This document defines concepts or unification of concepts for lithium minerals, lithium metals, lithium compounds, lithium alloys, and lithium scrap recycling, including concepts related to materials characteristics, physical characteristics, and chemical characteristics. This document can be used as a reference for concepts and unified concepts in lithium minerals, compounds, alloys and scrap recycling production, application, inspection, circulation, trading, scientific research and education purposes.

  • Standard
    17 pages
    English language
    sale 15% off
  • Standard
    17 pages
    French language
    sale 15% off

This document specifies two methods to assess the quality of sealed anodic oxidation coatings on aluminium and its alloys:
—     Method 1 which assesses the quality of sealed anodic oxidation coatings by measuring the loss of mass after immersion in a phosphoric acid based solution without prior acid treatment;
—     Method 2 which assesses the quality of sealed anodic oxidation coatings by measuring the loss of mass after immersion in a phosphoric acid based solution with prior acid treatment.
Method 1 is applicable to anodic oxidation coatings intended for decorative or protective purposes or where resistance to staining is important.
Method 2 is applicable to anodic oxidation coatings intended for outdoor architectural purposes. For less severe applications, Method 1 can be more suitable.
The methods are not applicable to the following:
—     hard-type anodic oxidation coatings which normally are not sealed;
—     anodic oxidation coatings that have been sealed only in dichromate solutions;
—     anodic oxidation coatings produced in chromic acid solutions;
—     anodic oxidation coatings that have undergone treatment to render them hydrophobic.
NOTE 1        While the methods assess the quality of hydrothermal sealing applied to anodized aluminium, they can be appropriate for other sealing methods.
NOTE 2        The methods are destructive and can serve as reference methods in case of doubt or dispute regarding the results of the test for loss of absorptive power (see ISO 2143) or the measurement of admittance (see ISO 2931).

  • Standard
    14 pages
    English language
    e-Library read for
    1 day

This document specifies how a preliminary welding procedure specification (pWPS) is qualified by welding procedure tests.
This document applies to production welding, repair welding and build-up welding.
This document defines the conditions for the execution of welding procedure tests and the range of qualification for welding procedures for all practical welding operations within the qualification of this document.
This document applies to the arc welding of wrought and cast aluminium and its alloys. In this document the term aluminium stands for aluminium and for aluminium alloys.
This document does not apply to finishing welding of aluminium castings, which is addressed in ISO 15614-4.
Arc welding of aluminium is covered by the following welding processes in accordance with ISO 4063:2023:
131 — MIG welding with solid wire electrode;
141 — TIG welding with solid filler material (wire/rod);
142 — Autogenous TIG welding;
15 — plasma arc welding.

  • Standard
    40 pages
    English language
    e-Library read for
    1 day

This document specifies a gravimetric method for the determination of the loss on ignition (LOI) in solid rare earth oxides, carbonates and oxalates. This document is applicable to the determination of the LOI in the range from 0,10 % to 15,00 % in rare earth oxides, from 25,00 % to 80,00 % in rare earth carbonates, and from 35,00 % to 75,00 % in rare earth oxalates.

  • Standard
    8 pages
    English language
    sale 15% off

This document specifies ways in which rare earths can be traced as they move through the supply chain between the separated products to rare earth permanent magnets, or otherwise to be further processed. The documented traceability information is applicable to purchasers, suppliers, and users of rare earth permanent magnets to identify parties in the supply chain who have processed a given shipment of rare earth material, the location of that rare earth material as it passes between supply chain nodes. The documented traceability information is also applicable to supply chain actors and end users who use this information to check the validity of any claims made on the rare earth permanent magnets concerning sustainability, environmental impact, or recycled material content.

  • Standard
    16 pages
    English language
    sale 15% off

This document specifies criteria for sampling from aluminium and aluminium alloy melts in order to determine the chemical composition.
NOTE   For sampling from product or laboratory samples see EN 14242 or EN 14726.

  • Standard
    12 pages
    English language
    e-Library read for
    1 day

This document specifies criteria for sampling from aluminium and aluminium alloy melts in order to determine the chemical composition.
NOTE   For sampling from product or laboratory samples see EN 14242 or EN 14726.

  • Standard
    12 pages
    English language
    e-Library read for
    1 day

This document specifies the mechanical properties of wrought aluminium and wrought aluminium alloy finstock.
The chemical composition limits of these materials are specified in EN 573 3, unless otherwise agreed between supplier and purchaser.
The designations of wrought aluminium and wrought aluminium alloys and the temper designations used in this document are specified in EN 573 3, and the temper designations are defined in EN 515.

  • Corrigendum
    2 pages
    English language
    e-Library read for
    1 day

This document specifies the mechanical properties of wrought aluminium and wrought aluminium alloy finstock.
The chemical composition limits of these materials are specified in EN 573 3, unless otherwise agreed between supplier and purchaser.
The designations of wrought aluminium and wrought aluminium alloys and the temper designations used in this document are specified in EN 573 3, and the temper designations are defined in EN 515.

