IEC 62548-1:2023 sets out design requirements for photovoltaic (PV) arrays including DC array wiring, electrical protection devices, switching and earthing provisions. The scope includes all parts of the PV array and final power conversion equipment (PCE), but not including energy storage devices, loads or AC or DC distribution network supplying loads. The object of this document is to address the design safety requirements arising from the particular characteristics of photovoltaic systems. This document also includes extra protection requirements of PV arrays when they are directly connected with batteries at the DC level.
This first edition cancels and replaces IEC 62548 published in 2016. This edition includes the following significant technical changes with respect to the previous edition:
a) Revised provisions for systems including DC to DC conditioning units.
b) Revision of mounting structure requirements.
c) Revised cable requirements.
d) Revision of Clause 6 on safety issues which includes provisions for protection against electric shock including array insulation monitoring and earth fault detection.
e) Revision of 7.2.7 and 7.3 with respect to isolation means.
f) Provisions for use of bifacial modules and modules mounted in non-optimal orientations.
g) New Annex F containing: KI factor calculations for bifacial and non-optimally oriented systems; anti-PID equipment and arc flash.

  • Standard
    104 pages
    English language
    sale 15% off
  • Standard
    213 pages
    English language
    sale 15% off

IEC TS 62257-350:2025 specifies the criteria for selecting and sizing inverters suitable for different off-grid applications integrating solar as an energy source. As well as off-grid systems, this document can also apply to inverters where a utility grid connection is available as a backup for charging batteries, but it is not intended to cover applications in which inverters synchronize and inject energy back into a utility grid, even though this capability can incidentally be a part of the functionality of the inverters. Single and multi-phase applications are included.

  • Technical specification
    21 pages
    English language
    sale 15% off

IEC 63349-1:2025 establishes control functions and operational performance requirements for photovoltaic direct-driven appliance (PVDDA) controllers.
PVDDA controllers are devices used for controlling power among power sources (such as a PV array, grid, energy storage, etc.) and appliances (such as an air-conditioner, refrigerator, water pump, etc.).
The requirements for PVDDA controllers are applicable to systems with voltages not higher than 1 500V DC or 1 000V AC. Safety and EMC requirements for the PVDDA controllers are under consideration and not covered by this document. Safety requirements for power converters connected to a PVDDA controller are listed as follows:
- for converter connected to PV array, IEC 62109‑1 and IEC 62109‑2 are applicable;
- for bi-directional converter connected to grid, IEC 62909‑1 and IEC 62909‑2 are applicable;
- for converter connected to energy storage, IEC 62477‑1 and IEC 62509 are applicable;
- for variable frequency drive, IEC 61800-5-1 is applicable.
Performance requirements for each individual power converter connected to a PVDDA controller refer to IEC 62093.

  • Standard
    31 pages
    English language
    sale 15% off
  • Standard
    32 pages
    French language
    sale 15% off
  • Standard
    63 pages
    English and French language
    sale 15% off

IEC 63409-3:2025 specifies test procedures for confirming the basic operational characteristics of power conversion equipment (PCE) for use in photovoltaic (PV) power systems with or without energy storage. The basic operational characteristics are the capability of the PCE before any limitations due to internal settings are applied to the PCE to meet specific grid support functions or specific behaviours against abnormal changes.
This document covers the testing of the following items:
a) Steady state characteristics
Test procedures to confirm operable range of PCE at steady state condition are described. The operable ranges in apparent power, active power, reactive power, power factor, grid voltage and grid frequency are confirmed according to the test procedures.
b) Transient-response characteristics
Test procedures to confirm PCE’s response against a change of operational condition are described.
This document only considers the changes within normal (continuous) operable ranges. Therefore, the behaviours against abnormal changes and grid support functions are out of the scope and are covered in other parts of this series.

  • Standard
    68 pages
    English language
    sale 15% off
  • Standard
    71 pages
    French language
    sale 15% off
  • Standard
    139 pages
    English and French language
    sale 15% off

IEC TS 61836:2025 covers solar photovoltaic (PV) terminology, definitions and symbols used in IEC TC 82 international standards.

  • Technical specification
    22 pages
    English language
    sale 15% off

IEC TS 63392:2025 specifies a test method for evaluating the basic fire behaviour of modules used in concentrating systems with a maximum DC system voltage of 1 500 V or less. Since the concentrator module may be exposed to flames due to flying embers or fire may be caused by the module itself due to hot spots or arching (internal fire), the tests outlined in this document are conducted in these two modes.
Applicable fire testing may be required by local codes but are not covered in this document.
CPV system or CPV modules mounted in or on buildings, shall fulfil national building and construction codes, regulations, and requirements and are not covered by this Technical Specification. If national or local codes define fire test requirements, they should be followed. If such requirements are not available, the following international and national standards give information for tests, which could be used: ISO 5657, ENV 1187-1 to -4, ANSI/UL 790, EN 13501-1.

