83.120 - Reinforced plastics
ICS 83.120 Details
Reinforced plastics
Verstarkte Kunststoffe
Plastiques renforcés
Ojačani polimeri
General Information
Frequently Asked Questions
ICS 83.120 is a classification code in the International Classification for Standards (ICS) system. It covers "Reinforced plastics". The ICS is a hierarchical classification system used to organize international, regional, and national standards, facilitating the search and identification of standards across different fields.
There are 728 standards classified under ICS 83.120 (Reinforced plastics). These standards are published by international and regional standardization bodies including ISO, IEC, CEN, CENELEC, and ETSI.
The International Classification for Standards (ICS) is a hierarchical classification system maintained by ISO to organize standards and related documents. It uses a three-level structure with field (2 digits), group (3 digits), and sub-group (2 digits) codes. The ICS helps users find standards by subject area and enables statistical analysis of standards development activities.
e-Library Subscription
Create subscription and get permanent access to documents within 83.120 - Reinforced plastics
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
This document specifies requirements for fibre-reinforced polymer (FRP) sheets for upgrading of concrete members for material suppliers. The methodologies to express the mechanical properties as characteristic values, appearance and dimensions, and sampling test are specified in this document. The fibre orientation of the FRP sheets covered by this document is unidirectional.
- Standard6 pagesEnglish languagesale 15% off
This document specifies test methods applicable to fibre-reinforced polymer (FRP) sheets for the upgrading of concrete members.
- Standard33 pagesEnglish languagesale 15% off
This document specifies a method used for the determination of the temperature of deflection under load of specified plastics (including fibre-reinforced plastics in which the fibre length is, prior to processing, greater than 7,5 mm) under defined conditions. A number of different test conditions are defined, depending on the anticipated specimen dimensions.
For additional information, see ISO 75-1:2020, Clause 1.
- Standard19 pagesEnglish languagee-Library read for1 day
This document specifies the principal method for out-of-plane laser shearography non-destructive testing (NDT) of fibre-reinforced polymer (FRP) composites. This document is applicable to both monolithic and sandwich FRP laminate constructions, with or without curved surfaces, fibre-reinforced thermoset and thermoplastic matrix composites incorporating uni- or multi-directional reinforcements in either a continuous or discontinuous format; including but not limited to woven fabrics, stitched fabrics, short fibre, or particulate filled, honeycomb or foam cores, as well as combination or hybrid reinforcements. This document is not applicable to variations on this basic configuration.
- Standard22 pagesEnglish languagesale 15% off
This document specifies test methods applicable to fibre-reinforced polymer (FRP) grids as reinforcement or pre-stressing tendons in concrete, including physical, mechanical, durability, long term durability and bond properties. FRP grids in this document can be used for rehabilitating existing reinforced concrete (RC) structures and reinforcing new constructions. FRP grids in this document are made of fibre and resin matrix. The types of fibres are aramid fibre, basalt fibre, carbon fibre or glass fibre. The matrix includes thermosetting resins, such as vinylester, unsaturated polyester resins, as well as thermoplastic resins, including polypropylene, polyamides, and polymethyl methacrylate. FRP grids in this document are a rigid array of interconnected FRP bars, and do not include fibre textile and fabric with a mesh type. In this document, durability refers to alkali resistance.
- Standard36 pagesEnglish languagesale 15% off
This document specifies test methods applicable to fibre-reinforced polymer (FRP) bars as reinforcement or pre-stressing tendons in concrete, including physical, mechanical, durability, and long-term properties. FRP bars in this document are made of fibre and resin matrix. Types of fibres are aramid fibre, basalt fibre, carbon fibre or glass fibre. The matrix includes thermosetting resins, such as vinylester, unsaturated polyester resins, as well as thermoplastic resins, including polypropylene, polyamides, and polymethyl methacrylate.
- Standard40 pagesEnglish languagesale 15% off
This document describes procedures for mechanized ultrasonic testing of FRP composite materials using array probes in conjunction with the application of synthetic focusing signal processing algorithms, as well as testing using air-coupled ultrasonic probes and the evaluation of the test result. This document is intended for array ultrasonic testing (A-UT) and for air-coupled ultrasonic testing (AC-UT) techniques applied to non-destructive testing of carbon fibre-reinforced plastic (CFRP) and glass fibre-reinforced plastic (GFRP) composites with thermoset or thermoplastic matrices. The procedures are primarily intended for inspection of continuous unidirectional or multidirectional composites; however, this does not exclude their use on other formats of structural composites including woven and stitched fabrics and pultrusions. The techniques contained within this document are intended to be used on flat, plane test objects where the material thickness differs by less than 20 %. This document addresses ultrasonic testing via contact or immersion techniques using ultrasonic array probes as well as testing in pitch-catch or through-transmission technique using single element air-coupled ultrasonic probes.
- Standard17 pagesEnglish languagesale 15% off
This document specifies a method used for the determination of the temperature of deflection under load of specified plastics (including fibre-reinforced plastics in which the fibre length is, prior to processing, greater than 7,5 mm) under defined conditions. A number of different test conditions are defined, depending on the anticipated specimen dimensions.
For additional information, see ISO 75-1:2020, Clause 1.
- Standard19 pagesEnglish languagee-Library read for1 day
This document specifies a method used for the determination of the temperature of deflection under load of specified plastics (including fibre-reinforced plastics in which the fibre length is, prior to processing, greater than 7,5 mm) under defined conditions. A number of different test conditions are defined, depending on the anticipated specimen dimensions. For additional information, see ISO 75-1:2020, Clause 1.
- Standard11 pagesEnglish languagesale 15% off
- Standard12 pagesFrench languagesale 15% off
This document establishes requirements and specifications of the bulk moulding compound (BMC) and dough moulding compound (DMC) with or without thickening agents. This document is applicable to BMC and DMC, which are different types of preimpregnated product used for the production, by moulding, of various parts made of composite materials. The scope is not limited to types of fibres and resins.
- Standard10 pagesEnglish languagesale 15% off
This document presents the main differences between the standards for working towers made of prefabricated elements in some regions and countries. It provides an analysis of different aspects, including product title, material performance, grade division, dimension requirements, product structure and design, test methods and fall prevention measures. This document gives guidance for the discussion of relevant technologies of working towers made of fibre-reinforced plastics, and also prepares for further development of applicable global technical standards for working towers.
