M/496 - Space Industry (phase 3)
Mandate addressed to CEN, CENELEC and ETSI to develop standardisation regarding space industry (Phase 3 of the process)
General Information
Scope of this NWI is to give keys and to propose methods to GNSS-specialized laboratories, enabling them to design and produce valuable scenario using the "record and replay" technique in order to assess GNSS-based positioning system.
Already published parts (1-2-3) are mainly dedicated to respectively :
-Definitions and system engineering procedures for the establishment and assessment of performances
-Assessment of basic performances of GNSS-based positioning terminals
-Assessment of security performances of GNSS-based positioning terminals
Part4- Definitions and system engineering procedures for the design and validation of test scenarios- will be based on outcomes from GPSTART2 (SA-CEN/2018-12) which was funded by EC to tackle this specific focus (among others).
- Standard113 pagesEnglish languagesale 10% offe-Library read for1 day
Scope of this NWI is to give keys and to propose methods to GNSS-specialized laboratories, enabling them to design and produce valuable scenario using the "record and replay" technique in order to assess GNSS-based positioning system.
Already published parts (1-2-3) are mainly dedicated to respectively :
-Definitions and system engineering procedures for the establishment and assessment of performances
-Assessment of basic performances of GNSS-based positioning terminals
-Assessment of security performances of GNSS-based positioning terminals
Part4- Definitions and system engineering procedures for the design and validation of test scenarios- will be based on outcomes from GPSTART2 (SA-CEN/2018-12) which was funded by EC to tackle this specific focus (among others).
- Standard113 pagesEnglish languagesale 10% offe-Library read for1 day
This document defines the primary space debris mitigation requirements applicable to all elements of unmanned systems launched into, or passing through, near-Earth space, including launch vehicle orbital stages, operating spacecraft and any objects released as part of normal operations.
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
This activity w ill be the parallel development of EN 16603-20-40 and ECSS-E-ST-20-40C.
The scope shall cover the areas of existing ASIC and FPGA engineering chapter 5 of ECSS-Q-ST-60-02C, but w ith w ider breadth and greater depth, covering engineering requirements of end-to-end development flow s, from specification of requirements to validation of prototypes, of the follow ing monolithic devices for its use in space:
• ASICs (distinguishing digital, analogue and mixed-signal development flow s)
• FPGAs (distinguishing three technology families: SRAM, FLASH and anti-fuse technologies)
• ASIC and FPGA System-on-Chip embedding processor cores w hich have external “softw are programme” dependencies to be addressed during the SoC development, resulting in SW-HW co-design requirements.
- Standard139 pagesEnglish languagesale 10% offe-Library read for1 day
Scope remains unchanged.
This Standard establishes the basic rules and general principles applicable to the electrical, electronic, electromagnetic, microwave and engineering processes. It specifies the tasks of these engineering processes and the basic performance and design requirements in each discipline.
It defines the terminology for the activities within these areas.
It defines the specific requirements for electrical subsystems and payloads, deriving from the system engineering requirements laid out in EN 16603-10 (equivalent of ECSS-E-ST-10 "Space engineering - System engineering general requirements".)
- Standard135 pagesEnglish languagesale 10% offe-Library read for1 day
This activity w ill be the parallel development of EN 16603-20-40 and ECSS-E-ST-20-40C.
The scope shall cover the areas of existing ASIC and FPGA engineering chapter 5 of ECSS-Q-ST-60-02C, but w ith w ider breadth and greater depth, covering engineering requirements of end-to-end development flow s, from specification of requirements to validation of prototypes, of the follow ing monolithic devices for its use in space:
• ASICs (distinguishing digital, analogue and mixed-signal development flow s)
• FPGAs (distinguishing three technology families: SRAM, FLASH and anti-fuse technologies)
• ASIC and FPGA System-on-Chip embedding processor cores w hich have external “softw are programme” dependencies to be addressed during the SoC development, resulting in SW-HW co-design requirements.
- Standard139 pagesEnglish languagesale 10% offe-Library read for1 day
This document defines the primary space debris mitigation requirements applicable to all elements of unmanned systems launched into, or passing through, near-Earth space, including launch vehicle orbital stages, operating spacecraft and any objects released as part of normal operations.
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
Scope remains unchanged.
This Standard establishes the basic rules and general principles applicable to the electrical, electronic, electromagnetic, microwave and engineering processes. It specifies the tasks of these engineering processes and the basic performance and design requirements in each discipline.
It defines the terminology for the activities within these areas.
It defines the specific requirements for electrical subsystems and payloads, deriving from the system engineering requirements laid out in EN 16603-10 (equivalent of ECSS-E-ST-10 "Space engineering - System engineering general requirements".)