  • Technical specification
    15 pages
    English language
    sale 15% off

IEC 60364-7-712:2025 applies to electrical installations of PV systems. The equipment of a PV system, like any other item of equipment, is dealt with only so far as its selection and application in the installation is concerned. A PV installation comprises all equipment from PV modules(s) up to the connection point to other parts of the installation, for example a distribution board or the utility supply point (point of connection).
This part of IEC 60364 includes requirements on electrical installation resulting from the installation of PV power supply installations.
Requirements relating to the possible installation of energy storage systems (e.g. batteries) are included.
Requirements are also included for PV installations for island mode operation described in IEC 60364-8-82.
This third edition cancels and replaces the second edition published in 2017. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) The technical content has been extensively revised and expanded, taking into account experience gained in the construction and operation of PV installations, and developments made in technology, since the second edition was published.
b) Key changes include requirements for PV power generation plants, direct connection to battery circuits, introduction of DC bus circuit and DCUs.

  • Standard
    69 pages
    English language
    sale 15% off
  • Standard
    74 pages
    French language
    sale 15% off
  • Standard
    143 pages
    English and French language
    sale 15% off

IEC TS 63126:2025 defines additional testing requirements for photovoltaic (PV) modules deployed under conditions leading to higher module temperature which are beyond the scope of IEC 61215-1 and IEC 61730‑1 and the relevant component standards, IEC 62788‑1‑7, IEC 62788‑2‑1, IEC 62790 and IEC 62852. The testing conditions specified in IEC 61215-2 and IEC 61730-2 (and the relevant component standards IEC 62788‑1‑7, IEC 62788‑2‑1, IEC 62790 and IEC 62852) assumed that these standards are applicable for module deployment where the 98th percentile temperature (T98), that is the temperature that a module would be expected to exceed for 175,2 h per year, is less than 70 °C. This document defines two temperature regimes, temperature Level 1 and temperature Level 2, which were designed considering deployment in environments with mounting configurations such that the T98 is less than or equal to 80 °C for temperature Level 1, and less than or equal to 90 °C for temperature Level 2. This document provides recommended additional testing conditions within the IEC 61215 series, IEC 61730 series, IEC 62788‑1‑7, IEC 62788‑2‑1, IEC 62790 and IEC 62852 for module operation in temperature Levels 1 and 2. Successfully passing a higher Level for a test, sequence of tests, or complete testing for a higher Level is an implied passing of the relevant lower‑Level testing. For example, passing 200 thermal cycles for Level 2 is considered passing Level 0 and Level 1 for 200 thermal cycles.

  • Technical specification
    70 pages
    English language
    sale 15% off

This document specifies test methods for assessing the durability, reliability, safety and thermal performance of fluid heating solar collectors. The test methods are applicable for laboratory testing and for in situ testing. This document is applicable to all types of fluid heating solar collectors, air heating solar collectors, hybrid solar collectors co-generating heat and electric power, as well as to solar collectors using external power sources for normal operation and/or safety purposes. This document does not address electrical safety aspects or other specific properties directly related to electric power generation. This document is not applicable to devices in which a thermal storage unit is an integral part to such an extent that the collection process cannot be separated from the storage process for making the collector thermal performance measurements.

  • Standard
    89 pages
    English language
    sale 15% off
  • Standard
    92 pages
    French language
    sale 15% off

IEC TS 61724-2:2025 applies to grid-connected PV systems comprising at least one inverter.
The test evaluates the PV system only in conditions where output is unconstrained by limitations in AC power output from the inverters. This document defines a test of a PV system's power performance index (PPI). PPI, defined in IEC 61724‑1, is the ratio of a system's measured power output under test conditions to its expected output at those conditions based on the system's design.
The test is intended to be performed over a short period of typically three to five days and is typically used to satisfy a contractual performance guarantee as part of the final completion of a PV power plant. This second edition cancels and replaces the first edition published in 2016. This edition includes the following significant technical changes with respect to the previous edition:
a) Adapting the document for bifacial PV systems, in accordance with the latest edition of IEC 61724‑1 and current industry practices.
b) Adapting the test procedure to account for the limited times of unconstrained system operation which are now common because of high DC-to-AC ratios (clipping) and interconnection limits (curtailment).
c) Adapting the test procedure to achieve a test that can be performed in a short time of three to five days during favourable conditions.
d) Focusing the document more heavily on the use of modern PV system modelling software to obtain the expected performance of the system under test.
e) Simplifying the mathematical procedure for calculating the test results.
f) Clearly identifying test elections (optional choices to be made in conducting the test) and providing a template for documenting these elections.
g) Clarifying the discussion of the test boundary that separates tested variables from untested variables.
h) Expanding and clarifying the discussion of data filtering.