- Technical report16 pagesEnglish languagesale 15% off
This document specifies the test method used to determine the strength of the adhesive-bonded carbon fibre reinforced plastics (CFRP) to metal assemblies under combined loading conditions. The loading fixture, a standard specimen, and procedure for combined shear and normal load tests under plane stress conditions are provided. The test method is also applicable to bonded joints between metals and other composite materials, including glass fibre-reinforced plastics. This document does not cover specimen preparation of the adhesive joint.
- Standard12 pagesEnglish languagesale 15% off
This document specifies procedures suitable for the analysis of data which, when converted into logarithms of the values, have either a normal or a skewed distribution. It is intended for use with test methods and referring standards for glass-reinforced thermosetting plastics (GRP) pipes or fittings for the analysis of properties as a function of time. However, it can also be used for the analysis of other data.
Two methods are specified, which are used depending on the nature of the data. Extrapolation using these techniques typically extends a trend from data gathered over a period of approximately 10 000 h to a prediction of the property at 50 years, which is the typical maximum extrapolation time.
This document only addresses the analysis of data. The test procedures for collecting the data, the number of samples required and the time period over which data are collected are covered by the referring standards and/or test methods. Clause 6 discusses how the data analysis methods are applied to product testing and design.
- Standard27 pagesEnglish languagee-Library read for1 day
This document specifies the test method to determine the open-hole compressive strength of laminated fibre-reinforced plastic composites. The laminate is intended to be a balanced and symmetrical lay-up or be otherwise homogeneous through the thickness. This document applies to all textile diameter fibre types (carbon, glass, aramids, etc.) and matrices (e.g. thermoset, thermoplastic) that meet the requirements of this document. This document includes three methods: - method 1 (short specimen with support fixture); - method 2 (short specimen without support fixture); - method 3 (long specimen with support fixture as in ASTM D6484/D6484M-09, methods A and B). Method 1 employs an L-shaped base fixture and two end fixtures. These end fixtures are compressed between the platens of the test machine. Method 2 employs end supports similar to the fixtures given in ISO 14126:2023, D.1. This method is useful for cyclic loading conditions test, including under fully or partly reversed loading conditions when the specimen is clamped by hydraulic grips without support fixtures Method 3 has two types of loading methods, i.e. 3A and 3B. In method 3A, the specimen is placed within a stabilization fixture, which is then clamped by hydraulic grips. In method 3B, the specimen is placed within a stabilization fixture and then end-loaded by platens. Full details of test methods 3A and 3B are given in ASTM D6484/D6484M-09, procedure A and procedure B, respectively. NOTE Specimen configurations and force introduction varies for the three methods covered within this document. Results obtained using methods 1, 2 and 3 might not be equivalent for all laminates in all environments.
- Standard17 pagesEnglish languagesale 15% off
This document specifies a procedure for determining the plain-pin bearing strength of fibre-reinforced plastic composites. The method described in this document is applicable to fibre-reinforced plastic composites with either thermoset or thermoplastic matrices.
- Standard12 pagesEnglish languagesale 15% off
This document specifies the test method for the load-displacement curves of fibre-reinforced cementitious composites (FRCC) by three-point loading of notched prisms. The main purpose of this test is to evaluate the tension softening curve of FRCC. NOTE 1 Both crack mouth opening displacement (CMOD) and load point displacement (LPD) are specified as the displacement in load-displacement curves, but measurement of both might not be necessary. Either can be selected depending on the purpose of measurement. NOTE 2 Three-point bending test using notched specimen generally provides higher results than those observed in four-point bending test, in which the fracture occurs at the weakest point of the specimen.
- Standard10 pagesEnglish languagesale 15% off
This document specifies a test method for determining the interfacial shear strength between a single fibre and a matrix by means of a pull-out test. The method can be used to measure the critical energy release rate. The method is applicable to reinforcement fibres, such as carbon fibres, glass fibres, basalt fibres and similar stiff reinforcement fibres and to thermoset, thermoplastic and fine-grained concrete matrices. It can be used for polymeric reinforcement fibres and for other inorganic matrices. It is not applicable to: a) elastomeric fibres and elastomeric matrices such as rubber; b) matrices which cure or melt at temperatures above 400 °C; c) matrices that show a strong tendency to bubble formation or expansion during the sample-preparation process; d) foams.
- Standard44 pagesEnglish languagesale 15% off
This document specifies the terms and definitions, technical requirements, test methods and inspection rules for telescopic ladders made of fibre-reinforced plastics. This document applies to the manufacture, selection, inspection and use of telescopic ladders made of fibre-reinforced plastics. NOTE 1 Annex A provides guidance for inspection rules of the telescopic ladders. NOTE 2 Annex B classifies all the tests covered in this document into 8 test blocks and specifies the sequence of tests within the same test block. It does not apply to ladders with a length over 5 m. NOTE 2 Ladders with a length over 5 m can use this document as a reference. The scope of this document does not relate to the “live working” and “explosive atmospheres”.
- Standard29 pagesEnglish languagesale 15% off
- Standard31 pagesFrench languagesale 15% off
This document specifies methods for calculating the resin, fibre and void contents of a carbon-fibre-reinforced composite from the densities of the resin, the fibre and the composite and the mass of fibre in the composite (using method A), for calculating the fibre content from the thickness of the composite (using method B), and for calculating the fibre content by volume and areal void content through microscopic analysis (using method C). Method A specifies three different resin removal procedures for the determination of the mass of fibre in the composite (viz a combustion procedure, a procedure by digestion in nitric acid and a procedure by digestion in a mixture of sulfuric acid and hydrogen peroxide). The selection of the procedure to be used is made by considering the combustibility of the resin used in the composite, its ability to decompose and the type of resin concerned. Method A is only of limited applicability when filled resins are present that can prevent complete dissolution and/or combustibility of the resin. Method B (thickness measurement method) is only applicable to composites moulded from prepregs of known fibre mass per unit area. Method C (microscopic method) is only applicable to carbon-fibre-reinforced composites with unidirectional, orthogonal and multidirectional laminates. It can also be used as reference for determination of the areal void content and fibre volume content of aramid- or glass-fibre-reinforced plastics, but is not applicable to fabric reinforced composites.
- Standard16 pagesEnglish languagesale 15% off
This document applies to the measurement of crack tip position and crack propagation on the bonding surface of carbon fibre reinforced plastic (CFRPs) and metal assemblies bonded panels. This document does not apply to the visualization measurement of strain distribution or defects during load application to specimens. This document does not intend to: a) omit relevant field tests for CFRP related engineering; b) generally specify the dimensions of test specimen to represent CFRPs related bonded or fastened structures; c) superimpose test results for specific applications of the parameters that exceed the range of this document.
