This document specifies requirements on petrol fuel for use as fuel in small engines, together with the methods to be applied for testing these properties.
This document specifies requirements for two types of petrol fuel being low in aromatics and sulphur: one type for use in four-stroke engines with separate lubrication and one mixed petrol fuel type for use in mixture-lubricated engines.
Testing the properties of the added engine oil is out of the scope of this document.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a procedure for the determination of dry residue in ethanol by gravimetric (desiccation) method in the range (10 to 25) mg/100 ml.
NOTE   In an interlaboratory study [2] the method described has been tested at levels down to 3,5 mg/100 ml, but the precision appeared to be insufficient at such low levels.
WARNING - Use of this document may involve hazardous equipment, materials and operations. This method does not purport to address to all of the safety problems associated with its use, but it is the responsibility of the user to search and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Standard
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements on petrol fuel for use as fuel in small engines, together with the methods to be applied for testing these properties.
This document specifies requirements for two types of petrol fuel having low aromatics and sulfur content:
- one type for use in four-stroke engines with separate lubrication; and
- one mixed petrol fuel type for use in mixture-lubricated engines.
Testing the properties of the added engine oil is out of the scope of this document.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a procedure for the determination of dry residue in ethanol by gravimetric (desiccation) method in the range (10 to 25) mg/100 ml.
NOTE In an interlaboratory study [2] the method described has been tested at levels down to 3,5 mg/100 ml, but the precision appeared to be insufficient at such low levels.
WARNING - Use of this document can involve hazardous equipment, materials and operations. This method does not purport to address to all of the safety problems associated with its use. It is the responsibility of the user of this document to take appropriate measures to ensure the safety and health of personnel prior to the application of the document, and to fulfil statutory and regulatory restrictions for this purpose.

  • Standard
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard describes requirements and test methods for marketed and delivered paraffinic diesel fuel containing a level of up to 7,0 % (V/V) fatty acid methyl ester (FAME). It is applicable to fuel for use in diesel engines and vehicles compatible with paraffinic diesel fuel. It defines two classes of paraffinic diesel fuel: high cetane and normal cetane.
Paraffinic diesel fuel originates from synthesis or hydrotreatment processes.
NOTE 1   For general diesel engine warranty, paraffinic automotive diesel fuel may need a validation step, which for some existing engines may still need to be done (see also the Introduction to this document). The vehicle manufacturer needs to be consulted before use.
NOTE 2   For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent respectively the mass fraction and the volume fraction.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes requirements and test methods for paraffinic diesel fuel marketed and delivered as such, containing a level of up to 7,0 % (V/V) fatty acid methyl ester (FAME). It is applicable to fuel for use in diesel engines and vehicles compatible with paraffinic diesel fuel. It specifies two classes of paraffinic diesel fuel: high cetane and normal cetane.
Paraffinic diesel fuel originates from synthesis or hydrotreatment processes.
NOTE 1   For general diesel engine warranty, the vehicle manufacturer needs to be consulted before use. Paraffinic automotive diesel fuel may need a validation step to confirm the compatibility of the fuel with the vehicle, which for some existing engines may still need to be done (see also the Introduction to this document). However, it is noted that paraffinic diesel fuel is extensively available and has been increasingly approved by vehicle manufacturers for usage in vehicles since the first publication of this document.
NOTE 2   For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent respectively the mass fraction and the volume fraction.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a test method for the determination of the oxidation stability of fuels for diesel engines, by means of measuring the induction period of the fuel. The method is applicable to fatty acid methyl esters (FAME) intended for use as pure biofuel or as a blending component for diesel fuels, and to blends of FAME and petroleum-based diesel. This method presents a modified procedure towards the regular Rancimat technique (EN 15751) that allows a more rapid determination of the oxidation stability.
NOTE 1   The presence of cetane improver can reduce the oxidation stability determined by this test method. Limited studies with 2-ethyl hexyl nitrate (EHN) indicated, however, that the stability is reduced to an extent which is within the precision range of the test method.
NOTE 2   For the purposes of this European Standard, the term “% (V/V)” is used to represent the volume fraction (φ) of a material.