  • Technical specification
    26 pages
    English language
    sale 15% off

IEC TS 62257-301:2025 specifies the design and implementation of hybrid off-grid solar systems, where solar energy provides energy to a load in conjunction with other sources of energy. Such systems can either include or not include an energy storage system. There are a variety of different system architectures and applications, and many ways in which these energy sources can be combined. This document distinguishes between different sorts of hybrid system applications and gives guidance on the design and integration of these systems.
It applies to single-phase and three-phase applications, and it covers situations where grid is available as an additional source of power for charging batteries and maintaining system reliability, but this document does not cover situations in which energy is fed back into a utility grid, although such systems can incidentally possess this function.

  • Technical specification
    18 pages
    English language
    sale 15% off

This document specifies calibration methods for a pyranometer using a pyrheliometer as a reference instrument. Three methods are specified in this document. a) Alternating sun and shade method. This method uses a shading disc to alternately shade and unshade a pyranometer to compare with the tracking pyrheliometer. The test pyranometer can be horizontal, on a fixed tilt or tracking alongside the pyrheliometer. b) Continuous sun and shade method. In this method, a shaded calibrated reference pyranometer is used in addition to the reference pyrheliometer. The test pyranometer can be horizontal, on a fixed tilt or tracking alongside the reference pyrheliometer, but the reference pyranometer must be mounted in the same plane as the test pyranometer (most often on the horizontal). c) Collimation tube method. In this method, the test pyranometer is mounted on a solar tracker and is equipped with a collimation tube designed to allow the test pyranometer to have the same geometric view as the reference pyrheliometer for a direct comparison of the two instruments. The methods in this document are applicable for calibration of all pyranometers provided that a proper uncertainty evaluation is performed. Unlike spectrally flat pyranometers, non-spectrally flat pyranometers have a sensitivity that strongly depends on the solar spectrum. Therefore, the calibration result can be valid under a more limited range of conditions. The result of a calibration is the instrument sensitivity accompanied by an uncertainty. This document includes suggestions for uncertainty evaluation.

  • Standard
    44 pages
    English language
    sale 15% off

This document specifies methods for calibration of pyrheliometers using reference pyrheliometers and specifies the calibration procedures for the transfer of the calibration. This document is applicable for use by calibration service providers and test laboratories to enable a uniform quality of accurate calibration sensitivities to be achieved.

  • Standard
    31 pages
    English language
    sale 15% off

IEC TS 62804-1:2025 defines procedures to evaluate the durability of crystalline silicon photovoltaic (PV) modules to the effects of short-term high-voltage stress, primarily potential-induced degradation (PID). Three test methods are given. The first type, which has two variations, is conducted in the dark and is primarily designed for assessing PID-shunting. The second type, which also has two variations, incorporates the factor of ultraviolet light and is intended for assessing PID-polarization. A separate test for the recovery of PID polarization under ultraviolet light is also included.
The testing in this document is designed for crystalline silicon PV modules with silicon cells having passivating dielectric layers, for degradation mechanisms involving mobile ions influencing the electric field over the silicon semiconductor or electronically interacting with the silicon semiconductor. This document is not intended for evaluating modules with thin-film technologies, tandem, or heterojunction devices but can be used for guidance. The actual durability of modules to system voltage stress depends on the environmental conditions under which they are operated and the voltage potential in the module relative to earth (ground). These tests are intended to assess PV module sensitivity to PID irrespective of actual stresses under operation in different climates and systems.

