This document is intended to stablish and define functional and performance requirements and associated tests for Galileo Timing Receivers. This document covers the following topics related to Galileo Timing Receivers:
- GNSS constellations and frequencies processed: Galileo plus additionally GPS, with nominal mode being dual-frequency processing,
- Time scales processed, including at least Galileo System Time and Universal Time Coordinate,
- User dynamics, with two operation modes: static users with well-known and static antenna position and dynamics users with moving antenna,
- Holdover devices,
- Nominal and back-up modes, including single-frequency modes, single-constellation modes and holdover mode.
- Processing of timing integrity information disseminated by the Galileo System,
- Time Receiver Autonomous Integrity Monitoring processing,
- Anti-jamming and anti-spoofing capabilities, including Automatic Gain Control monitoring and Galileo Open Service Navigation Message Authentication processing,
- Robustness to multipath.
In addition, this document gives guidelines for the installation and maintenance of the receiver, including antenna, cabling and receiver installation, initial and periodic receiver calibration, and periodic maintenance.
On top of the functional requirements, performance requirements this document defines in terms of different key performance indicators such as:
- Accuracy, availability, continuity and integrity requirements,
- T-RAIM performances, including time to alert,
- Holdover performances including maximum degradation of the timing solution with time and maximum holdover time,
This document also gives a simple test suite to verify the most fundamental requirements of the Galileo Timing Receivers.

  • Standard
    112 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Scope of this NWI is to give keys and to propose methods to GNSS-specialized laboratories, enabling them to design and produce valuable scenario using the "record and replay" technique in order to assess GNSS-based positioning system.
Already published parts (1-2-3) are mainly dedicated to respectively :
-Definitions and system engineering procedures for the establishment and assessment of performances
-Assessment of basic performances of GNSS-based positioning terminals
-Assessment of security performances of GNSS-based positioning terminals
Part4- Definitions and system engineering procedures for the design and validation of test scenarios- will be based on outcomes from GPSTART2 (SA-CEN/2018-12) which was funded by EC to tackle this specific focus (among others).

  • Standard
    113 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The objective of this document is to present the results of the tests defined in the IEC 61108-7 draft [1] performed with a maritime receiver updated based on the SBAS maritime guidelines [2] and other GNSS SBAS receivers.
The list of test scenarios prepared, the receiver analysed, the configuration used and procedures are included in Clause 4. In Clause 5, graphical and numerical results for each of the test performed are presented, including if the tests are passed or failed. Annex A provides additional information on the test case setup.

  • Technical report
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This activity w ill be the parallel development of EN 16603-20-40 and ECSS-E-ST-20-40C.
The scope shall cover the areas of existing ASIC and FPGA engineering chapter 5 of ECSS-Q-ST-60-02C, but w ith w ider breadth and greater depth, covering engineering requirements of end-to-end development flow s, from specification of requirements to validation of prototypes, of the follow ing monolithic devices for its use in space:
• ASICs (distinguishing digital, analogue and mixed-signal development flow s)
• FPGAs (distinguishing three technology families: SRAM, FLASH and anti-fuse technologies)
• ASIC and FPGA System-on-Chip embedding processor cores w hich have external “softw are programme” dependencies to be addressed during the SoC development, resulting in SW-HW co-design requirements.

  • Standard
    139 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the primary space debris mitigation requirements applicable to all elements of unmanned systems launched into, or passing through, near-Earth space, including launch vehicle orbital stages, operating spacecraft and any objects released as part of normal operations.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Scope remains unchanged.
This Standard establishes the basic rules and general principles applicable to the electrical, electronic, electromagnetic, microwave and engineering processes. It specifies the tasks of these engineering processes and the basic performance and design requirements in each discipline.
It defines the terminology for the activities within these areas.
It defines the specific requirements for electrical subsystems and payloads, deriving from the system engineering requirements laid out in EN 16603-10 (equivalent of ECSS-E-ST-10 "Space engineering - System engineering general requirements".)