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a test method for the quantitative determination of ignition delay of middle distillate fuels intended for use in compression ignition engines. The method utilizes a constant volume combustion chamber designed for operation by compression ignition, and employing direct injection of fuel into compressed air that is controlled to a specified pressure and temperature. An equation is given to calculate the derived cetane number (DCN) from the ignition delay measurement.
This European Standard is applicable to diesel fuels, including those containing fatty acid methyl esters (FAME) up to 30 % (V/V). The method is also applicable to middle distillate fuels of non-petroleum origin, oil-sands based fuels, blends of fuel containing biodiesel material, diesel fuel oils containing cetane number improver additives and low-sulfur diesel fuel oils. However, users applying this standard especially to unconventional distillate fuels are warned that the relationship between derived cetane number and combustion behaviour in real engines is not yet fully understood.
The test method is also applicable to the quantitative determination of the ignition characteristics of FAME, especially the ignition delay. However the correlation data available were inconclusive about the precision of the equation. So the determination of derived cetane number for FAME fuel, also known as B100, has not been included in the precision determination as in Clause 13 ).
This European Standard covers the ignition delay range from 2,8 ms to 6,3 ms (71 DCN to 34 DCN). The combustion analyser can measure shorter or longer ignition delays, but precision is not known. For these shorter or longer ignition delays the correlation equation for DCN is given in Annex D.
NOTE 1   There is no information about how DCNs outside the 34 to 71 range compares to EN ISO 5165.
NOTE 2   For the purpose of this European Standard, the expression “% (V/V)” is used to represent the volume fraction and “% (m/m)” the mass fraction.
WARNING — The use of this standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method for the quantitative determination of ignition delay of middle distillate fuels intended for use in compression ignition engines. The method utilizes a constant volume combustion chamber designed for operation by compression ignition, and employing direct injection of fuel into compressed air that is controlled to a specified pressure and temperature. An equation is given to calculate the derived cetane number (DCN) from the ignition delay measurement.
This document covers the ignition delay range from 2,58 ms to 6,34 ms (76,8 DCN to 33,9 DCN). The combustion analyser can measure shorter or longer ignition delays, but precision is not known.
This document is applicable to diesel fuels, including those containing fatty acid methyl esters (FAME) up to 30 % (V/V). The method is also applicable to middle distillate fuels of non-petroleum origin, oil-sands based fuels, blends of fuel containing biodiesel material, diesel fuel oils containing cetane number improver additives and low-sulfur diesel fuel oils. Furthermore, the method is applicable to paraffinic diesel from synthesis or hydrotreatment, containing up to a volume fraction of 7 % FAME [1]. However, users applying this document especially to unconventional distillate fuels are warned that the relationship between derived cetane number and combustion behaviour in real engines is not yet fully understood.
The test method is also applicable to the quantitative determination of the ignition characteristics of FAME, especially the ignition delay. However, analysis of the data available, regarding correlation with EN ISO 5165, is inconclusive. So the determination of derived cetane number for FAME fuel, also known as B100, has not been included in the precision determination as in Clause 12.
NOTE    For the purpose of this document, the expression “% (V/V)” is used to represent the volume fraction and “% (m/m)” the mass fraction.
WARNING — The use of this document may involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method for the determination of the oxidation stability at 120 °C of fuels for diesel engines, by means of measuring the induction period of the fuel up to 20 h. The method is applicable to blends of FAME with petroleum-based diesel having a FAME content in the range between 2 % (V/V) and 50 % (V/V).
NOTE 1   An almost identical test method for oxidation stability at 110 °C is described in EN 15751 [1], which applies to pure FAME and diesel/FAME blends containing 2 % (V/V) of FAME at minimum. Other alternative test methods for the determination of the oxidation stability of distillate fuels are described in CEN/TR 17225 [3].
NOTE 2   The precision of this method was determined using samples with a maximum induction period of approximately 20 h. Higher induction periods are not covered by the precision statement; however, experience from EN 15751 indicates sufficient precision up to 48 h.
NOTE 3   The presence of cetane improver can reduce the oxidation stability determined by this test method. Limited studies with 2-ethyl hexyl nitrate (EHN) indicated that the stability is reduced to an extent which is within the reproducibility of the test method.
NOTE 4   For the purposes of this document, the term "% (V/V)" is used to represent the volume fraction.

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Standard vključuje zahteve in preskusne metode za plinska olja, namenjena ogrevanju ter pogonu
kmetijske mehanizacije.
Plinsko olje, definirano v točkah 2.1. in 2.2. tega standarda – kurilno olje ekstra lahko in kurilno olje
ekstra lahko – 10 ppm, se uporablja kot energent za ogrevanje.
Plinsko olje, definirano v točki 2.3 tega standarda – kurilno olje ekstra lahko – GK, se lahko uporablja
kot energent za ogrevanje ali kot energent za pogon kmetijske mehanizacije, pri čemer mora gorivo
poleg zahtevam tega standarda ustrezati tudi zahtevam standarda za dizelsko gorivo – SIST EN 590.
Pri uporabi tega goriva za pogon motorjev mora uporabnik upoštevati vsa določila in omejitve, ki jih s
tem v zvezi predpisuje aktualna nacionalna zakonodaja