  • Technical specification
    28 pages
    English language
    sale 15% off

IEC TS 62257-9-8:2025 provides baseline requirements for quality, durability and truth in advertising to protect consumers of off-grid renewable energy products. Evaluation of these requirements is based on tests described in IEC TS 62257-9-5. This document can be used alone or in conjunction with other international standards that address the safety and durability of components of off-grid renewable energy products.
This document applies to stand-alone renewable energy products having the following characteristics:
- The products are powered by photovoltaic (PV) modules or electromechanical power generating devices (such as dynamos), or are designed to use grid electricity to charge a battery or other energy-storage device for off-grid use. The requirements may also be appropriate as guidance for evaluating the quality of products with other power sources, such as thermoelectric generators.
- The peak power rating of the PV module or other power generating device is less than or equal to 350 W.
- The system evaluated includes all the loads (lighting, television, radio, fan, etc.) and load adapter cables that are sold or included as part of the kit or integrated into kit components.
- The PV module maximum power point voltage and the working voltage of any other components in the kit do not exceed 35 V. Exceptions are made for AC-to-DC converters that meet appropriate safety standards, and systems that include PV modules (or combinations of PV modules) with open-circuit voltage greater than 35 V that meet additional safety requirements beyond those assessed in IEC TS 62257-9-5.
This document includes provisions related to safety; however, it is not intended to be a comprehensive safety standard. In particular, this document is not intended to be used as an alternative to safety standards such as IEC 62368-1 or the IEC 60335 series for appliances such as radios and televisions that are included with stand-alone renewable energy products. Nor is it intended to replace the safety requirements of IEC 62281 or UN 38.3 for battery safety during transport, or safety requirements of IEC 61730-1 and IEC 61730-2 for PV modules intended for use outside the context of stand-alone renewable energy products.

  • Technical specification
    174 pages
    English language
    sale 15% off

IEC TS 62257-9-5:2024 provides support and strategies for institutions involved in rural electrification projects. It documents technical approaches for designing, building, testing, and maintaining off-grid renewable energy and hybrid systems with AC nominal voltage below 500 V, DC nominal voltage below 750 V and nominal power below 100 kVA.
The purpose of this document is to specify laboratory test methods for evaluating the quality assurance of stand-alone renewable energy products. This document is specifically related to renewable energy products that are packaged and made available to end-use consumers at the point of purchase as single, stand-alone products that do not require additional system components to function.
This document establishes the framework for creating a product specification, the basis for evaluating quality for a particular context. Product specifications include minimum requirements for quality standards and warranty requirements.
This document applies to stand-alone renewable energy products having the following characteristics: This document was written primarily for off-grid renewable energy products with batteries and PV modules with DC system voltages not exceeding 35 V and peak power ratings not exceeding 350 W. This document includes provisions related to safety; however, it is not intended to be a comprehensive safety standard. In particular, this document is not intended to be used as an alternative to safety standards such as IEC 62368-1 or IEC 60335 (all parts) for appliances such as radios and televisions that are included with stand-alone renewable energy products

  • Technical specification
    417 pages
    English language
    sale 15% off

IEC TS 60904-1-2:2024 describes procedures for the measurement of the current-voltage (I-V) characteristics of single junction bifacial photovoltaic devices in natural or simulated sunlight. It is applicable to encapsulated solar cells, sub-assemblies of such cells or entire PV modules. For measurements of I-V characteristics of non-encapsulated solar cells, IEC TS 63202-3 applies.
The requirements for measurement of I-V characteristics of standard (monofacial) PV devices are covered by IEC 60904-1, whereas this document describes the additional requirements for the measurement of I-V characteristics of bifacial PV devices.
This second edition cancels and replaces the first edition published in 2019. This edition includes the following significant technical changes with respect to the previous edition:
a) The scope has been updated and refers to IEC TS 63202-3 for the measurement of non‑encapsulated solar cells.
b) The requirements for the non-uniformity of irradiance have been updated and now refer to classifications introduced in IEC 60904-9.
c) The requirement for non-irradiated background has been revised.
d) Spectral mismatch corrections are no longer mandatory, unless required by another standard. Spectral mismatch would have to be considered in the measurement uncertainty.
e) The requirement regarding the calculation of bifaciality has been modified: Equivalent irradiance shall not be calculated based on the minimum bifaciality value between ISC and Pmax, but on the bifaciality of ISC.

  • Technical specification
    22 pages
    English language
    sale 15% off

IEC 62788-1-1:2024 defines test methods and reporting requirements for characteristics (optical, mechanical, electrical, thermal, and chemical) of non-rigid polymeric materials (e.g., poly(ethylene-co-vinyl acetate), EVA) intended for use in terrestrial photovoltaic (PV) modules as polymeric encapsulants.
The test methods in this document define how to characterize encapsulant materials in a manner representative of how they will be used in the module, which includes combination with other components such as frontsheets, backsheets, adhesives, edge seals, or glass.The methods described in this document support and supplement the safety- and performance-related tests defined on the PV module level, as defined in IEC 61730-2 and IEC 61215-1. This document also defines test methods for general assessment of material characteristics of polymeric encapsulants.
The test methods described in this document may be used for the purposes of: datasheet reporting (aiding module design or material research and development); process and manufacturing control (e.g., incoming or outgoing inspection); application in module safety and design type qualification protocols; or reliability and durability study/standards development