  • Standard
    135 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Standard specifies the general requirements for the qualification, procurement, storage and delivery of photovoltaic assemblies, solar cell assemblies, bare solar cells, coverglasses and protection diodes suitable for space applications.
This standard does not cover the particular qualification requirements for a specific mission.
This Standard primarily applies to qualification approval for photovoltaic assemblies, solar cell assemblies, bare solar cells, coverglasses and protection diodes, and to the procurement of these items.
This standard is limited to crystaline Silicon and single and multi-junction GaAs solar cells with a thickness of more than 50 m and does not include thin film solar cell technologies and poly-crystaline solar cells.
This Standard does not cover the concentration technology, and especially the requirements related to the optical components of a concentrator (e.g. reflector and lens) and their verification (e.g. collimated light source).
This Standard does not apply to qualification of the solar array subsystem, solar panels, structure and solar array mechanisms.

  • Standard
    230 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The Scope of the Standard remains unchanged.
This standard defines the requirements for selection, control, procurement and usage of EEE components for space projects.
This standard differentiates between three classes of components through three different sets of standardization requirements (clauses) to be met.
The three classes provide for three levels of trade-off between assurance and risk. The highest assurance and lowest risk is provided by class 1 and the lowest assurance and highest risk by class 3. Procurement costs are typically highest for class 1 and lowest for class 3. Mitigation and other engineering measures may decrease the total cost of ownership differences between the three classes. The project objectives, definition and constraints determine which class or classes of components are appropriate to be utilised within the system and subsystems.
a.   Class 1 components are described in Clause 4.
b.   Class 2 components are described in Clause 5
c.   Class 3 components are described in Clause 6.
The requirements of this document apply to all parties involved at all levels in the integration of EEE components into space segment hardware and launchers.

  • Standard
    103 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2021-04-21: This EN is based on ECSS-Q-ST-60-13C Rev.1

  • Standard
    106 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standards CCSDS 232.1-B-2, Communications Operation Procedure-1, Issue 2, September 2010 for application in ECSS.
NOTE The recently published technical corrigendum has modified CCSDS 232.1-B-2. However, the changes are not affecting the Adoption Notice.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

In the standard CCSDS 132.0-B-2, TM Space Data Link Protocol, CCSDS specifies a data link layer protocol for the
efficient transfer of space application data of various types and characteristics over space links.
This Adoption Notice adopts and applies CCSDS 132.0-B-2 w ith a minimum set of modifications, identified in the present
document, to allow for reference and for a consistent integration in the ECSS system of standards.
The TM Transfer Frame specified in CCSDS 132.0-B-2 is similar to the TM Transfer Frame specified in the EN 16603-50-
03:2014 (ECSS-E-ST-50-03), that is superseded by the follow ing tw o Adoption Notices: EN 16603-50-22 (ECSS-E-AS-
50-22) and EN 16603-50-23 (ECSS-E-AS-50-23).
Differences betw een these tw o standards that are not covered by the normative modifications in clause 4 are described in
the informative Annex A.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EN 16603-35-06 (equivalent of ECSS-E-ST-35-06) belongs to the Propulsion field of the mechanical discipline, and concerns itself with the cleanliness of propulsion components, sub-systems and systems
The standard
- defines design requirements which allow for cleaning of propulsion components sub-systems and systems and which avoid generation or unwanted collection of contamination,
- identifies cleanliness requirements (e.g. which particle / impurity / wetness level can be tolerated),
- defines requirements on cleaning to comply with the cleanliness level requirements, and the requirements on verification,
- identifies the cleanliness approach, cleaning requirements, (e.g. what needs to be done to ensure the tolerable level is not exceeded, compatibility requirements),
- identifies, specifies and defines the requirements regarding conditions under which cleaning or cleanliness verification takes place (e.g. compatibility, check after environmental test).
The standard is applicable to the most commonly used propulsion systems and their related storable propellant combinations: Hydrazine (N2H4), Mono Methyl Hydrazine (CH3N2H3), MON (Mixed Oxides of Nitrogen), Nitrogen (N2), Helium (He), Propane (C3H8), Butane (C4H10) and Xenon (Xe).
This standard is the basis for the European spacecraft and spacecraft propulsion industry to define, achieve and verify the required cleanliness levels in spacecraft propulsion systems.
This standard is particularly applicable to spacecraft propulsion as used for satellites and (manned) spacecraft and any of such projects including its ground support equipment.
External cleanliness requirements, e.g. outside of tanks, piping and aspects such as fungus and outgassing are covered by ECSS-Q-ST-70-01.
This standard may be tailored for the specific characteristic and constraints of a space project in conformance with ECSS-S-ST-00.