- Standard135 pagesEnglish languagesale 10% offe-Library read for1 day
This Standard specifies the general requirements for the qualification, procurement, storage and delivery of photovoltaic assemblies, solar cell assemblies, bare solar cells, coverglasses and protection diodes suitable for space applications.
This standard does not cover the particular qualification requirements for a specific mission.
This Standard primarily applies to qualification approval for photovoltaic assemblies, solar cell assemblies, bare solar cells, coverglasses and protection diodes, and to the procurement of these items.
This standard is limited to crystaline Silicon and single and multi-junction GaAs solar cells with a thickness of more than 50 m and does not include thin film solar cell technologies and poly-crystaline solar cells.
This Standard does not cover the concentration technology, and especially the requirements related to the optical components of a concentrator (e.g. reflector and lens) and their verification (e.g. collimated light source).
This Standard does not apply to qualification of the solar array subsystem, solar panels, structure and solar array mechanisms.
- Standard230 pagesEnglish languagesale 10% offe-Library read for1 day
This Standard specifies the general requirements for the qualification, procurement, storage and delivery of photovoltaic assemblies, solar cell assemblies, bare solar cells, coverglasses and protection diodes suitable for space applications.
This standard does not cover the particular qualification requirements for a specific mission.
This Standard primarily applies to qualification approval for photovoltaic assemblies, solar cell assemblies, bare solar cells, coverglasses and protection diodes, and to the procurement of these items.
This standard is limited to crystaline Silicon and single and multi-junction GaAs solar cells with a thickness of more than 50 m and does not include thin film solar cell technologies and poly-crystaline solar cells.
This Standard does not cover the concentration technology, and especially the requirements related to the optical components of a concentrator (e.g. reflector and lens) and their verification (e.g. collimated light source).
This Standard does not apply to qualification of the solar array subsystem, solar panels, structure and solar array mechanisms.
- Standard230 pagesEnglish languagesale 10% offe-Library read for1 day
This standard defines the requirements for selection, control, procurement and
usage of EEE commercial components for space projects.
This standard is applicable to commercial parts from the following families:
• Ceramic capacitors chips
• Solid electrolyte tantalum capacitors chips
• Discrete parts (transistors, diodes, optocouplers)
• Fuses
• Magnetic parts
• Microcircuits
• Resistors chips
• Thermistors
In addition for families of EEE components not addressed by the present ECSS
standard, it can be used as guideline on case by case basis.
The requirements of this document are applicable to all parties involved at all
levels in the integration of EEE commercial components into space segment
hardware and launchers.
This standard may be tailored for the specific characteristics and constrains of a
space project in conformance with ECSS-S-ST-00
- Standard106 pagesEnglish languagesale 10% offe-Library read for1 day
This Standard specifies the processing and quality assurance requirements for
brazing processes for space flight applications. Brazing is understood as the
joining and sealing of materials by means of a solidification of a liquid filler
metal.
The term brazing in this standard is used as equivalent to soldering, in cases that
the filler materials have liquidus temperatures below 450 °C.
Brazing and soldering are allied processes to welding and this standard is
supplementing the standard for welding ECSS-Q-ST-70-39.
This standard does not cover requirements for:
• Joining processes by adhesive bonding (ECSS-Q-ST-70-16),
• Soldering for electronic assembly purposes (ECSS-Q-ST-70-61),
• Soldering used in hybrid manufacturing (ESCC 2566000).
The standard covers but is not limited to the following brazing processes:
• Torch brazing,
• Furnace brazing,
• Dip Brazing and Salt-bath brazing,
• Induction Brazing.
This Standard does not detail the brazing definition phase and brazing pre-
verification phase, including the derivation of design allowables.
This standard may be tailored for the specific characteristic and constraints of a
space project in conformance with ECSS-S-ST-00.
- Standard39 pagesEnglish languagesale 10% offe-Library read for1 day
The Scope of the Standard remains unchanged.
This standard defines the requirements for selection, control, procurement and usage of EEE components for space projects.
This standard differentiates between three classes of components through three different sets of standardization requirements (clauses) to be met.
The three classes provide for three levels of trade-off between assurance and risk. The highest assurance and lowest risk is provided by class 1 and the lowest assurance and highest risk by class 3. Procurement costs are typically highest for class 1 and lowest for class 3. Mitigation and other engineering measures may decrease the total cost of ownership differences between the three classes. The project objectives, definition and constraints determine which class or classes of components are appropriate to be utilised within the system and subsystems.
a. Class 1 components are described in Clause 4.
b. Class 2 components are described in Clause 5
c. Class 3 components are described in Clause 6.
