additionally refers to specific tests for requirements on referenced standards (e.g. IETF RFCs, W3C Recommendation, etc.) if they are relevant in terms of conformance for implementations according to ISO 15118-20. However, it is explicitly not intended to widen the scope of this conformance specification to such external standards, if it is not technically necessary for the purpose of conformance testing for ISO 15118-20. Furthermore, the conformance tests specified in this document do not include the assessment of performance nor robustness or reliability of an implementation. They cannot provide judgments on the physical realization of abstract service primitives, how a system is implemented, how it provides any requested service, or the environment of the protocol implementation. Furthermore, the abstract test cases specified in this document only consider the communication protocol and the system's behaviour specified in ISO 15118-20. Power flow between the EVSE and the EV is no prerequisite for the test cases specified in this document.
- Standard321 pagesEnglish languagesale 15% off
This document specifies methods for determining conformance to the security crypto suite defined in ISO/IEC 29167-11. This document contains conformance tests for all mandatory functions. Unless otherwise specified, the tests in this document are intended to be applied exclusively to RFID tags and interrogators defined in the ISO/IEC 18000 series using ISO/IEC 29167-11.
- Standard10 pagesEnglish languagesale 15% off
This document describes a method for the measurement of the swelling properties of hard coal using a dilatometer.
- Standard14 pagesEnglish languagesale 15% off
This document establishes content for commercial specifications for drilling machines and foundation machines. It explains concepts related to their applications, working methods, machine types, and main components of the machines. This document is applicable to: — mobile drill rigs for civil and geotechnical engineering; — foundation equipment including piling machines; — diaphragm walling equipment; — jetting, grouting and injection equipment; — interchangeable auxiliary equipment. This document does not apply to: — machines specifically designed for mining application (e.g. rock drilling, raise boring, jumbo machines); — horizontal directional drilling (HDD) machines (covered by ISO 21467[ REF Reference_ref_6 \r \h 1]).
- Standard123 pagesEnglish languagesale 15% off
- Standard125 pagesFrench languagesale 15% off
This document specifies the mechanisms and criteria to be applied for the selection and approval of the object identifier resolution system (ORS) operational agency and includes procedures that the operational agency is required to follow. It also addresses any future modification of the procedures and the procedures for any change of the operational agency. This document: — lists the object identifier (OID) nodes for which the operational agency is required to provide ORS support and gives the required level of support for these nodes; — gives the procedures by which lower-level nodes can apply for ORS support (class A, class B, or class C) and the role of the operational agency in providing these levels of support; — determines the basis for charges that can be levied for these levels of support.
- Standard8 pagesEnglish languagesale 15% off
- Standard12 pagesEnglish languagesale 15% off
- Standard12 pagesFrench languagesale 15% off
This document specifies the irradiation equipment using ultraviolet light emitting diode (UV-LED) and optical radiometry for testing the performance of semiconducting photocatalytic materials. The UV-LED irradiation equipment specified in this document uses UV-LEDs having a peak wavelength of 365 nm in the UV-A range and applies for a semiconductor photocatalyst exhibiting a photocatalytic function at this wavelength. This document applies only to irradiation equipment using UV-LED. ISO 10677[ REF Reference_ref_2 \r \h 2 08D0C9EA79F9BACE118C8200AA004BA90B0200000008000000100000005200650066006500720065006E00630065005F007200650066005F0032000000 ] is applicable for equipment using conventional UV light sources such as fluorescent lamps.
- Standard11 pagesEnglish languagesale 15% off
This document specifies primary and secondary dimensions for specified types of garments to establish a size designation system based on body dimensions (as defined in ISO 8559-1).
- Standard41 pagesEnglish languagesale 15% off
This document provides guidance on how to use modelling in privacy engineering. It describes categories of models that can be used, the use of modelling to support engineering, and the relationships with other references, including International Standards on privacy engineering and on modelling. It provides high-level use cases describing how models are used.