  • Standard
    71 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standard CCSDS 732.0-B-3, AOS Space Data Link Protocol, Issue 3, September 2015 for application in ECSS.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified w ith respect to the standard CCSDS 131.0-B-3, TM Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standard CCSDS 231.0-B-3, TC Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified w ith respect to the standard CCSDS 131.0-B-3, TM
Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Standard specifies the requirements for the development of the end­to­end data communications system for spacecraft.
Specifically, this standard specifies:
- The terminology to be used for space communication systems engineering.
- The activities to be performed as part of the space communication system engineering process, in accordance with the ECSS-E-ST-10 standard.
- Specific requirements on space communication systems in respect of functionality and performance.
The communications links covered by this Standard are the space­to­ground and space­to­space links used during spacecraft operations, and the communications links to the spacecraft used during the assembly, integration and test, and operational phases.
Spacecraft end­to­end communication systems comprise components in three distinct domains, namely the ground network, the space link, and the space network. This Standard covers the components of the space link and space network in detail. However, this Standard only covers those aspects of the ground network that are necessary for the provision of the end­to­end communication services.
NOTE Other aspects of the ground network are covered in ECSS-E ST 70.
This Standard may be tailored for the specific characteristics and constraints of a space project in conformance with ECSS-S ST 00.

  • Standard
    79 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard defines:
- the basic requirements for the verification and approval of automatic machine w ave soldering for use in spacecraft hardware. The process requirements for w ave soldering of doublesided and multilayer boards are also defined.
- the technical requirements and quality assurance provisions for the manufacture and verification of manuallysoldered, high-reliability electrical connections.
- the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits based on surface mounted device (SMD) and mixed technology.
- the acceptance and rejection criteria for high reliability manufacture of manually-soldered electrical connections intended to w ithstand normal terrestrial conditions and the vibrational g-loads and environment imposed by space flight.
- the proper tools, correct materials, design and w orkmanshipt. Workmanship standards are included to permit discrimination betw een proper and improper work.
SCOPE
This Standard defines the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
The Standard defines w orkmanship requirements, the acceptance and rejection criteria for high-reliability assemblies intended to withstand normal terrestrial conditions and the environment imposed by space flight.
The mounting and supporting of components, terminals and conductors specified in this standard applies only to assemblies designed to continuously operate over the mission w ithin the temperature limits of -55 °C to +85 °C at solder joint level.
Requirements related to printed circuit boards are contained in ECSS-Q-ST-70-60 (equivalent to EN 16602-70-60) and ECSS-Q-ST-70-12 (equivalent to EN 16602-70-12).
This Standard does not cover the qualification and acceptance of the EQM and FM equipment w ith high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
This Standard does not cover verification of thermal properties for component assembly.
This Standard does not cover pressfit connectors.
The qualification and acceptance tests of equipment manufactured in accordance w ith this Standard are covered by ECSS-EST-10-03 (equivalent to EN 16603-10-03).