The requirements of this document apply to all parties involved at all levels in the integration of EEE components into space segment hardware and launchers.
- Standard103 pagesEnglish languagesale 10% offe-Library read for1 day
2021-04-21: This EN is based on ECSS-Q-ST-70-40C
- Standard39 pagesEnglish languagesale 10% offe-Library read for1 day
The Scope of the Standard remains unchanged.
This standard defines the requirements for selection, control, procurement and usage of EEE components for space projects.
This standard differentiates between three classes of components through three different sets of standardization requirements (clauses) to be met.
The three classes provide for three levels of trade-off between assurance and risk. The highest assurance and lowest risk is provided by class 1 and the lowest assurance and highest risk by class 3. Procurement costs are typically highest for class 1 and lowest for class 3. Mitigation and other engineering measures may decrease the total cost of ownership differences between the three classes. The project objectives, definition and constraints determine which class or classes of components are appropriate to be utilised within the system and subsystems.
a. Class 1 components are described in Clause 4.
b. Class 2 components are described in Clause 5
c. Class 3 components are described in Clause 6.
The requirements of this document apply to all parties involved at all levels in the integration of EEE components into space segment hardware and launchers.
- Standard103 pagesEnglish languagesale 10% offe-Library read for1 day
2021-04-21: This EN is based on ECSS-Q-ST-60-13C Rev.1
- Standard106 pagesEnglish languagesale 10% offe-Library read for1 day
This document identifies the clauses and requirements modified with respect to the standards CCSDS 232.1-B-2, Communications Operation Procedure-1, Issue 2, September 2010 for application in ECSS.
NOTE The recently published technical corrigendum has modified CCSDS 232.1-B-2. However, the changes are not affecting the Adoption Notice.
- Standard11 pagesEnglish languagesale 10% offe-Library read for1 day
This document identifies the clauses and requirements modified with respect to the standard CCSDS 231.0-B-3, TC Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
This Standard specifies the requirements for the development of the endtoend data communications system for spacecraft.
Specifically, this standard specifies:
- The terminology to be used for space communication systems engineering.
- The activities to be performed as part of the space communication system engineering process, in accordance with the ECSS-E-ST-10 standard.
- Specific requirements on space communication systems in respect of functionality and performance.
The communications links covered by this Standard are the spacetoground and spacetospace links used during spacecraft operations, and the communications links to the spacecraft used during the assembly, integration and test, and operational phases.
Spacecraft endtoend communication systems comprise components in three distinct domains, namely the ground network, the space link, and the space network. This Standard covers the components of the space link and space network in detail. However, this Standard only covers those aspects of the ground network that are necessary for the provision of the endtoend communication services.
NOTE Other aspects of the ground network are covered in ECSS-E ST 70.
This Standard may be tailored for the specific characteristics and constraints of a space project in conformance with ECSS-S ST 00.
- Standard79 pagesEnglish languagesale 10% offe-Library read for1 day
This document identifies the clauses and requirements modified w ith respect to the standard CCSDS 131.0-B-3, TM Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.
- Standard19 pagesEnglish languagesale 10% offe-Library read for1 day
This document identifies the clauses and requirements modified with respect to the standard CCSDS 732.0-B-3, AOS Space Data Link Protocol, Issue 3, September 2015 for application in ECSS.
- Standard11 pagesEnglish languagesale 10% offe-Library read for1 day
This document identifies the clauses and requirements modified w ith respect to the standard CCSDS 131.0-B-3, TM
Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.
- Standard11 pagesEnglish languagesale 10% offe-Library read for1 day
In the standard CCSDS 132.0-B-2, TM Space Data Link Protocol, CCSDS specifies a data link layer protocol for the
efficient transfer of space application data of various types and characteristics over space links.
This Adoption Notice adopts and applies CCSDS 132.0-B-2 w ith a minimum set of modifications, identified in the present
document, to allow for reference and for a consistent integration in the ECSS system of standards.
The TM Transfer Frame specified in CCSDS 132.0-B-2 is similar to the TM Transfer Frame specified in the EN 16603-50-
03:2014 (ECSS-E-ST-50-03), that is superseded by the follow ing tw o Adoption Notices: EN 16603-50-22 (ECSS-E-AS-
50-22) and EN 16603-50-23 (ECSS-E-AS-50-23).
Differences betw een these tw o standards that are not covered by the normative modifications in clause 4 are described in
the informative Annex A.