  • Standard
    113 pages
    English and French language
    sale 15% off

IEC 62788-7-3:2022 defines the test methods that can be used for evaluating the abrasion of materials and coatings in photovoltaic modules or other solar devices. This document may be applied to components on the incident surface (including coatings, frontsheet, and glass) as well as the back surface (including backsheets or back glass). This document is intended to address abrasion of PV module surfaces and any coatings present using representative specimens (e.g. which can be centimetres in size); the methods and apparatus used here can also be used on PV module specimens (e.g. meters in size).

  • Standard
    44 pages
    English language
    sale 15% off
  • Standard
    43 pages
    English and French language
    sale 15% off

IEC TS 62788-2:2024 defines test methods and datasheet reporting requirements for safety and performance-related properties (mechanical, electrical, thermal, optical, chemical) of non‑rigid polymeric materials intended for use in terrestrial photovoltaic modules as polymeric front- and backsheets. The test methods in this document define how to characterize front- and backsheet materials and their components in a manner representative of how they will be used in the module, which eventually includes combination with other matched components such as encapsulants or adhesives. Results of testing described in this document are called by IEC 62788-2-1 for safety qualification of polymeric front- and backsheets on component level and support the safety and performance-related tests defined on the PV module level as defined in the series IEC 61730 (for safety) and IEC 61215 (for performance). This document also defines test methods for assessing inherent material characteristics of polymeric front- and backsheets or their components, which can be required in datasheet reporting or can be useful in the context of product development or design of PV modules.
This second edition cancels and replaces the first edition published in 2017. This edition includes the following significant technical changes with respect to the previous edition:
a) With revision of IEC 61730-1 the requirements for the polymeric front- and backsheet have been moved from IEC 61730-1 into IEC 62788-2-1. This is reflected accordingly.
b) The tensile testing method has been refined based on findings of round robin tests, including updated drawings.
c) A thermal pre-exposure method has been introduced to be equivalent to the thermal effects of a "lamination" cycle. This pre-exposure defines the "fresh" state of the front- or backsheet in final application for evaluation of changes in ageing tests. For practical reasons, an oven exposure has been defined as an equivalent test.
d) The multiple functions of the lamination protrusion test (previously DTI test) have been clarified, to identify and measure RUI layer thickness as well as to identify layers for which the comparative tracking index (CTI) needs to be determined. Also the content of IEC 62788-2-1 has been updated, by which the lamination protrusion test and MST 04 are additionally set in perspective to each other via engineering judgement.
e) The DC breakdown voltage test method has been updated and the option to perform a withstand voltage test has been added (to reduce the required measurement voltage). The correction of DC breakdown voltage ( ) measurements, needed in the presence of non‑RUI layers and after the lamination protrusion test, has been defined more precisely.
f) Details for thickness measurement have been added (engineered surface roughness due to embossing).
g) The adhesion test methods have been reviewed and updated. The single cantilevered beam test has been added. Figures have been updated to align with IEC 62788-1-1.
h) The thermal failsafe test has been added as a test method based on discussion in the parallel project for IEC 62788-2-1. The test method offers a single temperature-point evaluation to include elongation at break to the thermal endurance evaluation.
I) A sequential UV/TC test ("solder bump test") has been added.

  • Technical specification
    94 pages
    English language
    sale 15% off

IEC TS 62788-8-1:2024 defines test methods and datasheet reporting requirements for key characteristics of ECA used in photovoltaic modules, involving mechanical characteristics, adhesive characteristics, electrical characteristics, thermal characteristics, etc.
The object of this document is to offer a standard test procedure to ECA manufacturers for product design, production and quality control, and to PV module manufacturers for the purpose of material screening, material inspection, process control, and failure analysis.
This document is intended to be applied to ECA used in solar PV modules. For non-conductive adhesives or tapes used in PV modules, the applicable test methods except for electrical characteristics in this document may be used.

  • Technical specification
    51 pages
    English language
    sale 15% off

IEC 628621-6:2024 specifies the technical requirements (safety and physical parameters), test methods, inspection rules and intervals, sampling, judgment, marking, labelling and accompanying documents, packaging, transportation and storage, recycling and disposal of silicone-based heat transfer fluids (SiHTF) for use in line-focusing solar thermal power plants.
The application of polydimethylsiloxane-based heat transfer fluids for this type of installation is covered in this document. Owing to their chemical nature and composition, the introduction of new test methods to determine the applicability and the thermal stability of SiHTF is included in this document.