  • Standard
    253 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard addresses the requirements for performing verification by testing of space segment elements and space segment equipment on ground prior to launch. The document is applicable for tests performed on qualification models, flight models (tested at acceptance level) and protoflight models.
The standard provides:
• Requirements for test programme and test management,
• Requirements for retesting,
• Requirements for redundancy testing,
• Requirements for environmental tests,
• General requirements for functional and performance tests,
NOTE Specific requirements for functional and performance tests are not part of this standard since they are defined in the specific project documentation.
• Requirements for qualification, acceptance, and protoflight testing including qualification, acceptance, and protofight models’ test margins and duration,
• Requirements for test factors, test condition, test tolerances, and test accuracies,
• General requirements for development tests pertinent to the start of the qualification test programme,
NOTE Development tests are specific and are addressed in various engineering discipline standards.
• Content of the necessary documentation for testing activities (e.g. DRD).
Due to the specific aspects of the follow ing types of test, this Standard does not address:
• Space system testing (i.e. testing above space segment element), in particular the system validation test,
• In-orbit testing,
• Testing of space segment subsystems,
NOTE Tests of space segment subsystems are often limited to functional tests that, in some case, are run on dedicated models. If relevant, qualification tests for space segment subsystems are assumed to be covered in the relevant discipline standards.
Testing of hardware below space segment equipment levels (including assembly, parts, and components),
• Testing of stand-alone software,
NOTE For verification of flight or ground softw are, EN 16603-40 (ECSS-E-ST-40) and EN 16602-80 (ECSS-Q-ST-80) apply.
• Qualification testing of tw o-phase heat transport equipment,
NOTE For qualification testing of tw o-phase heat transport equipment, EN 16603-31-02 (ECSS-E-ST-31-02) applies.
• Tests of launcher segment, subsystem and equipment, and launch facilities,
• Tests of facilities and ground support equipment,
• Tests of ground segment.
This activity will be the update of EN16603-10-03:2014
NOTE: Parallel development of update of EN Standard and the new European TR17603-10-03.

  • Standard
    132 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EMC policy and general system requirements are specified in ECSS-E-ST-20 (equivalent to EN 16603-20).
This ECSS-E-ST-20-07 (equivalent to EN 16603-20-07) Standard addresses detailed system requirements (Clause 4), general test conditions, verification requirements at system level, and test methods at subsystem and equipment level (Clause 5) as w ell as informative limits (Annex A).
Associated to this standard is ECSS-E-ST-20-06 (equivalent to EN 16603-20-06) "Spacecraft charging", w hich addresses charging control and risks arising from environmental and vehicle-induced spacecraft charging w hen ECSS-E-ST-20-07 addresses electromagnetic effects of electrostatic discharges.
Annexes A to C of ECSS-E-ST-20 document EMC activities related to ECSS-E-ST-20-07: the EMC Control Plan (Annex A) defines the approach, methods, procedures, resources, and organization, the Electromagnetic Effects Verification Plan (Annex B) defines and specifies the verification processes, analyses and tests, and the Electromagnetic Effects Verification Report (Annex C) document verification results. The EMEVP and the EMEVR are the vehicles for tailoring this standard.

  • Standard
    103 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook provides additional information for the application of the Testing standard EN 16603-10-03.
This handbook will be the guideline for all space projects, related equipment and complete systems, by providing background information that aids the reader to better understand and meet the requirements of the standard.
The document would follow the flow of the Testing standard and in particular w hatever is excluded from the testing standard (see Scope of EN 16603-10-03) should also be excluded.
NOTE: EN 16603-10-03:2014 will be in parallel also updated to take into account the new TR.

  • Technical report
    267 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Standard applies to all parties involved at all levels in the realization of space segment hardware and its interfaces.
The objective of this Standard is to provide customers with a guaranteed performance and reliability up to the equipment end-of-life. To this end, the following are specified:
- Load ratios or limits to reduce stress applied to components;
- Application rules and recommendations.

  • Standard
    89 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The scope includes metallic Powder Bed Fusion technologies for space applications.
A clear definition and implementation of quality monitoring and control means is mandatory and shall address the full end to end metallic PBF process, encompassing:
- Design / Simulation
- Materials management (Powder, shielding gases, other consumables, recycling, etc.)
- Processing
- Post Processing
- Testing
By developing a single standard which can be tailored in the Project definition phase, it will help the Space Industry in performing the following functions
related to metallic PBF technologies over the full end to end process:
(i) select and qualify metallic PBF processes for the appropriate application,
(ii) select and validate raw materials for the appropriate applications,
(iii) define monitoring and control means during production to ensure that metallic PBF parts are produced with the required quality,
(iv) define requirements for applying Non-Destructive Inspection methods for the different metallic PBF parts,
(v) define requirements to verify/qualify space parts produced by metallic PBF processes for the selected applications and associated environment,
(vi) define specific requirements for operators/inspectors/instructors certification,
(vii) define requirements for metallic PBF machines certification,
(viii) define requirements for metallic PBF Companies certification.
The Standard will be complemented with informative Annexes, listing guidelines and best practices on specific technical aspects.