- Standard26 pagesEnglish languagesale 15% off
This document specifies the requirements for general-purpose textile-reinforced thermoplastics water-discharge hoses.
- Standard15 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
5.1 Often the most critical stress to which a sandwich panel core is subjected is shear. The effect of repeated shear stresses on the core material can be very important, particularly in terms of durability under various environmental conditions.
5.2 This test method provides a standard method of obtaining the sandwich core shear fatigue response. Uses include screening candidate core materials for a specific application, developing a design-specific core shear cyclic stress limit, and core material research and development.
Note 3: This test method may be used as a guide to conduct spectrum loading. This information can be useful in the understanding of fatigue behavior of core under spectrum loading conditions, but is not covered in this standard.
5.3 Factors that influence core fatigue response and shall therefore be reported include the following: core material, core geometry (density, cell size, orientation, etc.), specimen geometry and associated measurement accuracy, specimen preparation, specimen conditioning, environment of testing, specimen alignment, loading procedure, loading frequency, force (stress) ratio and speed of testing (for residual strength tests).
Note 4: If a sandwich panel is tested using the guidance of this standard, the following may also influence the fatigue response and should be reported: facing material, adhesive material, methods of material fabrication, adhesive thickness and adhesive void content. Further, core-to-facing strength may be different between precured/bonded and co-cured facings in sandwich panels with the same core and facing materials.
SCOPE
1.1 This test method determines the effect of repeated shear forces on core material used in sandwich panels. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).
1.2 This test method is limited to test specimens subjected to constant amplitude uniaxial loading, where the machine is controlled so that the test specimen is subjected to repetitive constant amplitude force (stress) cycles. Either shear stress or applied force may be used as a constant amplitude fatigue variable.
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Within the text, the inch-pound units are shown in brackets.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard6 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The edgewise compressive strength of short sandwich construction specimens provides a basis for judging the load-carrying capacity of the construction in terms of developed facing stress.
5.2 This test method provides a standard method of obtaining sandwich edgewise compressive strengths for panel design properties, material specifications, research and development applications, and quality assurance.
5.3 The reporting section requires items that tend to influence edgewise compressive strength to be reported; these include materials, fabrication method, facesheet lay-up orientation (if composite), core orientation, results of any nondestructive inspections, specimen preparation, test equipment details, specimen dimensions and associated measurement accuracy, environmental conditions, speed of testing, failure mode, and failure location.
SCOPE
1.1 This test method covers the compressive properties of structural sandwich construction in a direction parallel to the sandwich facing plane. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard8 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method simulates the hydrostatic loading conditions which are often present in actual sandwich structures, such as marine hulls. This test method can be used to compare the two-dimensional flexural stiffness of a sandwich composite made with different combinations of materials or with different fabrication processes. Since it is based on distributed loading rather than concentrated loading, it may also provide more realistic information on the failure mechanisms of sandwich structures loaded in a similar manner. Test data should be useful for design and engineering, material specification, quality assurance, and process development. In addition, data from this test method would be useful in refining predictive mathematical models or computer code for use as structural design tools. Properties that may be obtained from this test method include:
5.1.1 Panel surface deflection at load,
5.1.2 Panel face-sheet strain at load,
5.1.3 Panel bending stiffness,
5.1.4 Panel shear stiffness,
5.1.5 Panel strength, and
5.1.6 Panel failure modes.
SCOPE
1.1 This test method determines the two-dimensional flexural properties of sandwich composite plates subjected to a distributed load. The test fixture uses a relatively large square panel sample which is simply supported all around and has the distributed load provided by a water-filled bladder. This type of loading differs from the procedure of Test Method C393, where concentrated loads induce one-dimensional, simple bending in beam specimens.
1.2 This test method is applicable to composite structures of the sandwich type which involve a relatively thick layer of core material bonded on both faces with an adhesive to thin-face sheets composed of a denser, higher-modulus material, typically, a polymer matrix reinforced with high-modulus fibers.
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard12 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The honeycomb tensile-node bond strength is a fundamental property than can be used in determining whether honeycomb cores can be handled during cutting, machining and forming without the nodes breaking. The tensile-node bond strength is the tensile stress that causes failure of the honeycomb by rupture of the bond between the nodes. It is usually a peeling-type failure.
5.2 This test method provides a standard method of obtaining tensile-node bond strength data for quality control, acceptance specification testing, and research and development.
SCOPE
1.1 This test method covers the determination of the tensile-node bond strength of honeycomb core materials.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The determination of the creep rate provides information on the behavior of sandwich constructions under constant applied force. Creep is defined as deflection under constant force over a period of time beyond the initial deformation as a result of the application of the force. Deflection data obtained from this test method can be plotted against time, and a creep rate determined. By using standard specimen constructions and constant loading, the test method may also be used to evaluate creep behavior of sandwich panel core-to-facing adhesives.
5.2 This test method provides a standard method of obtaining flexure creep of sandwich constructions for quality control, acceptance specification testing, and research and development.
5.3 Factors that influence the sandwich construction creep response and shall therefore be reported include the following: facing material, core material, adhesive material, methods of material fabrication, facing stacking sequence and overall thickness, core geometry (cell size), core density, core thickness, adhesive thickness, specimen geometry, specimen preparation, specimen conditioning, environment of testing, specimen alignment, loading procedure, speed of testing, facing void content, adhesive void content, and facing volume percent reinforcement. Further, facing and core-to-facing strength and creep response may be different between precured/bonded and co-cured facesheets of the same material.
SCOPE
1.1 This test method covers the determination of the creep characteristics and creep rate of flat sandwich constructions loaded in flexure, at any desired temperature. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method is designed to produce tensile property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the tensile response and should be reported include the following: material, methods of material preparation and lay-up, specimen stacking sequence, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, time at temperature, and volume percent reinforcement. Properties, in the test direction, which may be obtained from this test method include the following:
5.1.1 Ultimate tensile strength,
5.1.2 Ultimate tensile strain,
5.1.3 Tensile modulus of elasticity, and
5.1.4 Poissons ratio.
SCOPE
1.1 This test method covers the determination of the tensile properties of metal matrix composites reinforced by continuous and discontinuous high-modulus fibers. Nontraditional metal matrix composites as stated in 1.1.6 also are covered in this test method. This test method applies to specimens loaded in a uniaxial manner tested in laboratory air at either room temperature or elevated temperatures. The types of metal matrix composites covered are:
1.1.1 Unidirectional laminates (all fibers aligned in a single direction) containing either continuous or discontinuous reinforcing fibers. Both longitudinal and transverse properties may be obtained.