- Standard12 pagesEnglish languagesale 10% offe-Library read for1 day
EN 16603-35-06 (equivalent of ECSS-E-ST-35-06) belongs to the Propulsion field of the mechanical discipline, and concerns itself with the cleanliness of propulsion components, sub-systems and systems
The standard
- defines design requirements which allow for cleaning of propulsion components sub-systems and systems and which avoid generation or unwanted collection of contamination,
- identifies cleanliness requirements (e.g. which particle / impurity / wetness level can be tolerated),
- defines requirements on cleaning to comply with the cleanliness level requirements, and the requirements on verification,
- identifies the cleanliness approach, cleaning requirements, (e.g. what needs to be done to ensure the tolerable level is not exceeded, compatibility requirements),
- identifies, specifies and defines the requirements regarding conditions under which cleaning or cleanliness verification takes place (e.g. compatibility, check after environmental test).
The standard is applicable to the most commonly used propulsion systems and their related storable propellant combinations: Hydrazine (N2H4), Mono Methyl Hydrazine (CH3N2H3), MON (Mixed Oxides of Nitrogen), Nitrogen (N2), Helium (He), Propane (C3H8), Butane (C4H10) and Xenon (Xe).
This standard is the basis for the European spacecraft and spacecraft propulsion industry to define, achieve and verify the required cleanliness levels in spacecraft propulsion systems.
This standard is particularly applicable to spacecraft propulsion as used for satellites and (manned) spacecraft and any of such projects including its ground support equipment.
External cleanliness requirements, e.g. outside of tanks, piping and aspects such as fungus and outgassing are covered by ECSS-Q-ST-70-01.
This standard may be tailored for the specific characteristic and constraints of a space project in conformance with ECSS-S-ST-00.
- Standard71 pagesEnglish languagesale 10% offe-Library read for1 day
This standard defines:
- the basic requirements for the verification and approval of automatic machine w ave soldering for use in spacecraft hardware. The process requirements for w ave soldering of doublesided and multilayer boards are also defined.
- the technical requirements and quality assurance provisions for the manufacture and verification of manuallysoldered, high-reliability electrical connections.
- the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits based on surface mounted device (SMD) and mixed technology.
- the acceptance and rejection criteria for high reliability manufacture of manually-soldered electrical connections intended to w ithstand normal terrestrial conditions and the vibrational g-loads and environment imposed by space flight.
- the proper tools, correct materials, design and w orkmanshipt. Workmanship standards are included to permit discrimination betw een proper and improper work.
SCOPE
This Standard defines the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
The Standard defines w orkmanship requirements, the acceptance and rejection criteria for high-reliability assemblies intended to withstand normal terrestrial conditions and the environment imposed by space flight.
The mounting and supporting of components, terminals and conductors specified in this standard applies only to assemblies designed to continuously operate over the mission w ithin the temperature limits of -55 °C to +85 °C at solder joint level.
Requirements related to printed circuit boards are contained in ECSS-Q-ST-70-60 (equivalent to EN 16602-70-60) and ECSS-Q-ST-70-12 (equivalent to EN 16602-70-12).
This Standard does not cover the qualification and acceptance of the EQM and FM equipment w ith high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
This Standard does not cover verification of thermal properties for component assembly.
This Standard does not cover pressfit connectors.
The qualification and acceptance tests of equipment manufactured in accordance w ith this Standard are covered by ECSS-EST-10-03 (equivalent to EN 16603-10-03).
- Standard253 pagesEnglish languagesale 10% offe-Library read for1 day
This standard defines:
- the basic requirements for the verification and approval of automatic machine w ave soldering for use in spacecraft hardware. The process requirements for w ave soldering of doublesided and multilayer boards are also defined.
- the technical requirements and quality assurance provisions for the manufacture and verification of manuallysoldered, high-reliability electrical connections.
- the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits based on surface mounted device (SMD) and mixed technology.
- the acceptance and rejection criteria for high reliability manufacture of manually-soldered electrical connections intended to w ithstand normal terrestrial conditions and the vibrational g-loads and environment imposed by space flight.
- the proper tools, correct materials, design and w orkmanshipt. Workmanship standards are included to permit discrimination betw een proper and improper work.
SCOPE
This Standard defines the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
The Standard defines w orkmanship requirements, the acceptance and rejection criteria for high-reliability assemblies intended to withstand normal terrestrial conditions and the environment imposed by space flight.
The mounting and supporting of components, terminals and conductors specified in this standard applies only to assemblies designed to continuously operate over the mission w ithin the temperature limits of -55 °C to +85 °C at solder joint level.
Requirements related to printed circuit boards are contained in ECSS-Q-ST-70-60 (equivalent to EN 16602-70-60) and ECSS-Q-ST-70-12 (equivalent to EN 16602-70-12).
This Standard does not cover the qualification and acceptance of the EQM and FM equipment w ith high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
This Standard does not cover verification of thermal properties for component assembly.
This Standard does not cover pressfit connectors.