  • Standard
    78 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Using standard communication protocols for spacecraft communication links
can provide interface compatibility between communication devices and
components. Thus, it can improve the design and development process as well
as integration and test activities at all levels and provide the potential of
reusability across projects.
The aim of this space engineering standard is to define the interface services
and to specify their corresponding network protocol elements for spacecraft
using the Time-Triggered Ethernet data network. It also aims at defining
requirements for the harmonisation of the physical interfaces and usage of the
[IEEE 802.3] and [SAE AS6802] layer features.
This standard may be tailored for the specific characteristic and constraints of a
space project in conformance with ECSS‐S‐ST‐00

  • Standard
    103 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This ECSS Engineering Standard specifies the fracture control requirements to be imposed on space segments of space systems and their related GSE. The fracture control programme is applicable for space systems and related GSE when required by ECSS-Q-ST-40 or by the NASA document NST 1700.7, incl. ISS addendum. The requirements contained in this Standard, when implemented, also satisfy the fracture control requirements applicable to the NASA STS and ISS as specified in the NASA document NSTS 1700.7 (incl. the ISS Addendum). The NASA nomenclature differs in some cases from that used by ECSS. When STS/ISS-specific requirements and nomenclature are included, they are identified as such.
This standard may be tailored for the specific characteristic and constrains of a space project in conformance with ECSS-S-ST-00.

  • Standard
    86 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook is an acceptable way of meeting the requirements of adhesive materials in bonded
joints of EN 16603-32 (equivalent to ECSS‐E‐ST‐32).

  • Technical report
    458 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document recommends engineering practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs and constraints.
The target users of this handbook are engineers involved in design, analysis and verification of launchers and spacecraft in relation to structural stability issues. The current know‐how is documented in this handbook in order to make this expertise available to all European developers of space systems.
It is a guidelines document; therefore it includes advisory information rather than requirements.

  • Technical report
    462 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Handbook provides advice, interpretations, elaborations and software engineering best practices for the implementation of the requirements specified in EN 16603-40 (based on ECSS-E-ST-40C). The handbook is intended to be applicable to both flight and ground. It has been produced to complement the EN 16603-40 Standard, in the area where space project experience has reported issues related to the applicability, the interpretation or the feasibility of the Standard. It should be read to clarify the spirit of the Standard, the intention of the authors or the industrial best practices when applying the Standard to a space project.
The Handbook is not a software engineering book addressing the technical description and respective merits of software engineering methods and tools.

  • Standard
    198 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Handbook provides recommendations for the implementation of an Agile approach in space software projects complying with EN 16603-40 (based on ECSS-E-ST-40) and EN 16602-80 (based on ECSS-Q-ST-80).
This handbook is not an Agile development book, though it provides an Agile reference model based on Scrum and also covers other major Agile methods and techniques. Scrum has been selected as reference because of its widespread application in industry and its flexibility as a development framework to introduce or merge with other Agile methods and techniques. In relation to the EN 16603-40 and EN 16602-80, this handbook does not provide any tailoring of their requirements due to the use of the Agile approach, but demonstrates how compliance towards ECSS can be achieved. This handbook does not cover contractual aspects for this particular engineering approach, although it recognises that considering the approach of fixing cost and schedule and making the scope of functionalities variable, the customer and supplier need to establish specific contractual arrangements. Furthermore, it does not impose a particular finality for the use of Agile, either as a set of team values, project management process, specific techniques or supporting exploration by prototypes.

  • Technical report
    105 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document recommends engineering practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs and constraints.
The target users of this handbook are engineers involved in design, analysis and verification of spacecraft and payloads in relation to general structural loads analysis issues. The current know‐how is documented in this handbook in order to make this expertise available to all European developers of space systems.
It is a guidelines document; therefore it includes advisory information rather than requirements.

  • Technical report
    502 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook recommends engineering inserts and practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs.
The target users of this handbook are engineers involved in the design, analysis and verification of launchers and spacecraft in relation to insert usage. The current know‐how is documented in this handbook in order to make expertise to all European developers of space systems.
It is a guidelines document, therefore it includes advisory information rather than requirements.