- Technical specification32 pagesEnglish languagesale 15% off
This document describes a dynamic dual-task method that quantitatively measures human-performance degradation on a primary driving-like task while a secondary task is being performed. The performance measures of the method indicate the visual-manual and cognitive secondary-task demand associated with visual-manual or auditory-verbal secondary task engagement while driving. This document defines key terms and parameters for the assessment of BT + DRT. It provides guidelines and minimum requirements on equipment and procedures to plan evaluation trials, specify (and install) data capture equipment, conduct a study, analyse, interpret, and report metrics indicating visual-manual and cognitive secondary-task demand using the BT + DRT. The metrics and definitions described in this document provide a common source for the assessment of visual-manual and cognitive task demand induced by different IVIS while driving. The BT + DRT is applicable to standardized experiments in laboratory-based settings. Data collection and analyses according to this document allow comparisons across different secondary tasks. In contrast, this document does not apply to the measurement of primary (driving) task demand. This document can be applied to both original equipment manufacturer (OEM) and after-market in-vehicle systems, and to permanently installed as well as portable systems.
- Standard11 pagesEnglish languagesale 15% off
DEN/ERM-TGAERO-31-1
- Standard45 pagesEnglish languagesale 15% off
- Standard45 pagesEnglish languagesale 15% off
- Standard45 pagesEnglish languagesale 10% offe-Library read for1 day
The present document specifies technical requirements, limits and test methods for Short Range Devices in the non-
specific category operating in the frequency range 25 MHz to 1 000 MHz.
The non specific SRD category is defined by the EU Commission Decision 2019/1345/EU [i.3] as:
"The non-specific short-range device category covers all kinds of radio devices, regardless of the application or the
purpose, which fulfil the technical conditions as specified for a given frequency band. Typical uses include telemetry,
telecommand, alarms, data transmissions in general and other applications".
These radio equipment types are capable of transmitting up to 500 mW effective radiated power and operating indoor or
outdoor.
NOTE: The relationship between the present document and the essential requirements of article 3.2 of
Directive 2014/53/EU [i.2] is given in Annex A
- Standard107 pagesEnglish languagesale 15% off
- Standard107 pagesEnglish languagesale 15% off
- Standard107 pagesEnglish languagesale 10% offe-Library read for1 day
DEN/ERM-TG28-561
- Standard100 pagesEnglish languagesale 15% off
- Standard100 pagesEnglish languagesale 15% off
- Standard100 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63461:2024 applies to laboratory model tests of any type of Pelton hydraulic turbine with unit power greater than 5 MW. It contains the rules governing test conduct and provides measures to be taken if any phase of the tests is disputed.
The main objectives of this document are:
- to define the terms and quantities used;
- to specify methods of testing and of measuring the quantities involved, in order to ascertain the hydraulic performance of the model;
- to specify the methods of computation of results and of comparison with guarantees;
- to determine if the contract guarantees that fall within the scope of this document have been fulfilled;
- and to define the extent, content and structure of the final report.
Full application of the procedures herein described is not generally justified for machines with smaller power. Nevertheless, this document can be used for such machines by agreement between the purchaser and the supplier.
- Standard1 pageEnglish and French languagesale 15% off
IEC TR 63515:2025 provides a conceptual framework for power system resilience. It covers the definition, evaluation metrics and methods, improvement strategies and uses cases of power system resilience. This document is applicable to developing resilient power system and implementing resilience improvement strategies.
This document is not exhaustive, and it is possible to consider other aspects, such as different application scenarios, evaluation methods, and improvement measures.
- Technical report39 pagesEnglish languagesale 15% off
IEC TR 62282-7-3:2025 is a generic assessment of the feasibility of standardizing accelerated test procedures (both proton exchange membrane (PEM) and oxide ion-conducting solid oxide cell (SOC) technologies) for fuel cell stacks that have been engineered for a specific system application. This document comprises a review of literature and projects, a discussion of the main physical phenomena of interest in accelerated testing campaigns (focusing on the cell and stack levels, not looking at the system as a black box), a compendium of measurement techniques that are applicable, and it suggests a macroscopic approach to the formulation of a representative accelerated testing campaign.