The qualification and acceptance tests of equipment manufactured in accordance w ith this Standard are covered by ECSS-EST-10-03 (equivalent to EN 16603-10-03).
- Standard253 pagesEnglish languagesale 10% offe-Library read for1 day
EMC policy and general system requirements are specified in ECSS-E-ST-20 (equivalent to EN 16603-20).
This ECSS-E-ST-20-07 (equivalent to EN 16603-20-07) Standard addresses detailed system requirements (Clause 4), general test conditions, verification requirements at system level, and test methods at subsystem and equipment level (Clause 5) as w ell as informative limits (Annex A).
Associated to this standard is ECSS-E-ST-20-06 (equivalent to EN 16603-20-06) "Spacecraft charging", w hich addresses charging control and risks arising from environmental and vehicle-induced spacecraft charging w hen ECSS-E-ST-20-07 addresses electromagnetic effects of electrostatic discharges.
Annexes A to C of ECSS-E-ST-20 document EMC activities related to ECSS-E-ST-20-07: the EMC Control Plan (Annex A) defines the approach, methods, procedures, resources, and organization, the Electromagnetic Effects Verification Plan (Annex B) defines and specifies the verification processes, analyses and tests, and the Electromagnetic Effects Verification Report (Annex C) document verification results. The EMEVP and the EMEVR are the vehicles for tailoring this standard.
- Standard103 pagesEnglish languagesale 10% offe-Library read for1 day
This standard addresses the requirements for performing verification by testing of space segment elements and space segment equipment on ground prior to launch. The document is applicable for tests performed on qualification models, flight models (tested at acceptance level) and protoflight models.
The standard provides:
• Requirements for test programme and test management,
• Requirements for retesting,
• Requirements for redundancy testing,
• Requirements for environmental tests,
• General requirements for functional and performance tests,
NOTE Specific requirements for functional and performance tests are not part of this standard since they are defined in the specific project documentation.
• Requirements for qualification, acceptance, and protoflight testing including qualification, acceptance, and protofight models’ test margins and duration,
• Requirements for test factors, test condition, test tolerances, and test accuracies,
• General requirements for development tests pertinent to the start of the qualification test programme,
NOTE Development tests are specific and are addressed in various engineering discipline standards.
• Content of the necessary documentation for testing activities (e.g. DRD).
Due to the specific aspects of the follow ing types of test, this Standard does not address:
• Space system testing (i.e. testing above space segment element), in particular the system validation test,
• In-orbit testing,
• Testing of space segment subsystems,
NOTE Tests of space segment subsystems are often limited to functional tests that, in some case, are run on dedicated models. If relevant, qualification tests for space segment subsystems are assumed to be covered in the relevant discipline standards.
Testing of hardware below space segment equipment levels (including assembly, parts, and components),
• Testing of stand-alone software,
NOTE For verification of flight or ground softw are, EN 16603-40 (ECSS-E-ST-40) and EN 16602-80 (ECSS-Q-ST-80) apply.
• Qualification testing of tw o-phase heat transport equipment,
NOTE For qualification testing of tw o-phase heat transport equipment, EN 16603-31-02 (ECSS-E-ST-31-02) applies.
• Tests of launcher segment, subsystem and equipment, and launch facilities,
• Tests of facilities and ground support equipment,
• Tests of ground segment.
This activity will be the update of EN16603-10-03:2014
NOTE: Parallel development of update of EN Standard and the new European TR17603-10-03.
- Standard132 pagesEnglish languagesale 10% offe-Library read for1 day
This standard addresses the requirements for performing verification by testing of space segment elements and space segment equipment on ground prior to launch. The document is applicable for tests performed on qualification models, flight models (tested at acceptance level) and protoflight models.
The standard provides:
• Requirements for test programme and test management,
• Requirements for retesting,
• Requirements for redundancy testing,
• Requirements for environmental tests,
• General requirements for functional and performance tests,
NOTE Specific requirements for functional and performance tests are not part of this standard since they are defined in the specific project documentation.
• Requirements for qualification, acceptance, and protoflight testing including qualification, acceptance, and protofight models’ test margins and duration,
• Requirements for test factors, test condition, test tolerances, and test accuracies,
• General requirements for development tests pertinent to the start of the qualification test programme,
NOTE Development tests are specific and are addressed in various engineering discipline standards.
• Content of the necessary documentation for testing activities (e.g. DRD).
Due to the specific aspects of the follow ing types of test, this Standard does not address:
• Space system testing (i.e. testing above space segment element), in particular the system validation test,
• In-orbit testing,
• Testing of space segment subsystems,
NOTE Tests of space segment subsystems are often limited to functional tests that, in some case, are run on dedicated models. If relevant, qualification tests for space segment subsystems are assumed to be covered in the relevant discipline standards.