  • Corrigendum
    2 pages
    English language
    e-Library read for
    1 day

This document specifies the requirements for the hexavalent chromium free chemical conversion process of magnesium and magnesium alloys to ensure an adhesion base before bonding and painting.
The purpose of this document is to specify design, quality and manufacturing requirements. It does not specify complete in-house process instructions; these are specified in the processors detailed process instructions.

  • Standard
    14 pages
    English language
    e-Library read for
    1 day

This document defines the requirements for grades of unalloyed aluminium ingots intended for remelting. It specifies the classification and designation applicable to these grades, the conditions in which they are produced, their properties and the marks by which they are identified.

  • Standard
    9 pages
    English language
    sale 15% off
  • Standard
    1 page
    English language
    sale 15% off
  • Standard
    1 page
    French language
    sale 15% off

This document specifies how a preliminary welding procedure specification (pWPS) is qualified by welding procedure tests.
This document specifies the conditions for the execution of welding procedure tests and the qualification range for welding procedures for all practical welding operations within the range of variables listed in Clause 8.
This document specifies the required tests. Additional tests can be required by application standards.
This document applies to the arc welding of titanium, zirconium and their alloys in all product forms. Arc welding is covered by the following processes in accordance with ISO 4063:
131 – metal inert gas welding, MIG welding;
14 – tungsten inert gas welding, TIG welding;
15 – plasma arc welding.
The principles of this document can be applied to other fusion welding processes.

  • Standard
    32 pages
    English language
    e-Library read for
    1 day

This document specifies a flame atomic absorption spectrometric method for the determination of acid-soluble and/or total aluminium in non-alloyed steel.
The method is applicable to aluminium contents between 0,005 % (mass fraction) and 0,20 % (mass fraction).

  • Standard
    22 pages
    English language
    e-Library read for
    1 day

This document defines terms and definitions related to titanium and titanium alloys.

  • Standard
    14 pages
    English language
    sale 15% off

This document specifies the mechanical properties of wrought aluminium and wrought aluminium alloy finstock.
The chemical composition limits of these materials are specified in EN 573 3, unless otherwise agreed between supplier and purchaser.
The designations of wrought aluminium and wrought aluminium alloys and the temper designations used in this document are specified in EN 573 3, and the temper designations are defined in EN 515.

  • Standard
    12 pages
    English language
    e-Library read for
    1 day

This document specifies the mechanical properties of wrought aluminium and wrought aluminium alloy finstock.
The chemical composition limits of these materials are specified in EN 573 3, unless otherwise agreed between supplier and purchaser.
The designations of wrought aluminium and wrought aluminium alloys and the temper designations used in this document are specified in EN 573 3, and the temper designations are defined in EN 515.

  • Standard
    12 pages
    English language
    e-Library read for
    1 day

ABSTRACT
This specification covers nickel (UNS N02200), low carbon nickel (UNS N02201), and solution strengthened nickel (UNS N02211) in the form of hot-worked, cold-worked, or annealed rods and bars of round, square, hexagonal, or rectangular solid section. The material shall conform to the chemical composition limits specified for nickel, copper, iron, manganese, carbon, silicon, and sulfur. Mechanical requirements including tensile strength, yield strength, and elongation are given for specific conditions and diameter or distance between parallel surfaces. Chemical analysis, tension test, and hardness test shall be performed.
SCOPE
1.1 This specification2 covers nickel (UNS N02200),3 low-carbon nickel (UNS N02201),3 and solution-strengthened nickel (UNS N02211) in the form of hot-worked and cold-worked rod and bar in the conditions shown in Table 1.    
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    6 pages
    English language
    sale 15% off
  • Technical specification
    6 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
3.1 The Rockwell hardness and Rockwell superficial tests are useful when the test specimens are sufficiently thick (in relation to the indentor load) to ensure that the results are not affected by the flow of metal on the surface of the anvil. On a solid piece the flow of metal on the under surface may be detected by a bulge or marking. On composite pieces where the contact materials are attached to backings of a different material, the thickness limitations imposed for a solid piece shall apply to the contact material portion of such composite pieces.
Note 1: As a matter of information, it may be stated that tests on fine silver showed that on annealed samples having a Rockwell 15T hardness of 27, the readings were not affected on thicknesses 1/16 in. (1.6 mm) or over. On thicknesses of 1/32 in. (0.8 mm) Rockwell 15T scale readings of 72 and higher were not affected.  
3.2 The microindentation hardness test is of questionable significance when the metallic phases in a material are so large that the indentation does not represent an accurate average hardness. Sintered contact materials usually contain segregates differing greatly in hardness from the matrix hardness and may destroy the validity of microindentation hardness readings.  
3.3 Other aspects of significance and use shall be as described in the particular ASTM test method used, as listed in Section 2.
SCOPE
1.1 This test method covers the determination of the hardness of metallic materials used for electrical contacts. Rockwell, Rockwell superficial, Brinell, and microindentation hardness tests are included, along with information on the limitations and use of these tests.  
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar will all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    2 pages
    English language
    sale 15% off