  • Standard
    34 pages
    English language
    sale 15% off

IEC 62862-1-5:2024 provide procedures and guidelines to carry out acceptance tests for solar thermal power plants, of any concentration technology, with the uncertainty level given in ISO/IEC Guide 98-3.
This document establishes the measurements, instrumentation and techniques required for determining the following performance parameters for a given period:
- available solar radiation energy,
- plant electricity consumptions,
- net electricity generation,
- non-solar energy,
- net plant efficiency.
This document specifies the characteristics of a calculation tool that serves as a reference for expected electricity production during the test period and under real-time solar irradiance and other meteorological data.
This document is applicable to solar thermal power plants of any size using any concentration technology, where the sun is the main source of energy, and all elements and systems are operative. Such power plants can optionally have non-solar energy sources, such as natural gas or other renewable energies, and a thermal storage system.
This document is applicable to acceptance testing in such power plants, as well as in any other scenario in which their performance must be known.

  • Standard
    87 pages
    English and French language
    sale 15% off
  • Standard
    3 pages
    English language
    sale 15% off
  • Standard
    3 pages
    French language
    sale 15% off

IEC TR 63401-3:2023, which is a Technical Report, provides an insight into the various forms of fast frequency response and frequency ride-through techniques that involve inverter-based generation sources (mainly wind and PV) in a bulk electrical system.
This document first focuses on extracting the clear definition of FFR from different references around the world, while studying the mechanism of FFR acting on system frequency and the unique features of FFR. It then compares various kinds of frequency response and demonstrates the relationship among synchronous inertia response, fast frequency response, and primary frequency response. Several system needs and conditions where FFR is suitable are identified. This document also focuses on the performance objectives, practicality and capabilities of various non-synchronous resources, and discusses the test methods for verifying FFR capability at different levels. Finally, it focuses on the ROCOF issues and on the robust performances of FFR. .

  • Technical report
    78 pages
    English language
    sale 15% off

This document specifies the safety requirements for flexible polymeric frontsheet and backsheet constructions, which are intended for use as relied upon insulation in photovoltaic (PV) modules. In accordance with the corresponding safety requirements in IEC 61730-1 on the PV module level, the test methods and specifications in this document define the specific requirements of the polymeric frontsheet or backsheet constructions on the component level and cover mechanical, electrical, visual and thermal characterization in an unexposed state and/or after ageing.
A polymeric frontsheet and backsheet must pass the requirements in this standard for a PV module to pass the design requirements of IEC 61730-1. Compliance with the safety requirements for a frontsheet or backsheet on the component level does not replace the need for a safety qualification of the complete PV module, in which the frontsheet or backsheet is integrated. The appropriate requirements for testing and qualification on the PV module level are defined in IEC 61730-1 (or IEC TS 62915 in case of retesting) and IEC 61215-1, with test methods provided by IEC 61730-2 and IEC 61215-2, respectively.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60904-2:2023 gives requirements for the classification, selection, packaging, marking, calibration and care of photovoltaic reference devices. This document applies to photovoltaic (PV) reference devices that are used to measure the irradiance of natural or simulated sunlight for the purpose of quantifying the electrical performance of photovoltaic devices (cells, modules and arrays). It does not cover photovoltaic reference devices for use under concentrated sunlight. This fourth edition cancels and replaces the third edition published in 2015. This edition includes the following significant technical changes with respect to the previous edition:
a) added calibration procedures for calibrating PV devices at maximum power by extending the respective Clauses 12 and 13;
b) revised requirements for mandatory measurement of spectral responsivity, temperature coefficients and linearity, depending on usage and allowing some measurements on equivalent devices;
c) revised requirements for built-in shunt resistor;
d) added requirements for traceability of calibration explicitly.

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method of light transmittance for the laminated solar photovoltaic glass for use in building. This document is applicable to flat modules with light transmittance in the visible range (wavelengths from 380 nm to 780 nm). This document does not cover the assessment method of total solar energy transmittance of the flat module.

  • Standard
    6 pages
    English language
    sale 15% off

This Standard specifies the general requirements for the qualification, procurement, storage and delivery of photovoltaic assemblies, solar cell assemblies, bare solar cells, coverglasses and protection diodes suitable for space applications.
This standard does not cover the particular qualification requirements for a specific mission.
This Standard primarily applies to qualification approval for photovoltaic assemblies, solar cell assemblies, bare solar cells, coverglasses and protection diodes, and to the procurement of these items.
This standard is limited to crystaline Silicon and single and multi-junction GaAs solar cells with a thickness of more than 50 m and does not include thin film solar cell technologies and poly-crystaline solar cells.
This Standard does not cover the concentration technology, and especially the requirements related to the optical components of a concentrator (e.g. reflector and lens) and their verification (e.g. collimated light source).
This Standard does not apply to qualification of the solar array subsystem, solar panels, structure and solar array mechanisms.