- Technical report29 pagesEnglish languagesale 15% off
IEC PAS 62443-2-2: 2025 provides guidance on the development, validation, operation, and maintenance of a set of technical, physical, and process security measures called Security Protection Scheme (SPS). The document’s goal is to provide the asset owner implementing an IACS Security Program (SP) with mechanisms and procedures to ensure that the design, implementation and operation of an SPS manage the risks resulting from cyberthreats to each of the IACS included in its operating facility.
The document is based on contents specified in other documents of the IEC 62443 series and explains how these contents can be used to support the development of technical, physical, and process security measures addressing the risks to the IACS during the operation phase.
- Technical specification44 pagesEnglish languagesale 15% off
IEC TR 61850-90-30:2025, which is a Technical Report, describes extensions of the SCL Substation/Process Section allowing the creation of a comprehensive, IED and hardware independent specification of an IEC 61850 based power system.
It addresses how to:
• decompose functions in SCL
• show function classifications in SCL
• relate functions with the SCL Substation and Process Section
• relate functions to Logical Nodes and IEDs/Specification IEDs
• present information flow between functions in a hardware/implementation independent way
• position Functions in relation to "Application Schemes", "Distributed Functions", "Protection Schemes"
• consider the relationship to Basic Application Profiles (BAP) defined in IEC TR 61850-7-6
The document addresses the engineering process as far as it is related to the specification of Functions and their instantiation in IEC 61850 based power system. This includes the impact on the SCL Process Section during system configuration.
The engineering process related to the definition of Applications and their instantiation is addressed in the Basic Application Profile Document (BAP) in IEC TR 61850-7-6.
The System Configuration process is described in IEC 61850-6.
Modifications and extensions of SCL are done in a way to guarantee backwards compatibility.
In addition, this document introduces:
• Some further elements to SCL that improve the content and usefulness of SSD files and facilitate the handling of SCL files for engineering purposes,
• New variants of IED specific files: ISD file and FSD files,
• Evolution of the engineering rights management, to first improve the usage of SED and add a new concept of System Configuration Collaboration (SCC file) which allows collaboration on the same project with different engineers.
- Technical report184 pagesEnglish languagesale 15% off
IEC TS 62271-315:2025 is applicable to direct current (DC) transfer switches designed for indoor or outdoor installation and for operation on HVDC transmission systems having direct voltages of 100 kV and above. DC transfer switches normally include metallic return transfer switches (MRTS), earth return transfer switches (ERTS), neutral bus switches (NBS) and neutral bus earthing switches (NBES).
- Technical specification74 pagesEnglish languagesale 15% off
IEC 60050-831:2025 gives the terms and definitions used in smart cities and smart city systems, as well as general terms pertaining to specific applications and associated technologies. This terminology is consistent with the terminology developed in the other specialized parts of the IEV. It has the status of a horizontal standard in accordance with IEC Guide 108.
- Standard50 pagesEnglish and French languagesale 15% off
IEC 62282-7-2:2025 applies to SOFC cell/stack assembly units, testing systems, instruments and measuring methods, and specifies test methods to test the performance of SOFC cells and stacks. This document is not applicable to small button cells that are designed for SOFC material testing and provide no practical means of fuel utilization measurement. This document is used based on the recommendation of the entity that provides the cell performance specification or for acquiring data on a cell or stack in order to estimate the performance of a system based on it. Users of this document can selectively execute test items suitable for their purposes from those described in this document.
- Standard98 pagesEnglish and French languagesale 15% off
IEC 62276:2025 applies to the manufacture of synthetic quartz, lithium niobate (LN), lithium tantalate (LT), lithium tetraborate (LBO), and lanthanum gallium silicate (LGS) single crystal wafers intended for use as substrates in the manufacture of surface acoustic wave (SAW) filters and resonators.