  • Standard
    9 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    9 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies an automated method for the determination of the cold filter plugging point (CFPP) of diesel and domestic heating fuels using linear cooling.
This European Standard is applicable to fatty-acid methyl esters (FAME) and to distillate fuels as well as paraffinic diesel fuels, including those containing FAME, flow-improvers or other additives, intended for use in diesel engines and domestic heating installations.
The results obtained from the method specified in this European Standard are suitable for estimating the lowest temperature at which a fuel will give trouble-free flow in the fuel system.
NOTE   In the case of diesel fuels, the results are usually close to the temperature of failure in service except when the fuel system contains, for example, a paper filter installed in a location exposed to the weather or if the filter plugging temperature is more than 12 °C below the cloud point of the fuel. Domestic heating installations are usually less critical and often operate at a satisfactory level at temperatures somewhat lower than those indicated by the test results.
WARNING - The use of this standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a column switching gas chromatographic method for the quantitative determination of benzene content in the range 0,05% (V/V) to 10% (V/V) in unleaded petrol having a final boiling point not greater than 220°C.  The method described in this standard is suitable for determining benzene in petrol, including petrol containing oxygenates, in line with the relevant EC Directives.
Warning: The use of this standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety problems associated with its use.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for the determination of the oxidation stability of middle distillate fuels, fatty acid methyl ester (FAME) fuel and blends thereof, under accelerated conditions, by measuring the induction period to the specified breakpoint in a reaction vessel charged with the sample and oxygen.
NOTE 1   For the purposes of this European Standard, the term “% (V/V)” is used to represent the volume fraction (φ).
NOTE 2   The induction period is used as an indication for the resistance of middle distillates, fatty acid methyl ester (FAME) fuels and blends thereof against oxidation. It should be recognized, however, that this correlation can vary markedly under different conditions with different FAMEs and diesel fuel blends.
NOTE 3   The presence of ignition improvers may lead to lower oxidation stability results determined by this method. It has for instance been observed that the addition of 2-ethyl hexyl nitrate (2EHN) can reduce the measured oxidation stability values.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies an automated method for the determination of the cold filter plugging point (CFPP) of diesel and domestic heating fuels using linear cooling.
This document is applicable to fatty-acid methyl esters (FAME) and to distillate fuels as well as paraffinic diesel fuels, including those containing FAME, flow-improvers or other additives, intended for use in diesel engines and domestic heating installations.
The results obtained from the method specified in this document are suitable for estimating the lowest temperature at which a fuel will give trouble-free flow in the fuel system.
NOTE   In the case of diesel fuels, the results are usually close to the temperature of failure in service except when the fuel system contains, for example, a paper filter installed in a location exposed to the weather or if the filter plugging temperature is more than 12 °C below the cloud point of the fuel. Domestic heating installations are usually less critical and often operate at a satisfactory level at temperatures somewhat lower than those indicated by the test results.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a column switching gas chromatographic method for the quantitative determination of benzene content in the range 0,05 % (V/V) to 6 % (V/V) in unleaded petrol having a final boiling point not greater than 220 °C.
The method described in this document is suitable for determining benzene in petrol, including petrol containing oxygenates up to E10 (up to 3,7 % (m/m) oxygen content), in line with the relevant EC Directives [1].
NOTE   For the purposes of this document, the terms "% (V/V)" and "% (m/m)" are used to represent respectively the volume fraction and the mass fraction.
WARNING - Use of this document might involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the determination of the oxidation stability of middle distillate fuels, fatty acid methyl ester (FAME) fuel and blends thereof, under accelerated conditions, by measuring the induction period to the specified breakpoint in a reaction vessel charged with the sample and oxygen at 140 °C.
NOTE 1 For the purposes of this document, the term "% (V/V)" is used to represent the volume fraction (φ).
NOTE 2 The induction period is used as an indication for the resistance of middle distillates, fatty acid methyl ester (FAME) fuels and blends thereof against oxidation. This correlation can vary markedly under different conditions with different FAMEs and diesel fuel blends.
NOTE 3 The presence of ignition improvers can lead to lower oxidation stability results determined by this method. It has for instance been observed that the addition of 2-ethyl hexyl nitrate (2-EHN) can reduce the measured oxidation stability values. See [6] for details.
NOTE 4 For further information on the precision data at a test temperature of 120 °C see Annex C.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the quality characteristics of hydrogen fuel dispensed at hydrogen refuelling stations for use in proton exchange membrane (PEM) fuel cell road vehicle systems, and the corresponding quality assurance considerations for ensuring uniformity of the hydrogen fuel.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements and test methods for marketed and delivered automotive diesel fuel. It is applicable to automotive diesel fuel for use in diesel engine vehicles designed to run on automotive diesel fuel containing up to 7,0 %(V/V) Fatty Acid Methyl Ester (FAME).
NOTE   For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent respectively the mass fraction and the volume fraction.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    16 pages
    German language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the quality characteristics of hydrogen fuel dispensed at hydrogen refuelling stations for use in proton exchange membrane (PEM) fuel cell vehicle systems, and the corresponding quality assurance considerations for ensuring uniformity of the hydrogen fuel.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements and test methods for marketed and delivered automotive B10 diesel fuel, i.e. diesel fuel containing up to 10,0 %(V/V) Fatty Acid Methyl Ester. It is applicable to fuel for use in diesel engine vehicles compatible with automotive B10 diesel fuel.
NOTE 1 This product is allowed in Europe [4], but national legislation can set additional requirements or rules concerning, or even prohibiting, marketing or delivering of the product.
NOTE 2 In this document, A-deviations apply (see Annex A).
NOTE 3 For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements and test methods for marketed and delivered automotive liquefied petroleum gas (LPG), with LPG defined as low pressure liquefied gas composed of one or more light hydrocarbons which are assigned to UN 1011, 1075, 1965, 1969 or 1978 only and which consists mainly of propane, propene, butane, butane isomers, butenes with traces of other hydrocarbon gases.
This standard is applicable to automotive LPG for use in LPG engine vehicles designed to run on automotive LPG.
NOTE   For the purposes of this European Standard, the terms "% (m/m)" and "% (V/V)" are used to represent respectively the mass fraction, µ, and the volume fraction, φ.
WARNING - Attention is drawn to the risk of fire and explosion when handling LPG and to the hazard to health arising through inhalation of excessive amounts of LPG.
LPG is a highly volatile hydrocarbon liquid which is normally stored under pressure. If the pressure is released large volumes of gas will be produced which form flammable mixtures with air over the range of approximately 2 % (V/V) to 10 % (V/V). This European Standard involves the sampling, handling and testing of LPG. Naked flames, unprotected electrical equipment electrostatic hazards etc. are sources of ignition for LPG.
LPG in liquid form can cause cold burns to the skin. The national health and safety regulations apply.
LPG is heavier than air and accumulates in cavities. There is a danger of suffocation when inhaling high concentrations of LPG.
CAUTION - One of the tests described in this European Standard involves the operator inhaling a mixture of air and LPG vapour. Particular attention is drawn to the cautionary statement provided in A.1, where this method is referred to.