ABSTRACT
This specification covers UNS N06625, N06219, and N08825 nickel-alloy welded pipe in the annealed condition. The pipe shall be manufactured from flat-rolled alloy by an automatic welding process with no additional filler metal. The pipe material shall be cold-worked, annealed, and nondestructively tested. The pipe shall be furnished with oxide removed. The material shall conform to the composition required by the specification. The pipe shall be subjected to tensile, yield, elongation, transverse guided bend, and nondestructive test requirements. Nondestructive test includes hydrostatic, pneumatic, eddy current, ultrasonic, leak, and electric testing. Acceptable size limit of cracks or other defect after bending test is specified.
SCOPE
1.1 This specification covers welded UNS N06625,2 UNS N062192 and UNS N088252 pipe in the annealed condition (temper) for general corrosion applications.  
1.2 This specification covers pipe sizes in schedules shown in the Permissible Variations in Outside Diameter and Wall Thickness for Welded Pipe table of Specification B775.  
1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.4 The following precautionary caveat pertains only to the test methods portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    3 pages
    English language
    sale 15% off
  • Technical specification
    3 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 HIP of castings should be performed in the as cast condition. Post HIP inspection of castings should result in a reduction of porosity that is evident in x-ray grade and properties.  
4.2 HIP will not eliminate inclusions or surface-connected porosity in a casting.
SCOPE
1.1 This guide covers requirements for hot isostatic pressing (HIP) of aluminum alloy castings. HIPing is a process in which components are subjected to the simultaneous application of heat and high pressure in an inert gas medium. The process is to be used for the reduction of internal (non-surface connected) porosity. The document is to describe the general parameters of the HIP process, describe certification procedures and a description that the process has been followed. It is not intended to be a description of a heat treating procedure. This is not meant to supersede an end user’s specification where one exists.2  
1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Guide
    4 pages
    English language
    sale 15% off

ABSTRACT
This specification covers a gold-rich, age-hardenable alloy in rod, wire, and strip form applicable to electrical contacts. The material shall be finished by cold working, annealing, turning, grinding, and age hardening. The materials shall conform to the specified chemical composition requirements. Tensile strength, elongation, and hardness shall be determined by tension and hardness tests. Chemical analysis shall be done by spectrochemical or wet analysis methods.
SCOPE
1.1 This specification covers a gold-rich, age-hardenable alloy in rod, wire, and strip form applicable to electrical contacts.  
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.3 The following precautionary statement pertains to the test method portion only, Section 8, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    4 pages
    English language
    sale 15% off
  • Technical specification
    4 pages
    English language
    sale 15% off

This document specifies the chemical composition limits of wrought aluminium and wrought aluminium alloys and form of products.
NOTE The chemical composition limits of aluminium and aluminium alloys specified herein are completely identical with those registered with the Aluminium Association, 1525, Wilson Boulevard, Suite 600, Arlington, VA 22209, USA, for the corresponding alloys.

  • Standard
    57 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
4.1 This test method provides a quantitative measure of the susceptibility to intergranular corrosion of Al-Mg and Al-Mg-Mn alloys. The nitric acid dissolves a second phase, an aluminum-magnesium intermetallic compound (βAl-Mg), in preference to the solid solution of magnesium in the aluminum matrix. When this compound is precipitated in a relatively continuous network along grain boundaries, the effect of the preferential attack is to corrode around the grains, causing them to fall away from the specimens. Such dropping out of the grains causes relatively large mass losses of the order of 25 mg/cm2  to 75 mg/cm2  (160 mg/in.2 to 480 mg/in.2), whereas, samples of intergranular-resistant materials lose only about 1 mg/cm2 to 15 mg/cm2 (10 mg/in.2 to 100 mg/in.2). When the βAl-Mg compound is randomly distributed, the preferential attack can result in intermediate mass losses. Metallographic examination is required in such cases to establish whether or not the loss in mass is the result of intergranular attack.  
4.2 The precipitation of the second phase in the grain boundaries also gives rise to intergranular corrosion when the material is exposed to chloride-containing natural environments, such as seacoast atmospheres or sea water. The extent to which the alloy will be susceptible to intergranular corrosion depends upon the degree of precipitate continuity in the grain boundaries. Visible manifestations of the attack may be in various forms such as pitting, exfoliation, or stress-corrosion cracking, depending upon the morphology of the grain structure and the presence of sustained tensile stress.3
SCOPE
1.1 This test method, also known as the Nitric Acid Mass Loss Test (NAMLT), covers a procedure for constant immersion intergranular corrosion testing of 5XXX series aluminum alloys.  
1.2 This test method is applicable only to wrought products.  
1.3 This test method covers type of specimen, specimen preparation, test environment, and method of exposure.  
1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

This document specifies the chemical composition limits of wrought aluminium and wrought aluminium alloys and form of products.
NOTE The chemical composition limits of aluminium and aluminium alloys specified herein are completely identical with those registered with the Aluminium Association, 1525, Wilson Boulevard, Suite 600, Arlington, VA 22209, USA, for the corresponding alloys.