  • Technical report
    488 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2021-07-08: This TR is based on ECSS-E-HB-32-23A Rev.1
Exception XML - No CEN template.

  • Technical report
    234 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The intended users of the “Mechanical shock design and verification handbook” are engineers involved in design, analysis and verification in relation to shock environment in spacecraft. The current know-how relevant to mechanical shock design and verification is documented in this handbook in order to make this expertise available to all European spacecraft and payload developers.
The handbook provides adequate guidelines for shock design and verification; therefore it includes advisory information, recommendations and good practices, rather than requirements.
The handbook covers the shock in its globally, from the derivation of shock input to equipment and sub-systems inside a satellite structure, until its verification to ensure a successful qualification, and including its consequences on equipment and sub-systems. However the following aspects are not treated herein:
- No internal launcher shock is treated in the frame of this handbook even if some aspects are common to those presented hereafter. They are just considered as a shock source (after propagation in the launcher structure) at launcher/spacecraft interface.
- Shocks due to fall of structure or equipment are not taken into account as they are not in the frame of normal development of a spacecraft.

  • Technical report
    540 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This ECSS handbook is intended to help implementers and users of data handling systems who are adhering to the EN 16603-50 (equivalent to ECSS-E-ST-50) series of standards. The handbook provides an overview of the EN 16603-50 standards and related CCSDS Recommended Standards and describes how the individual standards may be used together to form a coherent set of communications protocols. It also evaluates issues which could not be discussed in the Standards documents themselves, and provides guidance on option selection and implementation choices.
It provides guidance to the EN 16603-50 series of standards including related CCSDS Recommendations. The information provided is informative and intended to be used as best practice; it is not binding on implementers.
The information contained in this handbook is not part of the Standards. In the event of any conflict between the Standards and the material presented in this handbook, the ECSS Standards prevail.

  • Technical report
    255 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The scope of the document addresses the generic verification for all types of adhesive bonding for space applications including evaluation phases. It specifies all aspects of the adhesive bonding lifetime such as assembly, integration and testing, on-ground acceptance testing, storage, transport, pre-launch, launch and in-flight environments.
This standard does not cover requirements for:
-   adhesive bonding used in EEE mounting on printed circuit boards (ECSS-Q-ST-70-61)
-   adhesive bonding used in hybrid manufacturing (ESCC 2566000)
-   adhesive bonding for cover-glass on solar cell assemblies (ECSS-E-ST-20-08)
-   design of adhesive joint
-   long term storage and long term storage sample testing
-   performance of adhesive bond
-   functional properties of adhesive joint
•   co-curing processes
This standard may be tailored for the specific characteristics and constrains of a space project in conformance with ECSS-S-ST-00.

  • Standard
    90 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard specifies NDI requirements for flight parts, components and structures used for space missions. It covers the NDI methods and stipulates the certification levels for personnel. The qualification of such processes are also specified for non-standard NDI techniques or where complex components are concerned. This standard also identifies the best practice across the large range of international and national standards.
Visual inspection included in this standard is not intended to include incoming inspection of, for example, raw materials, damage during transport, storage and handling and parts procurement verification.
The minimum requirements for NDI documentation are specified in the DRDs of the Annexes.
This standard does not cover the acceptance criteria of components, structures and parts submitted to this examination; it is expected that these criteria are identified on specific program application documentation.
This Standard does not apply to EEE components.
This standard may be tailored for the specific characteristic and constrains of a space project in conformance with ECSS-S-ST-00.

  • Standard
    106 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard applies to all product types which exist or operate in space and defines the natural environment for all space regimes. It also defines general models and rules for determining the local induced environment.
Project-specific or project-class-specific acceptance criteria, analysis methods or procedures are not defined.
The natural space environment of a given item is that set of environmental conditions defined by the external physical world for the given mission (e.g. atmosphere, meteoroids and energetic particle radiation). The induced space environment is that set of environmental conditions created or modified by the presence or operation of the item and its mission (e.g. contamination, secondary radiations and spacecraft charging). The space environment also contains elements which are induced by the execution of other space activities (e.g. debris and contamination).
This standard may be tailored for the specific characteristic and constrains of a space project in conformance with ECSS-S-ST-00.