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard – translation
    3 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    3 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day
  • Standard – translation
    3 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    3 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day

This document specifies a fluorescent indicator adsorption method for the determination of hydrocarbon types over the concentration ranges from 5 % (V/V) to 99 % (V/V) aromatic hydrocarbons, 0,3 % (V/V) to 55 % (V/V) olefins, and 1 % (V/V) to 95 % (V/V) saturated hydrocarbons in petroleum fractions that distil below 315 °C. This method can apply to concentrations outside these ranges, but the precision has not been determined.
When samples containing oxygenated blending components are analysed, the hydrocarbon type results can be reported on an oxygenate-free basis or, when the oxygenate content is known, the results can be corrected to a total-sample basis.
This test method is applicable to full boiling range products. Cooperative data have established that the precision statement does not apply to petroleum fractions with narrow boiling ranges near the 315 °C limit. Such samples are not eluted properly, and results are erratic.
It does not apply to samples containing dark-coloured components that interfere with reading the chromatographic bands that cannot be analysed.
NOTE 1   The oxygenated blending components methanol, ethanol, tert-butyl methyl ether (MTBE), methyl tert-pentyl ether (TAME) and tert-butyl ethyl ether (ETBE) do not interfere with the determination of hydrocarbon types at concentrations normally found in commercial petroleum blends. These oxygenated compounds are not detected since they elute with the alcohol desorbent. The effects of other oxygenated compounds are individually verified.
NOTE 2   For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction.
WARNING — The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for determining the total acidity, calculated as acetic acid, of ethanol to be used in petrol blends. It is applicable to ethanol having total acid contents of between 0,003 % (m/m) and 0,015 % (m/m).
NOTE   For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent the mass fraction and the volume fraction, respectively.
WARNING - Use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to take appropriate measures to ensure the safety and health of personnel prior to the application of the document, and to fulfil statutory and regulatory restrictions for this purpose.