  • Standard
    230 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the safety requirements for flexible polymeric frontsheet and backsheet constructions, which are intended for use as relied upon insulation in photovoltaic (PV) modules. In accordance with the corresponding safety requirements in IEC 61730-1 on the PV module level, the test methods and specifications in this document define the specific requirements of the polymeric frontsheet or backsheet constructions on the component level and cover mechanical, electrical, visual and thermal characterization in an unexposed state and/or after ageing. A polymeric frontsheet and backsheet must pass the requirements in this standard for a PV module to pass the design requirements of IEC 61730-1. Compliance with the safety requirements for a frontsheet or backsheet on the component level does not replace the need for a safety qualification of the complete PV module, in which the frontsheet or backsheet is integrated. The appropriate requirements for testing and qualification on the PV module level are defined in IEC 61730-1 (or IEC TS 62915 in case of retesting) and IEC 61215-1, with test methods provided by IEC 61730-2 and IEC 61215-2, respectively.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC TS 62915:2023 sets forth a uniform approach to maintain type approval, design and safety qualification of terrestrial PV modules that have undergone or will undergo modification from their originally assessed design. This document addresses two types of PV module technologies, wafer-based technologies (WBT) and monolithically-integrated (MLI) thin-film based technologies.
This document lists typical modifications and the resulting requirements for retesting based on the different test standards. It provides assistance; at some level, engineering judgement may be needed.
This publication contains attached files in the form of xls document. These files are intended to be used as a complement and do not form an integral part of the publication.
This second edition cancels and replaces the first edition published in 2018. This edition includes the following significant technical changes with respect to the previous edition:
- Prior references to specific process-related changes to PV modules have been removed in this edition and replaced with a general requirement to ensure that a consistent quality management system is in place per IEC 62941
- References to IEC 61215 and IEC 61730 have been updated to the latest editions (2021 and 2023 respectively)
- Retest requirements with respect to new added tests such as cyclic (dynamic) mechanical load (MQT 20) and potential-induced degradation (MQT 21) are addressed in this edition
- Retest requirements for IEC 61215 and IEC 61730 have been separated for the sake of clarity
- A comprehensive matrix table summarizing all the retest requirements for each possible change in material(s) or design modification is provided in this edition
- References to component level standards, namely IEC 62788-1 series and IEC 62788-2 series, are included in this edition to address changes that could be made to the critical sub-components going into new PV module constructions
- Crystalline silicon and thin film references have been updated to be consistent with nomenclature in the updated IEC 61215 and IEC 61730 standards; namely, wafer-based technology (WBT) and monolithically integrated (MLI) thin film PV modules
- In this edition, 4.3 which addresses retest requirements for MLI thin film PV modules has been truncated and simplified by removing redundant sections that are identical with the subclauses in 4.2
Guidance for retesting modules according to IEC TS 63126, “Guidelines for qualifying PV modules, components and materials for operation at high temperatures” has been added to this edition.
- In this edition, requirements have been added for changes affecting system compatibility with variants of the same model
The contents of the corrigendum 1 of July 2024 have been included in this copy.

  • Technical specification
    43 pages
    English language
    sale 15% off

IEC 61730-1:2023 specifies and describes the fundamental construction requirements for photovoltaic (PV) modules in order to provide safe electrical and mechanical operation. Specific topics are provided to assess the prevention of electrical shock, fire hazards, and personal injury due to mechanical and environmental stresses. This document pertains to the particular requirements of construction. IEC 61730-2 defines the requirements for testing. Modules with modified construction are qualified as described in IEC TS 62915.
This document lays down requirements for terrestrial PV modules suitable for long-term operation in open-air climates with 98th percentile module operating temperatures of 70 °C or less. Guidelines for modules to be used at higher operating temperatures are described in IEC TS 63126.
This document is intended to apply to all terrestrial flat plate module materials, such as crystalline silicon module types as well as thin-film modules.
This document defines the basic requirements for various applications of PV modules, but it cannot be considered to encompass all national or regional codes.