Testing of hardware below space segment equipment levels (including assembly, parts, and components),
• Testing of stand-alone software,
NOTE For verification of flight or ground softw are, EN 16603-40 (ECSS-E-ST-40) and EN 16602-80 (ECSS-Q-ST-80) apply.
• Qualification testing of tw o-phase heat transport equipment,
NOTE For qualification testing of tw o-phase heat transport equipment, EN 16603-31-02 (ECSS-E-ST-31-02) applies.
• Tests of launcher segment, subsystem and equipment, and launch facilities,
• Tests of facilities and ground support equipment,
• Tests of ground segment.
This activity will be the update of EN16603-10-03:2014
NOTE: Parallel development of update of EN Standard and the new European TR17603-10-03.
- Standard132 pagesEnglish languagesale 10% offe-Library read for1 day
EMC policy and general system requirements are specified in ECSS-E-ST-20 (equivalent to EN 16603-20).
This ECSS-E-ST-20-07 (equivalent to EN 16603-20-07) Standard addresses detailed system requirements (Clause 4), general test conditions, verification requirements at system level, and test methods at subsystem and equipment level (Clause 5) as w ell as informative limits (Annex A).
Associated to this standard is ECSS-E-ST-20-06 (equivalent to EN 16603-20-06) "Spacecraft charging", w hich addresses charging control and risks arising from environmental and vehicle-induced spacecraft charging w hen ECSS-E-ST-20-07 addresses electromagnetic effects of electrostatic discharges.
Annexes A to C of ECSS-E-ST-20 document EMC activities related to ECSS-E-ST-20-07: the EMC Control Plan (Annex A) defines the approach, methods, procedures, resources, and organization, the Electromagnetic Effects Verification Plan (Annex B) defines and specifies the verification processes, analyses and tests, and the Electromagnetic Effects Verification Report (Annex C) document verification results. The EMEVP and the EMEVR are the vehicles for tailoring this standard.
- Standard103 pagesEnglish languagesale 10% offe-Library read for1 day
This handbook provides additional information for the application of the Testing standard EN 16603-10-03.
This handbook will be the guideline for all space projects, related equipment and complete systems, by providing background information that aids the reader to better understand and meet the requirements of the standard.
The document would follow the flow of the Testing standard and in particular w hatever is excluded from the testing standard (see Scope of EN 16603-10-03) should also be excluded.
NOTE: EN 16603-10-03:2014 will be in parallel also updated to take into account the new TR.
- Technical report267 pagesEnglish languagesale 10% offe-Library read for1 day
This handbook provides additional information for the application of the Testing standard EN 16603-10-03.
This handbook will be the guideline for all space projects, related equipment and complete systems, by providing background information that aids the reader to better understand and meet the requirements of the standard.
The document would follow the flow of the Testing standard and in particular w hatever is excluded from the testing standard (see Scope of EN 16603-10-03) should also be excluded.
NOTE: EN 16603-10-03:2014 will be in parallel also updated to take into account the new TR.
- Technical report267 pagesEnglish languagesale 10% offe-Library read for1 day
In the standard CCSDS 132.0-B-2, TM Space Data Link Protocol, CCSDS specifies a data link layer protocol for the
efficient transfer of space application data of various types and characteristics over space links.
This Adoption Notice adopts and applies CCSDS 132.0-B-2 w ith a minimum set of modifications, identified in the present
document, to allow for reference and for a consistent integration in the ECSS system of standards.
The TM Transfer Frame specified in CCSDS 132.0-B-2 is similar to the TM Transfer Frame specified in the EN 16603-50-
03:2014 (ECSS-E-ST-50-03), that is superseded by the follow ing tw o Adoption Notices: EN 16603-50-22 (ECSS-E-AS-
50-22) and EN 16603-50-23 (ECSS-E-AS-50-23).
Differences betw een these tw o standards that are not covered by the normative modifications in clause 4 are described in
the informative Annex A.
- Standard12 pagesEnglish languagesale 10% offe-Library read for1 day
This document identifies the clauses and requirements modified with respect to the standard CCSDS 732.0-B-3, AOS Space Data Link Protocol, Issue 3, September 2015 for application in ECSS.
- Standard11 pagesEnglish languagesale 10% offe-Library read for1 day
This document identifies the clauses and requirements modified w ith respect to the standard CCSDS 131.0-B-3, TM Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.