This edition includes the following significant technical changes with respect to the previous edition:
a) The terms and definitions, the technical requirements, sampling frequency, test methods and measurement of transmittance, lightness, colour difference for LN and LT have been added in order to meet the needs of industry development;
b) The term “inclusion” (mentioned in 4.13 and 6.10) and its definition have been added because there was no definition for it in Clause 3;
c) The specification of LTV and PLTV, and the corresponding description of sampling frequency for LN and LT have been added, because they are the key performance parameters for the wafers;
d) The tolerance of Curie temperature specification for LN and LT have been added in order to meet the development requirements of the industry;
e) Measurement of thickness, TV5, TTV, LTV and PLTV have been completed, including measurement principle and method of thickness, TV5, TTV, LTV and PLTV.
- Standard82 pagesEnglish and French languagesale 15% off
ISO/IEC TR 30189-1:2025 describes a framework for the use of IoT technology for management of tangible cultural heritage assets, which includes the associated functional entities and information flows.
- Technical report21 pagesEnglish languagesale 15% off
REN/MSG-TFES-15-3
- Standard67 pagesEnglish languagesale 15% off
- Standard67 pagesEnglish languagesale 15% off
- Standard67 pagesEnglish languagesale 10% offe-Library read for1 day
ABSTRACT
This specification establishes the manufacture, testing, and performance requirements of two types of asphalt-based emulsions for use in a relatively thick film as a protective coating for metal surfaces. Type I are quick-setting emulsified asphalt suitable for continuous exposure to water within a few days after application and drying. Type II, on the other hand, are emulsified asphalt suitable for continuous exposure to the weather, only after application and drying. Upon being sampled appropriately, the materials shall conform to composition requirements as to density, residue by evaporation, nonvolatile matter soluble in trichloroethylene, and ash and water content. They shall also adhere to performance requirements as to uniformity, consistency, stability, wet flow, firm set, heat test, flexibility, resistance to water, and loss of adhesion.
SCOPE
1.1 This specification covers emulsified asphalt suitable for application in a relatively thick film as a protective coating for metal surfaces.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Coefficients of linear thermal expansion are used, for example, for design purposes and to determine if failure by thermal stress may occur when a solid body composed of two different materials is subjected to temperature variations.
5.2 This test method is comparable to Test Method D3386 for testing electrical insulation materials, but it covers a more general group of solid materials and it defines test conditions more specifically. This test method uses a smaller specimen and substantially different apparatus than Test Methods E228 and D696.
5.3 This test method may be used in research, specification acceptance, regulatory compliance, and quality assurance.
SCOPE
1.1 This test method determines the technical coefficient of linear thermal expansion of solid materials using thermomechanical analysis techniques.
1.2 This test method is applicable to solid materials that exhibit sufficient rigidity over the test temperature range such that the sensing probe does not produce indentation of the specimen.
1.3 The recommended lower limit of coefficient of linear thermal expansion measured with this test method is 5 μm/(m·°C). The test method may be used at lower (or negative) expansion levels with decreased accuracy and precision (see Section 12).
1.4 This test method is applicable to the temperature range from −120 °C to 900 °C. The temperature range may be extended depending upon the instrumentation and calibration materials used.
1.5 SI units are the standard. No other units of measurement are included in this standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Research O.N. correlates with commercial automotive spark-ignition engine antiknock performance under mild conditions of operation.
5.2 Research O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines.
5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation:
Values of k1, k2, and k3 vary with vehicles and vehicle populations and are based on road-O.N. determinations.
5.2.2 Research O.N., in conjunction with Motor O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the Road octane ratings for many vehicles, is posted on retail dispensing pumps in the U.S., and is referred to in vehicle manuals.
This is more commonly presented as:
5.2.3 Research O.N. is also used either alone or in conjunction with other factors to define the Road O.N. capabilities of spark-ignition engine fuels for vehicles operating in areas of the world other than the United States.
5.3 Research O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates.
5.4 Research O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.
SCOPE
1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Research O.N., including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested using a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The O.N. scale is defined by the volumetric composition of PRF blends. The sample fuel knock intensity is compared to that of one or more PRF blends. The O.N. of the PRF blend that matches the K.I. of the sample fuel establishes the Research O.N.