  • Standard
    57 pages
    English language
    e-Library read for
    1 day

ABSTRACT
This specification covers iron-nickel-chromium and nickel alloy castings specially processed with restricted melt practices, weldability testing, and nondestructive examination (NDE) requirements for use in pressure retaining parts with corrosive service environments. The choice of manufacturing procedure to be used for producing the alloy castings shall be according to specified metallic contents. Materials shall conform to specified chemical composition and tensile property requirements, and weldability qualifications. Nondestructive examination requirements such as casting thickness shall be evaluated by visual, radiographic, and liquid penetrant inspection. Castings shall be repair welded and solution heat treated prior to final cleaning by blasting, and shall not be peened, plugged, or impregnated.
SCOPE
1.1 This specification covers iron-nickel-chromium and nickel alloy castings specially processed with restricted melt practices, weldability testing, and nondestructive examination (NDE) requirements.  
1.2 A number of grades of iron-nickel-chromium and nickel alloy castings are included in this specification. Since these grades possess varying degrees of suitability for service in corrosive environments, it is the responsibility of the purchaser to determine which grade shall be furnished. Selection will depend on design and service conditions, mechanical properties, and corrosion-resistant characteristics.  
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3.1 This specification is expressed in both inch-pound units and in SI units; however, unless the purchase order or contract specifies the applicable M-specification designation (SI units), the inch-pound units shall apply. Within the text, the SI units are shown in brackets.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    7 pages
    English language
    sale 15% off
  • Technical specification
    7 pages
    English language
    sale 15% off

ABSTRACT
This specification covers the requirements relating to rinsed and non-rinsed non-hexavalent chromium conversion coatings on aluminum and aluminum alloys intended to retard corrosion; as a base for organic films including paints, plastics, and adhesives; and as.a protective coating having a low electrical contact impedance. Coatings are categorized into four classes according to corrosion protection and finish. The type of conversion coating depends on the composition of the solution and may also be affected by pH, temperature, duration of the treatment, and the nature and surface condition. Films are normally applied by dipping, but may also be applied by inundation, spraying, roller coating, or by wipe-on techniques. Coatings shall adhere to specified electrical resistance, adhesion, and corrosion resistance requirements.
SCOPE
1.1 This specification covers the requirements relating to rinsed and non-rinsed non-hexavalent chromium conversion coatings on aluminum and aluminum alloys intended to give protection against corrosion and as a base for other coatings.  
1.2 Aluminum and aluminum alloys are conversion coated in order to retard corrosion; as a base for organic films including paints, plastics, and adhesives; and as a protective coating having a low electrical contact impedance.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory requirements prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    3 pages
    English language
    sale 15% off

ABSTRACT
This specification covers welded tubes made of UNS N06625, UNS N06219 and UNS N08825 alloys for use in boilers, heat exchangers and condensers for general corrosion prevention in either low or high-temperature environments. This standard contains information on manufacturing, chemical composition, mechanical properties and dimensional requirements for the welded tubes.
SCOPE
1.1 This specification covers welded UNS N06219, UNS N06625, UNS N08642, UNS N08825, and UNS N08827 nickel alloy boiler, heat exchanger, and condenser tubes for general corrosion resisting and low or high-temperature service.  
1.2 This specification covers tubes 1/8 in. to 5 in. (3.18 mm to 127 mm), inclusive, in outside diameter and 0.015 in. to 0.500 in. (0.38 mm to 12.70 mm), inclusive, in wall thickness. Specification B751 lists the dimensional requirements of these sizes. Tubes having other dimensions may be furnished provided such tubing complies with all other requirements of this specification.  
1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    3 pages
    English language
    sale 15% off
  • Technical specification
    3 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This procedure is suitable for manufacturing control and for verifying that the product meets specifications. It provides rapid, multi-element determinations with sufficient accuracy to assure product quality. The analytical performance data included may be used as a benchmark to determine if similar X-ray spectrometers provide equivalent precision and accuracy, or if the performance of a particular spectrometer has changed.
SCOPE
1.1 This test method covers the analysis of nickel and cobalt based alloys by wavelength dispersive X-ray fluorescence spectrometry for determination of the following elements:    
Element  
Composition Range  
Aluminum  
0.0X to X.XX  
Chromium  
0.XX to XX.XX  
Copper  
0.0X to XX.XX  
Cobalt  
0.XX to XX.XX  
Hafnium  
0.0X to 0.XX  
Iron  
0.XX to XX.XX  
Manganese  
0.XX to X.XX  
Molybdenum  
0.0X to XX.XX  
Nickel  
XX.XX to XX.XX  
Niobium  
0.XX to X.XX  
Phosphorus  
0.00X to 0.0XX  
Silicon  
0.0X to 0.XX  
Tantalum  
0.00X to X.XX  
Titanium  
0.XX to X.XX  
Tungsten  
0.XX to X.XX  
Vanadium  
0.00X to 0.XX  
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.3 This method has been interlaboratory tested for the elements and quantification ranges specified in 1.1. The ranges in 1.1 indicate intervals within which results have been demonstrated to be quantitative by the interlaboratory study. It may be possible to extend this method to other elements or different composition ranges provided that a method validation study as described in Guide E2857 is performed and that the results of this study show that the method extension is meeting laboratory data quality objectives.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    13 pages
    English language
    sale 15% off
  • Standard
    13 pages
    English language
    sale 15% off