- Standard19 pagesEnglish languagesale 10% offe-Library read for1 day
EN 16603-35-06 (equivalent of ECSS-E-ST-35-06) belongs to the Propulsion field of the mechanical discipline, and concerns itself with the cleanliness of propulsion components, sub-systems and systems
The standard
- defines design requirements which allow for cleaning of propulsion components sub-systems and systems and which avoid generation or unwanted collection of contamination,
- identifies cleanliness requirements (e.g. which particle / impurity / wetness level can be tolerated),
- defines requirements on cleaning to comply with the cleanliness level requirements, and the requirements on verification,
- identifies the cleanliness approach, cleaning requirements, (e.g. what needs to be done to ensure the tolerable level is not exceeded, compatibility requirements),
- identifies, specifies and defines the requirements regarding conditions under which cleaning or cleanliness verification takes place (e.g. compatibility, check after environmental test).
The standard is applicable to the most commonly used propulsion systems and their related storable propellant combinations: Hydrazine (N2H4), Mono Methyl Hydrazine (CH3N2H3), MON (Mixed Oxides of Nitrogen), Nitrogen (N2), Helium (He), Propane (C3H8), Butane (C4H10) and Xenon (Xe).
This standard is the basis for the European spacecraft and spacecraft propulsion industry to define, achieve and verify the required cleanliness levels in spacecraft propulsion systems.
This standard is particularly applicable to spacecraft propulsion as used for satellites and (manned) spacecraft and any of such projects including its ground support equipment.
External cleanliness requirements, e.g. outside of tanks, piping and aspects such as fungus and outgassing are covered by ECSS-Q-ST-70-01.
This standard may be tailored for the specific characteristic and constraints of a space project in conformance with ECSS-S-ST-00.
- Standard71 pagesEnglish languagesale 10% offe-Library read for1 day
This document identifies the clauses and requirements modified with respect to the standards CCSDS 232.1-B-2, Communications Operation Procedure-1, Issue 2, September 2010 for application in ECSS.
NOTE The recently published technical corrigendum has modified CCSDS 232.1-B-2. However, the changes are not affecting the Adoption Notice.
- Standard11 pagesEnglish languagesale 10% offe-Library read for1 day
This Standard specifies the requirements for the development of the endtoend data communications system for spacecraft.
Specifically, this standard specifies:
- The terminology to be used for space communication systems engineering.
- The activities to be performed as part of the space communication system engineering process, in accordance with the ECSS-E-ST-10 standard.
- Specific requirements on space communication systems in respect of functionality and performance.
The communications links covered by this Standard are the spacetoground and spacetospace links used during spacecraft operations, and the communications links to the spacecraft used during the assembly, integration and test, and operational phases.
Spacecraft endtoend communication systems comprise components in three distinct domains, namely the ground network, the space link, and the space network. This Standard covers the components of the space link and space network in detail. However, this Standard only covers those aspects of the ground network that are necessary for the provision of the endtoend communication services.
NOTE Other aspects of the ground network are covered in ECSS-E ST 70.
This Standard may be tailored for the specific characteristics and constraints of a space project in conformance with ECSS-S ST 00.
- Standard79 pagesEnglish languagesale 10% offe-Library read for1 day
This document identifies the clauses and requirements modified with respect to the standard CCSDS 231.0-B-3, TC Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
This document identifies the clauses and requirements modified w ith respect to the standard CCSDS 131.0-B-3, TM
Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.
- Standard11 pagesEnglish languagesale 10% offe-Library read for1 day
This handbook is an acceptable way of meeting the requirements of adhesive materials in bonded
joints of EN 16603-32 (equivalent to ECSS‐E‐ST‐32).
- Technical report458 pagesEnglish languagesale 10% offe-Library read for1 day
This handbook recommends engineering inserts and practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs.
The target users of this handbook are engineers involved in the design, analysis and verification of launchers and spacecraft in relation to insert usage. The current know‐how is documented in this handbook in order to make expertise to all European developers of space systems.
It is a guidelines document, therefore it includes advisory information rather than requirements.
- Technical report488 pagesEnglish languagesale 10% offe-Library read for1 day
The scope includes metallic Powder Bed Fusion technologies for space applications.
A clear definition and implementation of quality monitoring and control means is mandatory and shall address the full end to end metallic PBF process, encompassing:
- Design / Simulation
- Materials management (Powder, shielding gases, other consumables, recycling, etc.)
- Processing
- Post Processing
- Testing
By developing a single standard which can be tailored in the Project definition phase, it will help the Space Industry in performing the following functions
related to metallic PBF technologies over the full end to end process:
(i) select and qualify metallic PBF processes for the appropriate application,
(ii) select and validate raw materials for the appropriate applications,
(iii) define monitoring and control means during production to ensure that metallic PBF parts are produced with the required quality,
(iv) define requirements for applying Non-Destructive Inspection methods for the different metallic PBF parts,
(v) define requirements to verify/qualify space parts produced by metallic PBF processes for the selected applications and associated environment,
(vi) define specific requirements for operators/inspectors/instructors certification,
(vii) define requirements for metallic PBF machines certification,
(viii) define requirements for metallic PBF Companies certification.