  • Standard
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies requirements and test methods for marketed and delivered automotive diesel fuel. It is applicable to automotive diesel fuel for use in diesel engine vehicles designed to run on automotive diesel fuel containing up to 7 %(V/V) Fatty Acid Methyl Ester.
NOTE   For the purposes of this European Standard, the terms "% (m/m)" and "% (V/V)" are used to represent respectively the mass fraction and the volume fraction.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    16 pages
    German language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies requirements and test methods for marketed and delivered automotive B10 diesel fuel, i.e. diesel fuel containing up to 10,0 %(V/V) Fatty Acid Methyl Ester. It is applicable to fuel for use in diesel engine vehicles compatible with automotive B10 diesel fuel.
NOTE 1   This product is allowed in Europe [4], but national legislation can set additional requirements or rules concerning, or even prohibiting, marketing or delivering of the product.
NOTE 2   In this European Standard, A-deviations apply (see Annex B).
NOTE 3   For the purposes of this European Standard, the terms "% (m/m)" and "% (V/V)" are used to represent respectively the mass fraction and the volume fraction.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements and test methods for marketed and delivered automotive liquefied petroleum gas (LPG), with LPG defined as low pressure liquefied gas composed of one or more light hydrocarbons which are assigned to UN 1011, 1075, 1965, 1969 or 1978 only and which consists mainly of propane, propene, butane, butane isomers, butenes with traces of other hydrocarbon gases.
This standard is applicable to automotive LPG for use in LPG engine vehicles designed to run on automotive LPG.
NOTE   For the purposes of this European Standard, the terms "% (m/m)" and "% (V/V)" are used to represent respectively the mass fraction, µ, and the volume fraction, φ.
WARNING - Attention is drawn to the risk of fire and explosion when handling LPG and to the hazard to health arising through inhalation of excessive amounts of LPG.
LPG is a highly volatile hydrocarbon liquid which is normally stored under pressure. If the pressure is released large volumes of gas will be produced which form flammable mixtures with air over the range of approximately 2 % (V/V) to 10 % (V/V). This European Standard involves the sampling, handling and testing of LPG. Naked flames, unprotected electrical equipment electrostatic hazards etc. are sources of ignition for LPG.
LPG in liquid form can cause cold burns to the skin. The national health and safety regulations apply.
LPG is heavier than air and accumulates in cavities. There is a danger of suffocation when inhaling high concentrations of LPG.
CAUTION - One of the tests described in this European Standard involves the operator inhaling a mixture of air and LPG vapour. Particular attention is drawn to the cautionary statement provided in A.1, where this method is referred to.

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This international standard determines the terminology and definitions for solid biofuels. According to the scope of the ISO/TC 238 this standard only includes raw and processed material originating from
—   forestry and arboriculture,
—   agriculture and horticulture,
—   aquaculture
NOTE 1 Raw and processed material includes woody, herbaceous, fruit and aquatic biomass from the sectors mentioned above.
NOTE 2 Chemically treated material does not include halogenated organic compounds or heavy metals at levels higher than those in typical virgin material values or higher than typical values of the country of origin.
Materials originating from different recycling processes of end-of-life-products are not within the scope but relevant terms are included for information. Areas covered by ISO/TC28/SC7 “Liquid biofuels” and ISO/TC193 “Natural gas” are excluded.
Other standards with a different scope than this International Standard may have different definitions than this standard.

  • Standard
    37 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the direct determination of water in ethanol to be used as a blending component for petrol, as well as in automotive ethanol (E85) fuel.
This method is applicable in the range 0,05 % (m/m) to 0,54 % (m/m).
NOTE For the purposes of this document, the term “% (m/m)” is used to represent the mass fraction.
WARNING — Use of this document might involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Standard
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Standard SIST 1020 določa preskusne metode za ugotavljanje prisotnosti in določevanje
evromarkerja Solvent Yellow 124 z imenom IUPAC N-etil-N-2-(1-izobutoksietoksi)etil-4-(fenilazo)
anilin (številka CAS: 34432-92-3) v kurilnem olju EL, dizelskem gorivu in v njunih mešanicah ter v
petroleju za ogrevanje v območju od 0,5 do 10,0 mg/l (metoda B) oziroma v območju 0,07 do 10 mg/L
(metoda C).
Za ugotavljanje prisotnosti evromarkerja (kvalitativno) se uporablja vizualna metoda – A. Ta metoda je
primerna tudi za kontrolo na terenu.
Za določevanje evromarkerja (kvantitativno) v kurilnem olju EL, dizelskem gorivu in mešanicah obeh
goriv ter v petroleju za ogrevanje se uporabljata spektrofotometrijska metoda – B in metoda s
tekočinsko kromatografijo visoke ločljivosti (HPLC) – C.
OPOZORILO: Pri preskušanju na podlagi tega standarda lahko naletimo na nevarne snovi, postopke
in opremo. Morebitne nevarnosti in ustrezni varnostni ukrepi v standardu niso posebej navedeni.
Uporabnik tega standarda je odgovoren, da pred preskušanjem zagotovi ustrezne varnostne ukrepe v
skladu z varnostnimi predpisi in upošteva morebitne zakonodajne omejitve.

  • Standard
    10 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    10 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for determining the total acidity, calculated as acetic acid, of ethanol to be used in petrol blends. It is applicable to ethanol having total acid contents of between 0,003 % (m/m) to 0,015 % (m/m).