  • Standard
    200 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    532 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    408 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    432 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    435 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    461 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    461 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    116 pages
    English language
    sale 10% off
    e-Library read for
    1 day

In general terms, the scope of the consolidation of the electrical interface requirements for electrical actuators in the EN 16603-20-21 (equivalent to ECSS-E-ST-20-21) and the relevant explanation in the present handbook is to allow a more recurrent approach both for actuator electronics (power source) and electrical actuators (power load) offered by the relevant manufacturers, at the benefit of the system integrators and of the European space agencies, thus ensuring:
- Better quality
- Stability of performances
- Independence of the products from specific mission targets.
A recurrent approach enables manufacturing companies to concentrate on products and a small step improvement approach that is the basis of a high quality industrial output.
In particular, the scope of the present handbook is:
- To explain the type of actuators, the principles of operation and the typical configuration of the relevant actuator electronics,
- To identify important issues relevant to electrical actuators interfaces, and
- To give some explanations of the requirements set up in the EN 16603-20-21.

  • Technical report
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    423 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook is dedicated to the subject of thermal analysis for space applications. Thermal analysis is an important method of verification during the development of space systems. The purpose of this handbook is to provide thermal analysts with practical guidelines which support efficient and high quality thermal modelling and analysis.
Specifically, the handbook aims to improve:
1.the general comprehension of the context, drivers and constraints for thermal analysis campaigns;
2.the general quality of thermal models through the use of a consistent process for thermal modelling;
3.the credibility of thermal model predictions by rigorous verification of model results and outputs;
4.long term maintainability of thermal models via better model management, administration and documentation;
5.the efficiency of inter-organisation collaboration by setting out best practice for model transfer and conversion.
The intended users of the document are people, working in the domain of space systems, who use thermal analysis as part of their work. These users can be in industry, in (inter)national agencies, or in academia. Moreover, the guidelines are designed to be useful to users working on products at every level of a space project - that is to say at system level, sub-system level, unit level etc.
In some cases a guideline could not be globally applicable (for example not relevant for very high temperature applications). In these cases the limitations are explicitly given in the text of the handbook.

  • Technical report
    64 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Common engineering practices involve the assessment, through computer simulation (with software like NASCAP [RD.4] or SPIS [RD.5]), of the levels of absolute and differential potentials reached by space systems in flight. This is usually made mandatory by customers and by standards for the orbits most at risk such as GEO or MEO and long transfers to GEO by, for example, electric propulsion.
The ECSS-E-ST-20-06 standard requires the assessment of spacecraft charging but it is not appropriate in a standard to explain how such an assessment is performed. It is the role of this document ECSS-E-HB-20-06, to explain in more detail important aspects of the charging process and to give guidance on how to carry out charging assessment by computer simulation.
The ECSS-E-ST-10-04 standard specifies many aspects of the space environment, including the plasma and radiation characteristics corresponding to worst cases for surface and internal charging. In this document the use of these environment descriptions in worst case simulations is described.
The emphasis in this document is on high level charging in natural environments. One aspect that is currently not addressed is the use of active sources e.g. for electric propulsion or spacecraft potential control. The tools to address this are still being developed and this area can be addressed in a later edition.

  • Technical report
    59 pages
    English language
    sale 10% off
    e-Library read for
    1 day

In general terms, the scope of the consolidation of LCLs power distribution interface requirements in the EN 16603-20-20 (equivalent to ECSS-E-ST-20-20) and the relevant explanation in the present handbook is to allow a more recurrent approach for the specific designs offered by power unit manufacturers, at the benefit of the system integrators and of the Agency, thus ensuring:
- better quality,
- stability of performances, and
- independence of the products from specific mission targets.
A recurrent approach enables power distribution manufacturing companies to concentrate on products and a small step improvement approach that is the basis of a high quality industrial output.
In particular, the scope of the present handbook is:
- to explain the principles of operation of power distribution based on LCLs,
- to identify important issues related to LCLs, and
- to give some explanations of the requirements set up in the ECSS-E-ST-20-20 for power distribution based on LCLs, for both source and load sides.

  • Technical report
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day