The Standard will be complemented with informative Annexes, listing guidelines and best practices on specific technical aspects.
- Standard78 pagesEnglish languagesale 10% offe-Library read for1 day
Using standard communication protocols for spacecraft communication links
can provide interface compatibility between communication devices and
components. Thus, it can improve the design and development process as well
as integration and test activities at all levels and provide the potential of
reusability across projects.
The aim of this space engineering standard is to define the interface services
and to specify their corresponding network protocol elements for spacecraft
using the Time-Triggered Ethernet data network. It also aims at defining
requirements for the harmonisation of the physical interfaces and usage of the
[IEEE 802.3] and [SAE AS6802] layer features.
This standard may be tailored for the specific characteristic and constraints of a
space project in conformance with ECSS‐S‐ST‐00
- Standard103 pagesEnglish languagesale 10% offe-Library read for1 day
This Standard applies to all parties involved at all levels in the realization of space segment hardware and its interfaces.
The objective of this Standard is to provide customers with a guaranteed performance and reliability up to the equipment end-of-life. To this end, the following are specified:
- Load ratios or limits to reduce stress applied to components;
- Application rules and recommendations.
- Standard89 pagesEnglish languagesale 10% offe-Library read for1 day
This ECSS Engineering Standard specifies the fracture control requirements to be imposed on space segments of space systems and their related GSE. The fracture control programme is applicable for space systems and related GSE when required by ECSS-Q-ST-40 or by the NASA document NST 1700.7, incl. ISS addendum. The requirements contained in this Standard, when implemented, also satisfy the fracture control requirements applicable to the NASA STS and ISS as specified in the NASA document NSTS 1700.7 (incl. the ISS Addendum). The NASA nomenclature differs in some cases from that used by ECSS. When STS/ISS-specific requirements and nomenclature are included, they are identified as such.
This standard may be tailored for the specific characteristic and constrains of a space project in conformance with ECSS-S-ST-00.
- Standard86 pagesEnglish languagesale 10% offe-Library read for1 day
This handbook is an acceptable way of meeting the requirements of adhesive materials in bonded
joints of EN 16603-32 (equivalent to ECSS‐E‐ST‐32).
- Technical report458 pagesEnglish languagesale 10% offe-Library read for1 day
This handbook recommends engineering inserts and practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs.
The target users of this handbook are engineers involved in the design, analysis and verification of launchers and spacecraft in relation to insert usage. The current know‐how is documented in this handbook in order to make expertise to all European developers of space systems.
It is a guidelines document, therefore it includes advisory information rather than requirements.
- Technical report488 pagesEnglish languagesale 10% offe-Library read for1 day
The scope of the document addresses the generic verification for all types of adhesive bonding for space applications including evaluation phases. It specifies all aspects of the adhesive bonding lifetime such as assembly, integration and testing, on-ground acceptance testing, storage, transport, pre-launch, launch and in-flight environments.
This standard does not cover requirements for:
- adhesive bonding used in EEE mounting on printed circuit boards (ECSS-Q-ST-70-61)
- adhesive bonding used in hybrid manufacturing (ESCC 2566000)
- adhesive bonding for cover-glass on solar cell assemblies (ECSS-E-ST-20-08)
- design of adhesive joint
- long term storage and long term storage sample testing
- performance of adhesive bond
- functional properties of adhesive joint
• co-curing processes
This standard may be tailored for the specific characteristics and constrains of a space project in conformance with ECSS-S-ST-00.
- Standard90 pagesEnglish languagesale 10% offe-Library read for1 day
This standard applies to all product types which exist or operate in space and defines the natural environment for all space regimes. It also defines general models and rules for determining the local induced environment.
Project-specific or project-class-specific acceptance criteria, analysis methods or procedures are not defined.
The natural space environment of a given item is that set of environmental conditions defined by the external physical world for the given mission (e.g. atmosphere, meteoroids and energetic particle radiation). The induced space environment is that set of environmental conditions created or modified by the presence or operation of the item and its mission (e.g. contamination, secondary radiations and spacecraft charging). The space environment also contains elements which are induced by the execution of other space activities (e.g. debris and contamination).
This standard may be tailored for the specific characteristic and constrains of a space project in conformance with ECSS-S-ST-00.
- Standard200 pagesEnglish languagesale 10% offe-Library read for1 day