  • Standard
    143 pages
    English and French language
    sale 15% off

IEC 61730-2:2023 lists the tests a PV module is required to fulfil for safety qualification. This document applies for safety qualification only in conjunction with IEC 61730-1. The objective of this document is to provide the testing sequence intended to verify the safety of PV modules whose construction has been assessed by IEC 61730-1. The test sequence and pass criteria are designed to detect the potential breakdown of internal and external components of PV modules that would result in fire, electric shock, and/or personal injury. This document defines the basic safety test requirements and additional tests that are a function of the PV module end-use applications. The additional testing requirements outlined in relevant ISO documents, or the national or local codes which govern the installation and use of these PV modules in their intended locations, are considered in addition to the requirements contained within this document.
The content of the corrigendum 1 (2024-10) has been included in this copy.

  • Standard
    209 pages
    English language
    sale 15% off
  • Standard
    134 pages
    English and French language
    sale 15% off

IEC 62788-2-1:2023 specifies the safety requirements for flexible polymeric front- and backsheet constructions, which are intended for use as relied-upon insulation in photovoltaic (PV) modules. The specifications in this document define the specific requirements of polymeric front- or backsheet constructions on the component level and cover mechanical, electrical, visual and thermal characterization in an unexposed state and/or after ageing.
This document covers class II and class 0 modules, as defined in IEC 61730-1. Class III modules are out of scope. This document provides the requirements for qualification of front- and backsheets to be used in module safety qualification according to IEC 61730-1. Test method descriptions are provided in IEC TS 62788-2, along with additional characterization methods useful for performance or quality assurance.

  • Standard
    65 pages
    English and French language
    sale 15% off

IEC 63027:2023 applies to equipment used for the detection and optionally the interruption of electric DC arcs in photovoltaic (PV) system circuits. The document covers test procedures for the detection of series arcs within PV circuits, and the response times of equipment employed to interrupt the arcs.
The document defines reference scenarios according to which the testing is conducted. This document covers equipment connected to systems not exceeding a maximum PV source circuit voltage of 1 500 V DC. This document provides requirements and testing procedures for arc-fault protection devices used in PV systems to reduce the risk of igniting an electrical fire.

  • Standard
    68 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60904-2:2023 gives requirements for the classification, selection, packaging, marking, calibration and care of photovoltaic reference devices. This document applies to photovoltaic (PV) reference devices that are used to measure the irradiance of natural or simulated sunlight for the purpose of quantifying the electrical performance of photovoltaic devices (cells, modules and arrays). It does not cover photovoltaic reference devices for use under concentrated sunlight. This fourth edition cancels and replaces the third edition published in 2015. This edition includes the following significant technical changes with respect to the previous edition: a) added calibration procedures for calibrating PV devices at maximum power by extending the respective Clauses 12 and 13; b) revised requirements for mandatory measurement of spectral responsivity, temperature coefficients and linearity, depending on usage and allowing some measurements on equivalent devices; c) revised requirements for built-in shunt resistor; d) added requirements for traceability of calibration explicitly.

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies definitions and test methods for glazing material durability and performance. This document is applicable to those collectors having a glazing to fit sheets or tubes of glass into collectors; accordingly, soda lime silicate glass and borosilicate glass are used. This document is applicable to solar transmittance of glass for solar collector.

  • Standard
    9 pages
    English language
    sale 15% off

IEC TS 62607-7-2:2023 specifies the efficiency testing of photovoltaic cells (excluding multi-junction cells) under indoor light. Although it is primarily intended for nano-enabled photovoltaic cells (organic thin-film, dye-sensitized solar cells (DSC), and Perovskite solar cells), it can also be applied to other types of photovoltaic cells, such as Si, CIGS, GaAs cells, and so on.

  • Technical specification
    48 pages
    English language
    sale 15% off

IEC 60904-2:2023 gives requirements for the classification, selection, packaging, marking, calibration and care of photovoltaic reference devices. This document applies to photovoltaic (PV) reference devices that are used to measure the irradiance of natural or simulated sunlight for the purpose of quantifying the electrical performance of photovoltaic devices (cells, modules and arrays). It does not cover photovoltaic reference devices for use under concentrated sunlight. This fourth edition cancels and replaces the third edition published in 2015. This edition includes the following significant technical changes with respect to the previous edition:
a) added calibration procedures for calibrating PV devices at maximum power by extending the respective Clauses 12 and 13;
b) revised requirements for mandatory measurement of spectral responsivity, temperature coefficients and linearity, depending on usage and allowing some measurements on equivalent devices;
c) revised requirements for built-in shunt resistor;
d) added requirements for traceability of calibration explicitly.

  • Standard
    62 pages
    English language
    sale 15% off
  • Standard
    38 pages
    English and French language
    sale 15% off