ABSTRACT
This specification covers 6101 aluminum-alloy extruded bar, rod, tube, pipe, (Schedules 40 and 80), structural profiles, and profiles in selected tempers for use as electric conductors. The bars, rods, tubes, pipes, structural profiles and profiles shall be produced by hot extrusion or by similar methods. Pipe or tube may be produced through porthole or bridge type dies. Tensile properties of the specimens such as tensile and yield strengths and bending shall be determined by tension test and bending test, respectively. Electrical resistivity and conductivity shall be determined.
SCOPE
1.1 This specification covers 6101 aluminum-alloy extruded bar, rod, tube, pipe, (Schedules 40 and 80), structural profiles, and profiles in selected tempers for use as electric conductors as follows:  
1.1.1 Type B—Hot-finished bar, rod, tube, pipe, structural profiles and profiles in T6, T61, T63, T64, T65, and H111 tempers with Type B tolerances, as shown in the “List of ANSI Tables of Dimensional Tolerances.”  
1.1.2 Type C—Hot-finished rectangular bar in T6, T61, T63, T64, T65, and H111 tempers with Type C tolerances as listed in the tolerances and permissible variations tables.  
1.2 Alloy and temper designations are in accordance with ANSI H35.1. The equivalent Unified Numbering System alloy designation in accordance with Practice E527 is A96101 for Alloy 6101.  
Note 1: Type A material, last covered in the 1966 issue of this specification, is no longer available; therefore, requirements for cold-finished rectangular bar have been deleted.  
1.3 The values stated in either SI or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    8 pages
    English language
    sale 15% off
  • Technical specification
    8 pages
    English language
    sale 15% off

This document specifies the requirements relating to:
Heat-resisting nickel base alloy NiCr20Co3Fe3
Rm ≥ 650 MPa
Sheets and strips, cold rolled
0,25 mm < a ≤ 3 mm
for aerospace applications.

  • Standard
    9 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
5.1 This test method provides a rapid, economical method for determination of transformation temperatures.  
5.2 Measurement of the specimen motion closely parallels many shape memory applications and provides a result that is applicable to the function of the material.  
5.3 This test method uses a wire, tube, strip specimen, or a wire, tube, or strip specimen extracted from a component; thus, it provides an assessment of a nickel titanium product in its semifinished or finished form.  
5.4 This test method may be used on annealed samples to determine the transformation temperatures and ensure the alloy formulation, since chemical analysis is not precise enough to adequately determine the nickel-to-titanium ratio of shape memory alloys.  
5.5 In general, the transformation temperatures measured by this method will not be the same as those measured by the DSC method defined in Test Method F2004. Therefore, the results of DSC and BFR cannot be compared directly.  
5.5.1 The BFR method measures the transformation temperatures by tracking shape recovery of stress-induced martensite deformed below the R′s temperature or the As temperature. In contrast, the DSC method measures the start, peak, and finish temperatures of the thermal transformation of martensite to R-phase or to austenite. See Refs (1-4).  
5.6 The test method is applicable to shape memory alloys with Af temperatures in the range of approximately –25 to 90 °C.
SCOPE
1.1 This test method describes a procedure for quantitatively determining the martensite-to-austenite or the martensite to R-phase transformation temperature of annealed, aged, shape-set, or tempered nickel-titanium alloy specimens by deforming the specimen in bending and measuring the deformation recovered during heating through the thermal transformation (BFR method). See 3.1.1.
Note 1: For aged, shape-set, or tempered specimens the transformation may be from martensite to austenite or from martensite to R-phase. See Reference (1)2 for details.  
1.2 The test specimen may be wire, tube, or strip or a specimen extracted from a semifinished or finished component.  
1.2.1 For specimens not in the form of a wire, tube, or strip that are extracted from semifinished or finished components, a wire, tube, or strip shaped test specimen shall be made from the component such that the deformation mode in the test specimen is pure bending.  
1.2.2 Other specimen geometries or displacements resulting in a more complex strain state, such as bending with torsion or buckling, are beyond the scope of this standard.  
1.3 Ruggedness tests have demonstrated that sample Af must be limited to obtain good test results. See 5.6 for details. Ruggedness tests have demonstrated that deformation strain, deformation temperature, and equilibration time at the deformation temperature must be controlled to obtain good test results. See 9.1, 9.2, and 9.4 for details.  
1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this standard.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    8 pages
    English language
    sale 15% off