  • Standard
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard lays down harmonized identifiers for marketed liquid and gaseous fuels. The requirements in this standard are to complement the informational needs of users regarding the compatibility between the fuels and the vehicles that are placed on the market. The identifier is intended to be visualized at dispensers and refuelling points, on vehicles, in motor vehicle dealerships and in consumer manuals as described in this document.
Marketed fuels include for example petroleum-derived fuels, synthetic fuels, biofuels, natural gas, LPG, hydrogen and biogas and blends of the aforementioned delivered to mobile applications.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction, μ, and the volume fraction, φ.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the gas chromatographic (GC) method for the determination of saturated,
olefinic and aromatic hydrocarbons in automotive motor gasoline and ethanol (E85) automotive fuel.
Additionally, the benzene and toluene content, oxygenated compounds and the total oxygen content can
be determined.
NOTE 1 For the purposes of this document, the terms % (m/m) and % (V/V) are used to represent respectively
the mass fraction, w, and the volume fraction, φ.
This document defines two procedures, A and B.
Procedure A is applicable to automotive motor gasoline with total aromatics of 19,32 % (V/V) up to
46,29 % (V/V); total olefins from 0,40 % (V/V) up to 26,85 % (V/V); oxygenates from 0,61 % (V/V) up to
9,85 % (V/V); oxygen content from 1,50 % (m/m) to 12,32 % (m/m); benzene content from 0,38 % (V/V)
up to 1,98 % (V/V) and toluene content from 5,85 % (V/V) up to 31,65 % (V/V).
The method has also been tested for individual oxygenates. A precision has been determined for
a total volume of methanol from 1,05 % (V/V) up to 16,96 % (V/V); a total volume of ethanol from
0,50 % (V/V) up to 17,86 % (V/V); a total volume of MTBE from 0,99 % (V/V) up to 15,70 % (V/V), a total
volume of ETBE from 0,99 % (V/V) up to 15,49 % (V/V), a total volume of TAME from 0,99 % (V/V) up to
5,92 % (V/V), and a total volume of TAEE from 0,98 % (V/V) up to 15,59 % (V/V).
Although this test method can be used to determine higher-olefin contents of up to 50 % (V/V), the
precision for olefins was tested only in the range from 0,40 % (V/V) to 26,85 % (V/V).
Although specifically developed for the analysis of automotive motor gasoline that contains oxygenates,
this test method can also be applied to other hydrocarbon streams having similar boiling ranges, such
as naphthas and reformates.
NOTE 2 For Procedure A, applicability of this document has also been verified for the determination of
n-propanol, acetone, and di-isopropyl ether (DIPE). However, no precision data have been determined for these
compounds.
Procedure B describes the analysis of oxygenated groups (ethanol, methanol, ethers, C3 – C5 alcohols)
in ethanol (E85) automotive fuel containing ethanol between 50 % (V/V) and 85 % (V/V). The gasoline
is diluted with an oxygenate-free component to lower the ethanol content to a value below 20 % (V/V)
before the analysis by GC.
The sample can be fully analysed including hydrocarbons. Precision data for the diluted sample are
only available for the oxygenated groups.
NOTE 3 For Procedure B, the precision can be used for an ethanol fraction from about 50 % up to 85 % (V/V).
For the ether fraction, the precision as specified in Table 6 can be used for samples containing at least 11 % (V/V)
of ethers. For the higher alcohol fraction, too few data were obtained to derive a full precision statement and the
data presented in Table 6 are therefore only indicative.
NOTE 4 An overlap between C9 and C10 aromatics can occur. However, the total is accurate. Isopropyl benzene
is resolved from the C8 aromatics and is included with the other C9 aromatics.

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European standard specifies a method for the direct determination of water in ethanol to be used in gasoline blends. It is applicable in the range 0,05 % (m/m) to 0,54 % (m/m).
NOTE   For the purposes of this European Standard, the term “% (m/m)” is used to represent the mass fraction.

  • Standard
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard lays down harmonized identifiers for marketed liquid and gaseous fuels. The requirements in this standard are set to complement information needs of users regarding the fuel- and vehicle-compatibility that are placed on the market. The development of this standard focused on vehicles placed on the market for the first time, which does not preclude the application of this standard also to vehicles already in circulation. The identifier is intended to be visualized at dispensers and refuelling points, on vehicles, in motor vehicle dealerships and in consumer manuals as described in this document.
Marketed fuels include for example petroleum-derived fuels, synthetic fuels, biofuels, natural gas, liquefied petroleum gas, hydrogen and biogas and blends of the aforementioned delivered to non-stationary applications.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a procedure for rating the tendencies of gas turbine fuels to deposit decomposition products within the fuel system. It is applicable to middle distillate and wide-cut fuels and is particularly specified for the performance of aviation gas turbine fuels. The test results are indicative of fuel thermal oxidation stability during gas turbine operation and can be used to assess the level of deposits that form when liquid fuel contacts a heated surface at a specified temperature. This method is also applicable to aviation turbine fuel that consists of conventional and synthetic blending components as defined in the scope of for instance ASTM D7566[1] and Def Stan 91-091[2]. NOTE For the benefit of those using older instruments, non-SI-units and recalculated numbers are given in between brackets where they are more suitable.