1.1.2 0°/90° balanced crossply laminates containing either continuous or discontinuous reinforcing fibers.
1.1.3 Angleply laminates containing continuous reinforcing fibers, with layups that do not include 0° reinforcing fibers (that is, (±45)ns, (±30)ns, and so forth).
1.1.4 Multidirectional laminates containing continuous reinforcing fibers, with layups including 0° reinforcing fibers (that is, (0/±45/90)ns quasi-isotropic laminates, (0/±30)ns laminates, and so forth).
1.1.5 Laminates containing unoriented and random discontinuous fibers.
1.1.6 Directionally solidified eutectic composites.
1.2 The technical content of this standard has been stable since 1996 without significant objection from its stakeholders. As there is limited technical support for the maintenance of this standard, changes since that date have been limited to items required to retain consistency with other ASTM D30 Committee standards. The standard therefore should not be considered to include any significant changes in approach and practice since 1996. Future maintenance of the standard will only be in response to specific requests and performed only as technical support allows.
1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard9 pagesEnglish languagesale 15% off
- Standard9 pagesEnglish languagesale 15% off
This document specifies the test method for determining the tack in prepregs under defined conditions. This document is applicable to but not limited to unidirectional and multidirectional thermoset based prepregs made with glass fibres, carbon fibres, aramid fibres and other similar fibres included.
- Technical specification10 pagesEnglish languagesale 15% off
ISO 7510:2017 specifies a method for the determination of constituent materials of a test sample cut from a glass-reinforced plastics (GRP) component intended for use in a piping system. It includes determination of resin, glass, aggregate and filler contents.
It is also applicable to the determination of the type and arrangement of the reinforcements. If used to determine the amounts of constituent materials in layered constructions it may be necessary to separate the laminate layers by cutting or splitting and testing each separately.
- Standard12 pagesEnglish languagee-Library read for1 day
This document specifies a method for determining the durability of the adhesive joints of carbon fibre reinforced plastics (CFRPs) and metal assemblies by a wedge rupture test using a double cantilever beam (DCB) specimen under specified environmental conditions. This method is intended for evaluating the safety and reliability of adhesives, primers, and surface treatments of the adherends.
- Standard10 pagesEnglish languagesale 15% off
This document establishes requirements and specifications for sheet moulding compound (SMC) used in the production of composite parts by hot moulding. It is suitable for sheet moulding compound with glass fibres (GF) and carbon fibres (CF) as the sole or main reinforcement. Other fibre (e.g. natural fibre) reinforced sheet moulding compounds can also be used with this document.
- Standard12 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Characterizing tack for different prepreg materials, test parameters, surface combinations, and environmental conditions provides insight for optimizing process parameters (particularly deposition rate and deposition temperature) for industrial automated material placement processes.
5.2 Results obtained through employing the continuous application-and-peel method, as described in studies (1-3),3 reflect the effects of adhesion forming between prepreg layers or between prepreg and metal substrate, and loss of cohesion within the resin in the prepreg, upon tack. This test method allows the adhesive properties of B-staged resin to be explored in a manner relevant for dynamic material deposition processes, where timescales for bonding of prepreg to the substrate or previously placed prepreg layers are short prior to curing. In contrast, Test Methods D3167 and D1781 determine the peel resistance of adhesive bonds for adhesion measurement and process control of laminated or bonded adherends.
5.3 The test method is suitable to quantify tack of prepregs for acceptance and process control and can be extended to determine resin shelf life or to adjust process parameters to resin out-time. Direct comparison of different resins/prepregs or processes can only be made when specimen preparation and test conditions are identical.
SCOPE
1.1 This test method covers measurement of adhesion (tack) between partially cured (B-staged) composite prepreg and a surface in a peel test, under specified conditions. The test may be conducted to measure tack between a flexible layer of prepreg and another prepreg layer bonded to a rigid substrate (Method I) or a rigid metal substrate (Method II). This test method is primarily geared towards material characterization for automated material layup but can be modified for use with other processes. It is well known that material tack is a function of multiple processing and environmental variables. Permissible composite prepreg materials include carbon, glass, and aramid fibers within a B-staged thermoset resin.
1.2 Measured tack is specified in terms of a peel force at a given specimen width.
1.3 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard15 pagesEnglish languagesale 15% off
- Standard15 pagesEnglish languagesale 15% off
This document specifies the electrochemical test for determining galvanic corrosion rate of CFRPs and metal assemblies with protection-coating, subjected to the corrosive environment of electrolyte diffusion through the coating. It specifies the apparatus, the test solutions, and the procedure to be used in conducting the electrochemical tests for a) the assessment of the Fick's diffusion parameter for protective coating on metallic materials, and b) the estimation of the galvanic corrosion rates with the conversion of ISO 21746 coating-free sample data. The following are intended situations of implementing an electrochemical test based on this document: a) when interested parties estimate the galvanic corrosion rate of bonded joints relating engineering metals with protection-coating and CFRPs of the potential drastically nobler than those of most metals, utilizing the resources of ISO 17475; b) when expanding CFRP-metal bonded joints applications using coatings to the fields of corrosion-sensitive environments caused by electrolytes. It is not the intent of this document to fulfil the need for: - omitting relevant field tests for the applications in corrosive environment; - superimposing test data for specific applications for the range of relevant data; - comparative testing as a means of ranking different protections with respect to corrosion rates; - ignoring the field hazards such as erosion, abrasion, and ultraviolet irradiation.
- Standard14 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Composite materials consist by definition of a reinforcement phase in a matrix phase. In addition, carbon-carbon composites often contain measurable porosity which interacts with the reinforcement and matrix. The composition and structure of the C-C composite are commonly tailored for a specific application with detailed performance requirements. The tailoring involves the selection of the reinforcement fibers (composition, properties, morphology, etc), the matrix (composition, properties, and morphology), the composite structure (component fractions, reinforcement architecture, porosity structure, microstructure, etc.), and the fabrication conditions (forming, assembly, forming, densification, finishing, etc.). The final engineering properties (physical, mechanical, thermal, electrical, etc.) can be tailored across a broad range with major directional anisotropy in the properties.