ABSTRACT
This specification establishes the requirements for plates, sheets, strips, and rolled bars of copper-chromium-iron-titanium alloys with Copper Alloy UNS No. C18080. The material for manufacture shall be a cast bar, cake, slab or so forth of such purity and soundness as to be suitable for processing by hot working, cold working, and subsequent annealing to produce finished products that have a uniform wrought structure and meet the specified temper properties. Products shall be available in the mill hardened temper (TM). Products shall be sampled and prepared, then tested accordingly to examine their conformance to dimensional (mass, thickness, width, length, straightness, and edge), mechanical (tensile strength and Rockwell hardness), electrical (resistivity and equivalent conductivity), and chemical composition requirements.
SCOPE
1.1 This specification covers the requirements for Copper Alloy UNS No. C18080 for plate, sheet, strip, and rolled bar.
Note 1: Since Copper Alloy UNS No. C18080 is frequently used in a variety of applications where yield strength and stress-corrosion resistance may be critical, it is recommended that drawings or samples of the part to be fabricated and details of application be submitted for use in establishing temper and treatment of material.
Note 2: Copper Alloy UNS No. C18080 is covered by a patent. Interested parties are invited to submit information regarding the identification of an alternative(s) to this patented item to ASTM International headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee,1 which you may attend.  
1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.3 The following safety hazard caveat pertains only to the test method(s) described in this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    4 pages
    English language
    sale 15% off
  • Technical specification
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Crude petroleum contains sulfur compounds, most of which are removed during refining. However, of the sulfur compounds remaining in the petroleum product, some can have a corroding action on various metals, including copper, and this corrosivity is not necessarily related to the total sulfur content. The effect can vary according to the chemical types of sulfur compounds present. This copper foil strip corrosion test is designed to assess the relative degree of corrosivity of a petroleum product towards copper and copper-containing alloys using a shorter test duration than that specified in Test Method D130.  
4.2 Some sulfur species may become corrosive to copper only at higher temperatures. Thus, higher test temperatures, particularly 100 °C (212 °F), may be used to test some products by the pressure vessel procedure.
SCOPE
1.1 This test method covers the determination of the corrosiveness to copper of aviation gasoline, aviation turbine fuel, automotive gasoline, natural gasoline, or other hydrocarbons having a vapor pressure no greater than 124 kPa (18 psi), cleaners (for example, Stoddard solvent), kerosine, diesel fuel, distillate fuel oil, lubricating oil, and other petroleum products.  
1.2 The values stated in SI units are to be regarded as the standard.  
1.2.1 Exception—The values in parentheses are provided for information only.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 6.1, 10.1.1, and Annex A2.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    9 pages
    English language
    sale 15% off
  • Standard
    9 pages
    English language
    sale 15% off

ABSTRACT
This specification covers high magnesium marine application aluminum-alloy in those alloy tempers for flat sheet, coiled sheet, and plate, in the mill finish that are intended for marine and similar environments. An inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, cast or melt lot, and thickness, subjected to inspection at one time. The material shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Each coil, sheet and plate shall be examined to determine conformance to this specification with respect to general quality and identification marking. One sample shall be taken from each end of each parent coil, or parent plate. Alloy-tempers are manufactured and corrosion tested for intended use in marine hull construction or in marine applications where frequent or constant direct contact with seawater is expected. The specimen shall be capable of exhibiting resistance to intergranular corrosion as indicated by an acceptable mass-loss when tested and shall also be capable of exhibiting no evidence of exfoliation or corrosion. Under metallographic examination, the microstructure of a sample from each production lot shall be compared to that of the producer-established reference photomicrograph of acceptable material, in the same thickness range. Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.
SCOPE
1.1 This specification covers high magnesium aluminum-alloy products in the mill finish condition that are intended for marine hull construction and other marine applications where frequent or constant direct contact with seawater is expected and for similar environments (Note 1). Aluminum alloy products covered by this specification include the alloy-tempers of flat sheet, coiled sheet, and plate shown in Table 2 [Table 3] and Table 4 [Table 5], and alloy-tempers of extruded profiles shown in Table 6 [Table 7].
Note 1: There are other aluminum alloy-temper products that may be suitable for use in marine and similar environments, but which may not require the corrosion resistance testing specified by B928/B928M. See Specification B209/B209M for other aluminum sheet and plate alloy-temper products. For other aluminum extruded alloy-temper products see Specification B221 or B221M and/or other relevant specifications for aluminum extruded products.  
1.2 Alloy and temper designations are in accordance with ANSI H35.1/H35.1 (M). The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A95083 for 5083 in accordance with Practice E527.  
1.3 The values stated in either SI units (Table 3 and Table 5) or inch-pound units (Table 2 and Table 4) are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of each other. Combining values from the two systems may result in non-conformance with the standard.  
1.4 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    15 pages
    English language
    sale 15% off