1.2 The O.N. scale covers the range from 0 to 120 octane number but this test method has a working range from 40 to 120 Research O.N. Typical commercial fuels produced for spark-ignition engines rate in the 88 to 101 Research O.N. range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Research O.N. range.
1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pound units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.
1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3 (6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.11.4, and X4.5.1.8.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Gu...
- Standard48 pagesEnglish languagesale 15% off
- Standard48 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The determination of the creep rate provides information on the behavior of sandwich constructions under constant applied force. Creep is defined as deflection under constant force over a period of time beyond the initial deformation as a result of the application of the force. Deflection data obtained from this test method can be plotted against time, and a creep rate determined. By using standard specimen constructions and constant loading, the test method may also be used to evaluate creep behavior of sandwich panel core-to-facing adhesives.
5.2 This test method provides a standard method of obtaining flexure creep of sandwich constructions for quality control, acceptance specification testing, and research and development.
5.3 Factors that influence the sandwich construction creep response and shall therefore be reported include the following: facing material, core material, adhesive material, methods of material fabrication, facing stacking sequence and overall thickness, core geometry (cell size), core density, core thickness, adhesive thickness, specimen geometry, specimen preparation, specimen conditioning, environment of testing, specimen alignment, loading procedure, speed of testing, facing void content, adhesive void content, and facing volume percent reinforcement. Further, facing and core-to-facing strength and creep response may be different between precured/bonded and co-cured facesheets of the same material.
SCOPE
1.1 This test method covers the determination of the creep characteristics and creep rate of flat sandwich constructions loaded in flexure, at any desired temperature. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 This practice is useful as a screening basis for acceptance or rejection of transparencies during manufacturing so that units with identifiable flaws will not be carried to final inspection for rejection at that time.
4.2 This practice may also be employed as a go-no go technique for acceptance or rejection of the finished product.
4.3 This practice is simple, inexpensive, and effective. Flaws identified by this practice, as with other optical methods, are limited to those that produce temperature gradients when electrically powered. Any other type of flaw, such as minor scratches parallel to the direction of electrical flow, are not detectable.
SCOPE
1.1 This practice covers a standard procedure for detecting flaws in the conductive coating (heater element) by the observation of polarized light patterns.
1.2 This practice applies to coatings on surfaces of monolithic transparencies as well as to coatings imbedded in laminated structures.
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the properties and requirements for two types of asbestos-free asphalt roof coatings consisting of an asphalt base, volatile petroleum solvents, and mineral or other stabilizers, or both, mixed to a smooth, uniform consistency suitable for application by squeegee, three-knot brush, paint brush, roller, or by spraying. Type I is made from asphalts characterized as self-healing, adhesive, and ductile, while Type II is made from asphalts characterized by high softening point and relatively low ductility. The coatings shall conform to specified composition limits for water, nonvolatile matter, minerals and/or other stabilizers, and bitumen (asphalt). They shall also meet physical requirements as to uniformity, consistency, and pliability and behavior at given temperatures.
SCOPE
1.1 This specification covers asbestos-free asphalt roof coatings of brushing or spraying consistency.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 The following precautionary caveat pertains only to the test method portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers austenitic steel castings for valves, flanges, fittings, and other pressure-containing parts. The steel shall be made by the electric furnace process with or without separate refining such as argon-oxygen decarburization. All castings shall receive heat treatment followed by quench in water or rapid cool by other means as noted. The steel shall conform to both chemical composition and tensile property requirements.
SCOPE
1.1 This specification2 covers austenitic steel castings for valves, flanges, fittings, and other pressure-containing parts (Note 1).
Note 1: Carbon steel castings for pressure-containing parts are covered by Specification A216/A216M, low-alloy steel castings by Specification A217/A217M, and duplex stainless steel castings by Specification A995/A995M.