4.2 Specifications for specific C-C composite components covering materials, material processing, and fabrication procedures are developed to provide a basis for fabricating reproducible and reliable structures. Designer/users/producers have to write C-C composite specifications for specific applications with well-defined composition, structure, properties and processing requirements. But with the extensive breadth of selection in composition, structure, and properties in C-C composites, it is virtually impossible to write a "generic" composite specification applicable to any and all C-C composite applications that has the same type of structure and details of the commonly-used specifications for metal alloys. This guide is written to assist the designer/user/producer in developing a comprehensive and detailed material specification for a specific CMC application/component with a particular focus on nuclear applications.
4.3 The purpose of this guide is to provide guidance on how to specify the constituents, the structure, the desired engineering properties (physical, chemical, ...
SCOPE
1.1 This document is a guide to preparing material specifications for fiber reinforced carbon-carbon (C-C) composite structures (flat plates, rectangular bars, round rods, and tubes) manufactured specifically for structural components in nuclear reactor core applications. The carbon-carbon composites consist of carbon/graphite fibers (from PAN, pitch, or rayon precursors) in a carbon/graphite matrix produced by liquid infiltration/pyrolysis and/or by chemical vapor infiltration.
1.2 This guide provides direction and guidance for the development of a material specification for a specific C-C composite component or product for nuclear reactor applications. The guide considers composite constituents and structure, physical and chemical properties, mechanical properties, thermal properties, performance durability, methods of testing, materials and fabrication processing, and quality assurance. The C-C composite materials considered here would be suitable for nuclear reactor core applications where neutron irradiation-induced damage and dimensional changes are a significant design consideration. (1-4)2
1.3 The component specification is to be developed by the designer/purchaser/user. The designer/purchaser/user shall define and specify in detail any and all application-specific requirements for necessary design, manufacturing, and performance factors of the ceramic composite component. This guide for material specifications does not directly address component/product-specific issues, such as geometric tolerances, permeability, bonding, sealing, attachment, and system integration.
1.4 This guide is specifically focused on C-C composite components and structures with flat panel, solid rectangular bar, solid round rod, or tubular geometries.
1.5 This specification may also be applicable to C-C composites used for other structural applications discounting the nuclear-specific chemical purity and irradiation behavior f...
- Guide14 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method is designed to determine the glass transition temperature of continuous fiber reinforced polymer composites using the DMA method. The DMA Tg value is frequently used to indicate the upper use temperature of composite materials, as well as for quality control of composite materials.
SCOPE
1.1 This test method covers the procedure for the determination of the dry or wet (moisture conditioned) glass transition temperature (Tg) of polymer matrix composites containing high-modulus, 20 GPa (> 3 × 106 psi), fibers using a dynamic mechanical analyzer (DMA) under flexural oscillation mode, which is a specific subset of the Dynamic Mechanical Analysis (DMA) method.
1.2 The glass transition temperature is dependent upon the physical property measured, the type of measuring apparatus and the experimental parameters used. The glass transition temperature determined by this test method (referred to as “DMA Tg”) may not be the same as that reported by other measurement techniques on the same test specimen.
1.3 This test method is primarily intended for polymer matrix composites reinforced by continuous, oriented, high-modulus fibers. Other materials, such as neat resin, may require non-standard deviations from this test method to achieve meaningful results.
1.4 The values stated in SI units are standard. The values given in parentheses are non-standard mathematical conversions to common units that are provided for information only.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard14 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Composite materials consist by definition of a reinforcement phase in a matrix phase. In addition, ceramic matrix composites (CMCs) often contain measurable porosity which interacts with the reinforcement and matrix. And SiC-SiC composites often use a fiber interface coating which has an important mechanical function. The composition and structure of these different constituents in the CMC are commonly tailored for a specific application with detailed performance requirements. The tailoring involves the selection of the reinforcement fibers (composition, properties, morphology, etc.), the matrix (composition, properties, and morphology), the composite structure (component fractions, reinforcement architecture, interface coatings, porosity structure, microstructure, etc.), and the fabrication conditions (forming, assembly, forming, densification, finishing, etc.). The final engineering properties (physical, mechanical, thermal, electrical, etc.) can be tailored across a broad range with major directional anisotropy in the properties.
4.2 Specifications for specific CMC components covering materials, material processing, and fabrication procedures are developed to provide a basis for fabricating reproducible and reliable structures. Designer/users/producers have to write CMC specifications for specific applications with well-defined composition, structure, properties and processing requirements. But with the extensive breadth of selection in composition, structure, and properties in CMCs, it is virtually impossible to write a "generic" CMC specification applicable to any and all CMC applications that has the same type of structure and details of the commonly-used specifications for metal alloys. This guide is written to assist the designer/user/producer in developing a comprehensive and detailed material specification for a specific CMC application/component with a specific focus on nuclear applications.
4.3 The purpose of this guide is to provide guidance o...
SCOPE
1.1 This document is a guide to preparing material specifications for silicon carbide fiber/silicon carbide matrix (SiC-SiC) composite structures (flat plates, rectangular bars, round rods, and tubes) manufactured specifically for structural components and for fuel cladding in nuclear reactor core applications. The SiC-SiC composites consist of silicon carbide fibers in a silicon carbide matrix produced by liquid infiltration/pyrolysis and/or by chemical vapor infiltration.
1.2 This guide provides direction and guidance for the development of a material specification for a specific SiC-SiC composite component or product for nuclear reactor applications. The guide considers composite constituents and structure, physical and chemical properties, mechanical properties, thermal properties, performance durability, methods of testing, materials and fabrication processing, and quality assurance. The SiC-SiC composite materials considered here would be suitable for nuclear reactor core applications where neutron irradiation-induced damage and dimensional changes are significant design considerations. (1-8)2
1.3 The component material specification is to be developed by the designer/purchaser/user. The designer/purchaser/user shall define and specify in detail any and all application-specific requirements for design, manufacturing, performance, and quality assurance of the ceramic composite component. Additional specification items for a specific component, beyond those listed in this guide, may be required based on intended use, such as geometric tolerances, permeability, bonding, sealing, attachment, and system integration.
1.4 This guide is specifically focused on SiC-SiC composite components and structures with flat plate, solid rectangular bar, solid round rod, and tubular geometries.
1.5 This guide may also be applicable to the development of specifications for SiC-SiC composites used for other structural applic...