This document establishes temper designations as required for identification for all product forms of wrought aluminium and aluminium alloys.

  • Standard
    12 pages
    English language
    sale 15% off

This document specifies an inductively coupled plasma atomic emission spectrometric method for the determination of the contents (mass fraction) of aluminium and vanadium in 6Al-4V titanium alloys. This method is applicable to all kinds of 6Al-4V titanium alloys specified in ISO 23515 (designation of titanium alloys) for aluminium in the range from 4,70 % to 7,00 % and vanadium in the range from 3,00 % to 5,00 %.

  • Standard
    11 pages
    English language
    sale 15% off

This document specifies an infrared absorption method after combustion in an induction furnace under oxygen atmosphere for the determination of carbon in titanium and titanium alloys. The method is applicable to carbon contents between 0,003 % (mass fraction) and 0,050 % (mass fraction).

  • Standard
    9 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 The UNS provides a means of correlating many nationally used numbering systems currently administered by societies, trade associations, and individual users and producers of metals and alloys, thereby avoiding confusion caused by use of more than one identification number for the same material; and by the opposite situation of having the same number assigned to two or more entirely different materials. It also provides the uniformity necessary for efficient indexing, record keeping, data storage and retrieval, and cross referencing.  
4.2 A UNS number is not in itself a specification, since it establishes no requirements for form, condition, quality, etc. It is a unified identification of metals and alloys for which controlling limits have been established in specifications published elsewhere.
Note 5: Organizations that issue specifications should report to appropriate UNS number-assigning offices (3.1.2) any specification changes that affect descriptions shown in published UNS listings.
SCOPE
1.1 This practice (Note 1) covers a unified numbering system (UNS) for metals and alloys that have a “commercial standing” (see Note 2), and covers the procedure by which such numbers are assigned. Section 2 describes the system of alphanumeric designations or “numbers” established for each family of metals and alloys. Section 3 outlines the organization established for administering the system. Section 5 describes the procedure for requesting number assignment to metals and alloys for which UNS numbers have not previously been assigned.
Note 1: UNS designations are not to be used for metals and alloys that are not registered under the system described herein, or for any metal or alloy whose composition differs from those registered.
Note 2: The terms “commercial standing,” “production usage,” and other similar terms are intended to apply to metals and alloys in active commercial production and use, although the actual amount of such use will depend, among other things, upon the type of metals and alloys involved and their application.
The various standardizing organizations involved with the individual industries apply their own established criteria to define the status of a metal or alloy in terms of when a UNS designation number will be assigned. For instance, ASTM Committee A01 requires details of heat analysis, mechanical properties, and processing requirements for addition of a new grade or alloy to its specifications. The Copper Development Association requires that the material be “in commercial use (without tonnage limits);” the Aluminum Association requires that the alloy be “offered for sale (not necessarily in commercial use);” the SAE Aerospace Materials Division calls for “repetitive procurement by at least two users.”
Thus, while no universal definition for usage criteria is established, the UNS numbers are intended to identify metals and alloys that are generally in regular production and use. A UNS number will not ordinarily be issued for a material that has just been conceived or that is still in only experimental trial.  
1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    7 pages
    English language
    sale 15% off
  • Standard
    7 pages
    English language
    sale 15% off

This document specifies the requirements and corresponding test methods for aluminium pigments suitable for use in paints including:
a) general, decorative and protective paints, and
b) special finishing paints.

  • Standard
    33 pages
    English language
    e-Library read for
    1 day

This document prescribes requirements for the classification of nickel and nickel-alloy covered
electrodes for manual metal arc welding and overlaying. The classification of the covered electrodes is
based on the chemical composition of their deposited all-weld metal. It includes those compositions in
which the nickel content exceeds that of any other element.

  • Standard
    30 pages
    English language
    e-Library read for
    1 day

This document specifies the requirements and corresponding test methods for vacuum metallized aluminium pigments (VMP) suitable for use in paints and printing ink industries.