1.2 A number of grades of austenitic steel castings are included in this specification. Since these grades possess varying degrees of suitability for service at high temperatures or in corrosive environments, it is the responsibility of the purchaser to determine which grade shall be furnished. Selection will depend on design and service conditions, mechanical properties, and high-temperature or corrosion-resistant characteristics, or both.
1.2.1 Because of thermal instability, Grades CE20N, CF3A, CF3MA, and CF8A are not recommended for service at temperatures above 800 °F [425 °C].
1.3 Supplementary requirements of an optional nature are provided for use at the option of the purchaser. The Supplementary requirements shall apply only when specified individually by the purchaser in the purchase order or contract.
1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.4.1 This specification is expressed in both inch-pound units and in SI units; however, unless the purchase order or contract specifies the applicable M-specification designation (SI units), the inch-pound units shall apply. Within the text, the SI units are shown in brackets or parentheses.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification7 pagesEnglish languagesale 15% off
- Technical specification7 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers coal tar primer suitable for use with coal tar pitch in roofing, dampproofing, and waterproofing below or above ground level, for application to concrete, masonry, and coal tar surfaces. Different tests shall be conducted in order to determine the following physical properties of coal tar primer: water content, consistency, specific gravity, matter insoluble in benzene, distillation, and coke residue content.
SCOPE
1.1 This specification covers coal tar primer suitable for use with coal tar pitch in roofing, dampproofing, and waterproofing below or above ground level, for application to concrete, masonry, and coal tar surfaces.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method simulates the hydrostatic loading conditions which are often present in actual sandwich structures, such as marine hulls. This test method can be used to compare the two-dimensional flexural stiffness of a sandwich composite made with different combinations of materials or with different fabrication processes. Since it is based on distributed loading rather than concentrated loading, it may also provide more realistic information on the failure mechanisms of sandwich structures loaded in a similar manner. Test data should be useful for design and engineering, material specification, quality assurance, and process development. In addition, data from this test method would be useful in refining predictive mathematical models or computer code for use as structural design tools. Properties that may be obtained from this test method include:
5.1.1 Panel surface deflection at load,
5.1.2 Panel face-sheet strain at load,
5.1.3 Panel bending stiffness,
5.1.4 Panel shear stiffness,
5.1.5 Panel strength, and
5.1.6 Panel failure modes.
SCOPE
1.1 This test method determines the two-dimensional flexural properties of sandwich composite plates subjected to a distributed load. The test fixture uses a relatively large square panel sample which is simply supported all around and has the distributed load provided by a water-filled bladder. This type of loading differs from the procedure of Test Method C393, where concentrated loads induce one-dimensional, simple bending in beam specimens.
1.2 This test method is applicable to composite structures of the sandwich type which involve a relatively thick layer of core material bonded on both faces with an adhesive to thin-face sheets composed of a denser, higher-modulus material, typically, a polymer matrix reinforced with high-modulus fibers.
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard12 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 This procedure measures the amount of hydrogen gas generation potential of aluminized emulsion roof coating. There is the possibility of water reacting with aluminum pigment to generate hydrogen gas. This situation is to be avoided, so this test was designed to evaluate coating formulations and assess the propensity to gassing.
SCOPE
1.1 This test method covers a hydrogen gas and stability test for aluminum emulsified asphalt coatings.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
RTS/TSGC-0329523vh70
- Standard46 pagesEnglish languagesale 15% off
RTS/TSGC-0329521vh50
- Standard77 pagesEnglish languagesale 15% off
DEN/ERM-TGAERO-31-2
- Standard38 pagesEnglish languagesale 15% off
- Standard38 pagesEnglish languagesale 15% off
- Standard38 pagesEnglish languagesale 10% offe-Library read for1 day
RTS/LI-00190-2
- Standard61 pagesEnglish languagesale 15% off
RTS/TSGS-0333127vf40
- Standard55 pagesEnglish languagesale 15% off
RTS/TSGR-0534229-1ve80
- Standard45 pagesEnglish languagesale 15% off