  • Standard
    34 pages
    English language
    sale 15% off
  • Standard
    37 pages
    French language
    sale 15% off
  • Draft
    34 pages
    English language
    sale 15% off

This document establishes the rating of diesel fuel oil in terms of an arbitrary scale of cetane numbers (CNs) using a standard single cylinder, four-stroke cycle, variable compression ratio, indirect injected diesel engine. The CN provides a measure of the ignition characteristics of diesel fuel oil in compression ignition engines. The CN is determined at constant speed in a pre-combustion chamber-type compression ignition test engine. However, the relationship of test engine performance to full scale, variable speed and variable load engines is not completely understood.
This document is applicable for the entire scale range from 0 CN to 100 CN but typical testing is in the range of 30 CN to 65 CN. An interlaboratory study executed by CEN in 2013 (10 samples in the range 52,4 CN to 73,8 CN)[3] confirmed that paraffinic diesel from synthesis or hydrotreatment, containing up to a volume fraction of 7 % fatty acid methyl ester (FAME), can be tested by this test method and that the precision is comparable to conventional fuels.
This test can be used for unconventional fuels such as synthetics or vegetable oils. However, the precision for those fuels has not been established and the relationship to the performance of such materials in full-scale engines is not completely understood.
Samples with fluid properties that interfere with the gravity flow of fuel to the fuel pump or delivery through the injector nozzle are not suitable for rating by this method.
NOTE    This document specifies operating conditions in SI units but engine measurements are specified in inch-pound units or Fahrenheit because these are the historical units used in the manufacture of the equipment, and thus some references in this document include these and other non-SI units in parenthesis.

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the investigation into diesel vehicle common rail fuel injection system damage
and excessive wear problems in a number of countries across Europe since 2014 carried out by
CEN/TC 19/WG 24 Abrasive Particles Task Force.

  • Technical report
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the investigation into diesel vehicle common rail fuel injection system damage and excessive wear problems in a number of countries across Europe since 2014 carried out by CEN/TC 19/WG 24 Abrasive Particles Task Force.

  • Technical report
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the studies executed to develop a method to analyse the filter blocking tendency after a cold soak step of fatty acid methyl ester (FAME) as a blend component for diesel and of diesel fuel containing up to 30 % (V/V) of fatty acid methyl esters (FAME), respectively.

  • Technical report
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the studies executed to develop a method to analyse the filter blocking tendency after a cold soak step of fatty acid methyl ester (FAME) as a blend component for diesel and of diesel fuel containing up to 30 % (V/V) of FAME, respectively.

  • Technical report
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes the rating of diesel fuel oil in terms of an arbitrary scale of cetane numbers
(CNs) using a standard single cylinder, four-stroke cycle, variable compression ratio, indirect injected
diesel engine. The CN provides a measure of the ignition characteristics of diesel fuel oil in compression
ignition engines. The CN is determined at constant speed in a pre-combustion chamber-type
compression ignition test engine. However, the relationship of test engine performance to full scale,
variable speed and variable load engines is not completely understood.
This document is applicable for the entire scale range from 0 CN to 100 CN but typical testing is in the
range of 30 CN to 65 CN. An interlaboratory study executed by CEN in 2013 (10 samples in the range
52,4 CN to 73,8 CN)[3] confirmed that paraffinic diesel from synthesis or hydrotreatment, containing up
to a volume fraction of 7 % fatty acid methyl ester (FAME), can be tested by this test method and that
the precision is comparable to conventional fuels.
This test can be used for unconventional fuels such as synthetics or vegetable oils. However, the
precision for those fuels has not been established and the relationship to the performance of such
materials in full-scale engines is not completely understood.
Samples with fluid properties that interfere with the gravity flow of fuel to the fuel pump or delivery
through the injector nozzle are not suitable for rating by this method.
NOTE This document specifies operating conditions in SI units but engine measurements are specified in
inch-pound units or Fahrenheit because these are the historical units used in the manufacture of the equipment,
and thus some references in this document include these and other non-SI units in parenthesis.

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes the rating of diesel fuel oil in terms of an arbitrary scale of cetane numbers (CNs) using a standard single cylinder, four-stroke cycle, variable compression ratio, indirect injected diesel engine. The CN provides a measure of the ignition characteristics of diesel fuel oil in compression ignition engines. The CN is determined at constant speed in a pre-combustion chamber-type compression ignition test engine. However, the relationship of test engine performance to full scale, variable speed and variable load engines is not completely understood. This document is applicable for the entire scale range from 0 CN to 100 CN but typical testing is in the range of 30 CN to 65 CN. An interlaboratory study executed by CEN in 2013 (10 samples in the range 52,4 CN to 73,8 CN)[3] confirmed that paraffinic diesel from synthesis or hydrotreatment, containing up to a volume fraction of 7 % fatty acid methyl ester (FAME), can be tested by this test method and that the precision is comparable to conventional fuels. This test can be used for unconventional fuels such as synthetics or vegetable oils. However, the precision for those fuels has not been established and the relationship to the performance of such materials in full-scale engines is not completely understood. Samples with fluid properties that interfere with the gravity flow of fuel to the fuel pump or delivery through the injector nozzle are not suitable for rating by this method. NOTE This document specifies operating conditions in SI units but engine measurements are specified in inch-pound units or Fahrenheit because these are the historical units used in the manufacture of the equipment, and thus some references in this document include these and other non-SI units in parenthesis.