  • Standard
    11 pages
    English language
    e-Library read for
    1 day

This document specifies the composition, property requirements and tolerances on dimensions and form for seamless round drawn copper and copper alloy tubes for general purposes supplied in the size range from 3 mm up to and including 450 mm outside diameter and from 0,3 mm up to and including 20 mm wall thickness.
The sampling procedures and the methods of test for verification of conformity to the requirements of this document are also specified.
NOTE   Tubes having an outside diameter less than 80 mm and/or a wall thickness greater than 2 mm in certain alloys are most frequently used for free machining purposes which are specified in EN 12168.

  • Standard
    51 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
4.1 These test methods for the chemical analysis of beryllium metal are primarily intended as referee methods to test such materials for compliance with compositional specifications. It is assumed that all who use these test methods will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory.
SCOPE
1.1 These test methods cover the chemical analysis of beryllium having chemical compositions within the following limits:    
Element  
Range, %  
Aluminum  
0.05 to 0.30  
Beryllium  
97.5 to 100    
Beryllium Oxide  
0.3 to 3    
Carbon  
0.05 to 0.30  
Copper  
0.005 to 0.10  
Chromium  
0.005 to 0.10  
Iron  
0.05 to 0.30  
Magnesium  
0.02 to 0.15  
Nickel  
0.005 to 0.10  
Silicon  
0.02 to 0.15  
1.2 The test methods in this standard are contained in the sections as follows.    
Sections  
Chromium by the Diphenylcarbazide Spectrophotometric Test Method
[0.004 % to 0.04 %]  
10 – 19  
Iron by the 1,10-Phenanthroline Spectrophotometric Test Method
[0.05 % to 0.25 %]  
20 – 29  
Manganese by the Periodate Spectrophotometric Test Method
[0.008 % to 0.04 %]  
30 – 39  
Nickel by the Dimethylglyoxime Spectrophotometric Test Method
[0.001 % to 0.04 %]  
40 – 49  
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    8 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This test method for the chemical analysis of metals and alloys is primarily intended to test such materials for compliance with compositional specifications. It is assumed that all who use these test methods will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory.
SCOPE
1.1 This test method describes the determination of beryllium in copper-beryllium alloys in percentages from 0.1 % to 3.0 % by phosphate gravimetry.  
1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 9.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    3 pages
    English language
    sale 15% off
  • Standard
    3 pages
    English language
    sale 15% off

This document specifies the composition, property requirements and tolerances on dimensions and form for seamless round drawn copper and copper alloy tubes for general purposes supplied in the size range from 3 mm up to and including 450 mm outside diameter and from 0,3 mm up to and including 20 mm wall thickness.
The sampling procedures and the methods of test for verification of conformity to the requirements of this document are also specified.
NOTE   Tubes having an outside diameter less than 80 mm and/or a wall thickness greater than 2 mm in certain alloys are most frequently used for free machining purposes which are specified in EN 12168.

  • Standard
    51 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
5.1 Constant force thermal cycling tests determine the effect of stress on the transformation temperatures, recovered strain and residual strain of a shape memory alloy. The tests may be for one thermal cycle. A standard test method for force controlled repeated thermal cycling of shape memory alloys is currently under development.  
5.2 Measurement of the specimen's thermomechanical behavior closely parallels many shape memory applications and provides a result that is applicable to the function of the material.  
5.3 This test method may be used for, but is not limited to, wire, round tube, or strip samples. Thus it is able to provide an assessment of the product in its semi-finished form.  
5.4 This test method provides a simple method for determining transformation temperatures by heating and cooling specimens through their full thermal transformation under force.  
5.5 This test method can be used on trained and processed material in a semi-finished form to measure Two Way Shape Memory Effect by comparing the strain in the austenite state and martensite states with no minimal applied stress. The force is set to a minimum value not to exceed a corresponding stress of 7 MPa (in accordance Test Method F2516).  
5.6 This test method is useful for quality control, specification acceptance, and research.  
5.7 Transformation temperatures derived from this test method may not agree with those obtained by other test methods due to the effects of strain and stress on the transformation.  
5.8 Components such as springs or other semi-finished parts can be tested using this method as agreed upon by the customer and supplier. Units of stress and strain can be replaced with force and displacement.
SCOPE
1.1 This test method defines procedures for thermomechanical cycling of shape memory alloy (SMA) material and components under constant force. This method characterizes the transformation properties such as transformation temperatures, actuation strain and residual strain, when a SMA is thermally cycled through the phase transformation under a constant applied force. This test is done to provide data for the selection of SMA materials, quality control, design allowables and actuator design.  
1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    6 pages
    English language
    sale 15% off

This document specifies requirements for classification of solid wire electrodes, solid strip electrodes, solid wires and solid rods for fusion welding of nickel and nickel alloys. The classification of the solid wire electrodes, solid strip electrodes, solid wires and solid rods is based on their chemical composition. It includes those compositions in which the nickel content exceeds that of any other element.
The principles of this document can be applied to metal powders for cladding, hard facing and additive manufacturing.

  • Standard
    35 pages
    English language
    e-Library read for
    1 day