- Guide14 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The freeze/thaw conditioning procedures prescribed in this practice are designed to provide a standard procedure to be used to evaluate and compare the effect of 100 freeze/thaw cycles under controlled laboratory conditions on pultruded FRP composites to be used in structural design applications. The conditioning procedures prescribed in this practice are designed to obtain reproducible results to compare and evaluate these materials but are not intended to produce equilibrium conditions or actual service conditions for these materials.
SCOPE
1.1 In general, it is feasible that the mechanical properties of FRP composites will be affected by environmental conditions such as freeze/thaw cycling. In order to make reliable comparisons between different materials under freeze/thaw environmental conditions, it is necessary to standardize the freeze/thaw conditions to which specimens of these materials are subjected prior to and during testing. This practice defines procedures for freeze/thaw conditioning of pultruded FRP composites intended for use in structural design applications.
1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems has the potential to result in nonconformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard3 pagesEnglish languagesale 15% off
- Standard3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The elevated temperature and moisture conditioning procedures prescribed in this practice are designed to provide a standard procedure to be used to evaluate and compare the effect of elevated temperature and moisture conditioning under controlled laboratory conditions on pultruded FRP composites to be used in structural design applications. The conditioning procedures prescribed in this practice are designed to obtain reproducible results to compare and evaluate these materials but are not intended to produce equilibrium conditions or actual service conditions for these materials.
SCOPE
1.1 In general, it is feasible that the mechanical properties of FRP composites will be affected by environmental conditions such as exposure to moisture at elevated temperatures. In order to make reliable comparisons between different materials under elevated temperature and moisture environmental conditions, it is necessary to standardize the elevated temperature and moisture conditions to which specimens of these materials are subjected prior to and during testing. This practice defines procedures for elevated temperature and moisture conditioning of pultruded FRP composites intended for use in structural design applications. The conditioning medium representing elevated temperature and moisture exposure described in this standard practice is distilled water maintained at 37.8 ± 1.5°C [100 ± 3°F] for 1000 hours.
1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems has the potential to result in nonconformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard3 pagesEnglish languagesale 15% off
- Standard3 pagesEnglish languagesale 15% off
This document specifies a method of determining the length of the fibres present in a fibre-reinforced product. The method is applicable to moulding materials and to moulded parts. The test conditions specified limit the application of this method to thermoplastics reinforced with short glass fibres (less than 1 mm long), i.e. fibres whose length is less than or equal to 7,5 mm prior to incorporation in the moulding material and moulding.
- Standard4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Shearography is commonly used during product process design and optimization, process control, after manufacture inspection, and in service inspection, and can be used to measure static and dynamic axial (tensile and compressive) strain, as well as shearing, Poisson, bending, and torsional strains. The general types of defects detected by shearography include delamination, deformation under load, disbond/unbond, microcracks, and thickness variation.
5.2 Additional information is given in Guide E2533 about the advantages and limitations of the shearography technique, use of related ASTM documents, specimen geometry and size considerations, calibration and standardization, and physical reference standards.
5.3 For procedures for shearography of filament-wound pressure vessels, otherwise known as composite overwrapped pressure vessels, consult Guide E2982.
5.4 Factors that influence shearography and therefore shall be reported include but are not limited to the following: laminate (matrix and fiber) material, lay-up geometry, fiber volume fraction (flat panels); facing material, core material, facing stack sequence, core geometry (cell size); core density, facing void content, and facing volume percent reinforcement (sandwich core materials); processing and fabrication methods, overall thickness, specimen alignment, specimen conditioning, specimen geometry, and test environment (flat panels and sandwich core materials). Shearography has been used with excellent results for composite and metal face sheet sandwich panels with both honeycomb and foam cores, solid monolithic composite laminates, foam cryogenic fuel tank insulation, bonded cork insulation, aircraft tires, elastomeric and plastic coatings. Frequently, defects at multiple and far side bond lines can be detected.
SCOPE
1.1 This practice describes procedures for shearography of polymer matrix composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. The composite materials under consideration typically contain continuous high modulus (greater than 20 GPa (3 × 106 psi)) fibers, but may also contain discontinuous fiber, fabric, or particulate reinforcement.
1.2 This practice describes established shearography procedures that are currently used by industry and federal agencies that have demonstrated utility in quality assurance of polymer matrix composites and sandwich core materials during product process design and optimization, manufacturing process control, after manufacture inspection, and in service inspection.
1.3 This practice has utility for testing of polymer matrix composites and sandwich core materials containing but not limited to bismaleimide, epoxy, phenolic, poly(amideimide), polybenzimidazole, polyester (thermosetting and thermoplas- tic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricated geometries include uniaxial, cross-ply and angle-ply laminates; as well as honeycomb and foam core sandwich materials and structures.
1.4 This practice does not specify accept-reject criteria and is not intended to be used as a means for approving polymer matrix composites or sandwich core materials for service.
1.5 To ensure proper use of the referenced standards, there are recognized nondestructive testing (NDT) specialists that are certified according to industry and company NDT specifications. It is recommended that an NDT specialist be a part of any composite component design, quality assurance, in-service maintenance, or damage examination activity.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental...
- Standard10 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The prepreg volatiles content, matrix content, reinforcement content, and filler content of composite prepreg materials are used to control material manufacture and subsequent fabrication processes, and are key parameters in the specification and production of such materials, as well as in the fabrication of products made with such materials.
5.2 The extraction products resulting from this test method (the extract, the residue, or both) can be analyzed to assess chemical composition and degree of purity.
SCOPE
1.1 This test method covers a Soxhlet extraction procedure to determine the matrix content, reinforcement content, and filler content of composite material prepreg. Volatiles content, if appropriate, and required, is determined by means of Test Method D3530.
1.1.1 The reinforcement and filler must be substantially insoluble in the selected extraction reagent and any filler must be capable of being separated from the reinforcement by filtering the extraction residue.
1.1.2 Reinforcement and filler content test results are total reinforcement content and total filler content; hybrid material systems with more than one type of either reinforcement or filler cannot be distinguished.
1.2 This test method focuses on thermosetting matrix material systems for which the matrix may be extracted by an organic solvent. However, other, unspecified, reagents may be used with this test method to extract other matrix material types for the same purposes.
1.3 Alternate techniques for determining matrix and reinforcement content include Test Methods D3171 (matrix digestion), D2584 (matrix burn-off/ignition), and D3529 (matrix dissolution and ignition loss). Test Method D2584 is preferred for reinforcement materials, such as glass, quartz, or silica, that are unaffected by high-temperature environments.