  • Standard
    20 pages
    English language
    sale 15% off
  • Standard
    22 pages
    French language
    sale 15% off
  • Draft
    20 pages
    English language
    sale 15% off

This document is intended to draw attention to the potential technical consequences on engine parts and fuel systems when some types of chemical compounds are used as blending components in unleaded petrol.
The chemical compounds addressed specifically in this document are: secondary- Butyl acetate, Aniline and its derivatives such N-Methyl Aniline, N-Ethyl Aniline and di-Metyl Aniline.
Other chemical compounds are not addressed in this document, however attention is drawn to clause 5.4 of EN 228 which requires that unleaded petrol shall be free from any adulterant or contaminant that can render the fuel unacceptable for use. Thus when considering blending of other chemical compounds, care should be taken to ensure they are fit for use in order to comply with this requirement.
This document does not address environmental and/or health related issues. These aspects are beyond the scope of CEN/TC19 activities.

  • Technical report
    8 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    8 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for determining the existent gum content of aviation fuels and the
gum content of motor gasoline or other volatile distillates. It includes the determination of products
containing ethanol (up to a volume fraction of 85 %) and ether-type oxygenates and deposit control
additives.
For determination of gum content in automotive ethanol (E85) fuel, no precision data is available
(see 14.1).
For non-aviation fuels, a procedure for the determination of the heptane-insoluble portion of the residue
is also described.
CAUTION — This method is not intended for the testing of gasoline components, particularly
those with a high percentage of low-boiling unsaturated compounds, as they can cause
explosions during evaporation.

  • Amendment
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies an ultraviolet (UV) fluorescence test method for the determination of the sulfur content of the following products:
—     having sulfur contents in the range 3 mg/kg to 500 mg/kg,
—     motor gasolines containing up to 3,7 % (m/m) oxygen [including those blended with ethanol up to about 10 % (V/V)],
—     diesel fuels, including those containing up to about 30 % (V/V) fatty acid methyl ester (FAME),
—     having sulfur contents in the range of 3 mg/kg to 45 mg/kg,
—     synthetic fuels, such as hydrotreated vegetable oil (HVO) and gas to liquid (GTL).
Other products can be analysed and other sulfur contents can be determined according to this test method, however, no precision data for products other than automotive fuels and for results outside the specified range have been established for this document. Halogens interfere with this detection technique at concentrations above approximately 3 500 mg/kg.
NOTE 1  Some process catalysts used in petroleum and chemical refining can be poisoned when trace amounts of sulfur-bearing materials are contained in the feedstocks.
NOTE 2  This test method can be used to determine sulfur in process feeds and can also be used to control sulfur in effluents.
NOTE 3  For the purposes of this document, "% (m/m)" and "% (V/V)" are used to represent the mass fraction, w, and the volume fraction, φ, of a material respectively.
NOTE 4  Sulfate species in ethanol do not have the same conversion factor of organic sulfur in ethanol. Nevertheless, sulfates have a conversion factor close to that of organic sulfur.
NOTE 5  Nitrogen interference can occur, see 6.5 for further guidance.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is intended to inform about the potential technical consequences on engine parts and fuel systems when some types of chemical compounds are used as blending components in unleaded petrol. This document is not meant to intentionally limit market fuel development.
The chemical compounds addressed, specifically, in this document are:
-   sec-butyl acetate (SBA) (CAS 105-46-4),
-   aniline (CAS 62-53-3),
-   N-methyl aniline (NMA) (CAS 100-61-8),
-   N-ethyl aniline (NEA) (CAS 103-69-5), and
-   N,N di-methyl aniline (DMA) (CAS 121-69-7).
Other chemical compounds are not addressed in this document, however, attention is drawn to EN 228, which requires that unleaded petrol be free from any adulterant or contaminant that can render the fuel unacceptable for use.
NOTE 1   This document does not address environmental and/or health related issues. These aspects are beyond the scope of CEN/TC 19 activities.
NOTE 2   For the purposes of this document, the term "% (V/V)" is used to represent the volume fraction, φ.

  • Technical report
    8 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    8 pages
    English language
    sale 10% off
    e-Library read for
    1 day