1.4 The technical content of this standard has been stable since 1997 without significant objection from its stakeholders. As there is limited technical support for the maintenance of this standard, changes since that date have been limited to items required to retain consistency with other ASTM D30 Committee standards. The standard therefore should not be considered to include any significant changes in approach and practice since 1997. Future maintenance of the standard will only be in response to specific requests and performed only as technical support allows.
1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 9 and 7.2.3 and 8.2.1.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard8 pagesEnglish languagesale 15% off
- Standard8 pagesEnglish languagesale 15% off
This document specifies methods for determining the compressive properties, in directions parallel to the plane of lamination, of fibre-reinforced plastic composites, based on thermosetting or thermoplastic matrices. The compressive properties are of interest for specifications and quality-control purposes. The test specimens are machined from a flat test plate, or from suitable finished or semi-finished products.
Two loading methods and two types of specimen are described.
The loading methods are:
— Method 1: provides shear loading of the specimen (gauge length unsupported)
— Method 2: provides combined loading of the specimen (gauge length unsupported)
NOTE For tabbed specimens loaded using method 2, load is transferred through a combination of end-loading and shear-loading through the tabs.
The specimen designs are:
— Type A specimen: rectangular cross-section, fixed thickness, end-tabbed (mainly for aerospace style preimpregnates (~ 0,125 mm ply thickness)
— Type B specimen: rectangular cross-section, range of thicknesses, untabbed or end-tabbed, two specimen sizes are available (B1 and B2).
The Type A specimen is used for unidirectionally or biaxially reinforced materials tested in the fibre direction, where the fibres are normally either aligned continuous or aligned long (>7,5 mm) discontinuous. The Type B1 and B2 specimens are used for multi-directional aligned; mat, fabric and other multi-directionally reinforced materials where the fibre structure is more complex and/or coarser.
This document gives criteria for checking that the combination of test method and specimen design result in valid failures. It is noted that alternative test method/specimen combinations will not necessarily give the same result.
The methods specify required dimensions for the specimen. Tests carried out on specimens of other dimensions, or on specimens that are prepared under different conditions, can produce results that are not comparable. Other factors, such as the speed of testing, the support fixture used and the conditioning of the specimens, can influence the results.
- Standard40 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
5.1 Determination of the flexural modulus, beam bending strength and full assembly strength, by this test method is especially useful for product validation, design and specification purposes.
5.2 Calculated values for flexural modulus, bending strength and full assembly strength will vary with specimen depth, span length, hole configurations, loading rate, and ambient test temperature. A minimum span to depth ratio of 16:1 is required for establishing the flexural modulus, wherein shear deformation effects are neglected.
5.3 Validity—Stress at failure, σ, is only valid for crossarm failures due to local compression buckling. Other controlling modes of failure will dictate the ultimate phase loading capacities. For example, in-plane shear, fastener pin bearing, position hardware, center mount failures and fastener pull out will dictate the failure mode and the crossarm capacity.
SCOPE
1.1 These test methods cover the determination of the flexural modulus and bending strength of both the tangent and deadend Fiber Reinforced Polymer (FRP) composite crossarms loaded perpendicular to the plane of minor and major axes. One method covers testing of assembled tangent crossarms including the tangent bracket and relative hardware. The other method covers testing of assembled deadend crossarms with a deadend bracket and relative phase loading hardware. The failure modes and associated stresses can be used for predicting the phase load capacities of pultruded crossarms specific to certain conductor loading scenarios exerted by conductors.
1.2 The test data described in this standard can be used for predicting the vertical and horizontal component loads of deadend and tangent arms. Both deadend and tangent crossarms shall be tested in the two configurations described in Figures 1 and 2, respectively. This will permit the manufacturers to publish both vertical and horizontal design capacities for deadend crossarm configurations so that two way bending stresses, caused by catenary effects, can be considered when developing the capacity of the deadend crossarms by utility design engineers and manufacturers.
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.4 This standard will not address all factors that affect the phase loading capacity.
1.5 This standard does not address the use of core materials that are added to increase the structural capacity of the crossarms. Contribution of core materials shall not be considered within the calculations provided in this standard. Use of core material properties in design computations to identify improvement in design strengths of crossarms is the sole responsibility of the designee in-charge of the project.
1.6 Torsional effects occurring during standard in service usage are not considered within this standard.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
Note 1: There is no known ISO equivalent to this standard.
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
This document specifies methods for determining the compressive properties, in directions parallel to the plane of lamination, of fibre-reinforced plastic composites, based on thermosetting or thermoplastic matrices. The compressive properties are of interest for specifications and quality-control purposes. The test specimens are machined from a flat test plate, or from suitable finished or semi-finished products.
Two loading methods and two types of specimen are described.
The loading methods are:
— Method 1: provides shear loading of the specimen (gauge length unsupported)
— Method 2: provides combined loading of the specimen (gauge length unsupported)
NOTE For tabbed specimens loaded using method 2, load is transferred through a combination of end-loading and shear-loading through the tabs.
The specimen designs are:
— Type A specimen: rectangular cross-section, fixed thickness, end-tabbed (mainly for aerospace style preimpregnates (~ 0,125 mm ply thickness)
— Type B specimen: rectangular cross-section, range of thicknesses, untabbed or end-tabbed, two specimen sizes are available (B1 and B2).
The Type A specimen is used for unidirectionally or biaxially reinforced materials tested in the fibre direction, where the fibres are normally either aligned continuous or aligned long (>7,5 mm) discontinuous. The Type B1 and B2 specimens are used for multi-directional aligned; mat, fabric and other multi-directionally reinforced materials where the fibre structure is more complex and/or coarser.
This document gives criteria for checking that the combination of test method and specimen design result in valid failures. It is noted that alternative test method/specimen combinations will not necessarily give the same result.
The methods specify required dimensions for the specimen. Tests carried out on specimens of other dimensions, or on specimens that are prepared under different conditions, can produce results that are not comparable. Other factors, such as the speed of testing, the support fixture used and the conditioning of the specimens, can influence the results.
- Standard40 pagesEnglish languagee-Library read for1 day
This document specifies methods for determining the compressive properties, in directions parallel to the plane of lamination, of fibre-reinforced plastic composites, based on thermosetting or thermoplastic matrices. The compressive properties are of interest for specifications and quality-control purposes. The test specimens are machined from a flat test plate, or from suitable finished or semi-finished products. Two loading methods and two types of specimen are described. The loading methods are: - Method 1: provides shear loading of the specimen (gauge length unsupported) - Method 2: provides combined loading of the specimen (gauge length unsupported) NOTE For tabbed specimens loaded using method 2, load is transferred through a combination of end-loading and shear-loading through the tabs. The specimen designs are: - Type A specimen: rectangular cross-section, fixed thickness, end-tabbed (mainly for aerospace style preimpregnates (~ 0,125 mm ply thickness) - Type B specimen: rectangular cross-section, range of thicknesses, untabbed or end-tabbed, two specimen sizes are available (B1 and B2). The Type A specimen is used for unidirectionally or biaxially reinforced materials tested in the fibre direction, where the fibres are normally either aligned continuous or aligned long (>7,5 mm) discontinuous. The Type B1 and B2 specimens are used for multi-directional aligned; mat, fabric and other multi-directionally reinforced materials where the fibre structure is more complex and/or coarser. This document gives criteria for checking that the combination of test method and specimen design result in valid failures. It is noted that alternative test method/specimen combinations will not necessarily give the same result. The methods specify required dimensions for the specimen. Tests carried out on specimens of other dimensions, or on specimens that are prepared under different conditions, can produce results that are not comparable. Other factors, such as the speed of testing, the support fixture used and the conditioning of the specimens, can influence the results.
- Standard31 pagesEnglish languagesale 15% off
- Standard31 pagesFrench languagesale 15% off
SIGNIFICANCE AND USE
5.1 The void content of a composite may significantly affect some of its mechanical properties. Higher void contents usually mean lower fatigue resistance, greater susceptibility to water penetration and weathering, and increased variation or scatter in strength properties. The knowledge of void content is desirable for estimation of quality of composites.
SCOPE
1.1 These test methods cover the void content of reinforced plastics or “composites.” The test methods are applicable to composites for which the effects of ignition on the materials are known. Most plastics, glass, and reinforcements fall into this class. These test methods are not applicable to composites for which the effects of ignition on the plastics, the reinforcement, and any fillers are unknown. This class may include silicone resins, which do not burn off completely, reinforcements consisting of metals, organic materials, or inorganic materials which may gain or lose weight, and fillers consisting of oxides, carbonates, etc., which may gain or lose weight. Note that separate weight loss tests of individual materials will usually, but not necessarily, give the same result as when all the materials are combined.
Note 1: There is no known ISO equivalent to these test methods.
1.2 The values stated in SI units are to be regarded as standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
This document specifies two calcination methods for the determination of the textile glass and mineral filler content of glass-reinforced plastics:
— Method A: for the determination of the textile glass content when no mineral fillers are present.
— Method B: for the determination of the textile-glass and mineral-filler content when both components are present.
This document is applicable to the following types of material:
— prepregs made from yarns, rovings, tapes or fabrics;
— SMC, BMC and DMC moulding compounds;
— textile-glass-reinforced thermoplastic moulding materials and granules;
— filled or unfilled textile-glass laminates made with thermosetting or thermoplastic resins.
The methods do not apply to the following types of reinforced plastic:
— those containing reinforcements other than textile glass;
— those containing materials which do not completely burn off at the test temperature (for example, those based on silicone resin);
— those containing mineral fillers which degrade at temperatures below the minimum calcination temperature.
- Standard16 pagesEnglish languagee-Library read for1 day
This document specifies two calcination methods for the determination of the textile glass and mineral filler content of glass-reinforced plastics:
— Method A: for the determination of the textile glass content when no mineral fillers are present.
— Method B: for the determination of the textile-glass and mineral-filler content when both components are present.
This document is applicable to the following types of material:
— prepregs made from yarns, rovings, tapes or fabrics;
— SMC, BMC and DMC moulding compounds;
— textile-glass-reinforced thermoplastic moulding materials and granules;
— filled or unfilled textile-glass laminates made with thermosetting or thermoplastic resins.
The methods do not apply to the following types of reinforced plastic:
— those containing reinforcements other than textile glass;
— those containing materials which do not completely burn off at the test temperature (for example, those based on silicone resin);
— those containing mineral fillers which degrade at temperatures below the minimum calcination temperature.
- Standard16 pagesEnglish languagee-Library read for1 day
This document specifies methods for determining the ring creep properties for glass-reinforced thermosetting plastics (GRP) pipes. Properties include the creep factor and the long-term creep stiffness. Testing is performed under either wet (total immersion in water) or dry conditions.
Dry creep testing is typically performed for the assessment and control of raw material consistency. Wet creep testing is typically undertaken to determine the long-term creep performance in simulated use conditions.
- Standard16 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
5.1 Refer to Guide D8509.
SCOPE
1.1 This test method determines the uniaxial high bypass - low bearing interaction response of multi-directional polymer matrix composite laminates reinforced by high-modulus fibers using a two-fastener hard point joint specimen. The scope of this test method is limited to net section (bypass) failure modes. Standard specimen configurations using fixed values of test parameters are described for this procedure. A number of test parameters may be varied within the scope of the standard, provided that the parameters are fully documented in the test report. The composite material forms are limited to continuous-fiber or discontinuous-fiber (tape or fabric, or both) reinforced composites for which the laminate is balanced and symmetric with respect to the test direction. The range of acceptable test laminates and thicknesses are described in 8.2.1. This test method was previously published under Test Method D7248/D7248M-17 Procedure C.
1.2 This test method is consistent with the recommendations of Composite Materials Handbook, CMH-17, which describes the desirable attributes of a bearing/bypass interaction response test method.
1.3 The two-fastener test configurations described in this test method are intended to provide data in the relatively high bypass, low bearing part of the composite bolted joint bearing-bypass interaction diagram. This data complements the data from filled hole tension and compression (Practice D6742/D6742M), bearing (Test Method D5961/D5961M), and low bypass/high bearing interaction (Test Method D7248/D7248M) tests.
1.4 This test method requires careful specimen design, instrumentation, data measurement, and data analysis. The use of this test method requires close coordination between the test requestor and the test lab personnel. Test requestors need to be familiar with the data analysis procedures of this test method and should not expect test labs who are unfamiliar with this test method to be able to produce acceptable results without close coordination.
1.5 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.5.1 Within the text, the inch-pound units are shown in brackets.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard27 pagesEnglish languagesale 15% off
- Standard27 pagesEnglish languagesale 15% off