This document specifies the design, safety and operation characteristics of gaseous hydrogen land vehicle (GHLV) refuelling connectors.
GHLV refuelling connectors consist of the following components, as applicable:
—     receptacle and protective cap (mounted on vehicle);
—     nozzle;
—     communication hardware.
This document is applicable to refuelling connectors which have nominal working pressures or hydrogen service levels up to 70 MPa and maximum flow rates up to 120 g/s.
This document is not applicable to refuelling connectors dispensing blends of hydrogen with natural gas.

  • Standard
    64 pages
    English language
    e-Library read for
    1 day

This document specifies the requirements for the design, manufacture and testing of cylinders, tubes and other pressure vessels of steel, stainless steel, aluminium alloys or of non-metallic construction material. These are intended for the stationary storage of gaseous hydrogen of up to a maximum water capacity of 10 000 l and a maximum allowable working pressure not exceeding 1 100 bar, of seamless metallic construction (Type 1) or of composite construction (Types 2, 3 and 4), hereafter referred to as pressure vessels.
NOTE   Additional requirements with regard to assemblies (manifolded cylinders and tubes and other pressure vessels) are not covered by this document.
This document is not applicable to Type 2 and 3 vessels with welded liners.
This document is not applicable to pressure vessels used for solid, liquid hydrogen or hybrid cryogenic-high pressure hydrogen storage applications.
This document is not applicable to external piping which can be designed according to recognized standards.

  • Standard
    68 pages
    English language
    e-Library read for
    1 day

This document specifies the safety requirements of hydrogen gas generation appliances or systems that use electrochemical reactions to electrolyse water to produce hydrogen, herein referred to as hydrogen generators.

  • Standard
    73 pages
    English language
    e-Library read for
    1 day

This document specifies the requirements for rubber O-rings and their housing dimensions, which seal gaseous hydrogen, in high-pressure hydrogen devices for gaseous hydrogen fuelling stations, such as valves, filters, joints, breakaways and other such devices. This document is applicable to O-rings suitable for sealing hydrogen gas of up to 70 MPa nominal working pressure, in the operating temperature range of −40 °C to 65 °C. This document contains safety requirements for the design of O-rings and their housing dimensions, compound design, and test methods for seal systems. This document applies to newly manufactured O-rings for hydrogen gas seal in high-pressure hydrogen devices used in hydrogen fuelling stations. NOTE 1 This document was developed using the ISO 3601 series. NOTE 2 This document was developed based on several temperature classes of rubber O-rings suitable for use with high-pressure hydrogen seals in devices for gaseous hydrogen stations. NOTE 3 The operating temperature is not a temperature of the hydrogen gas to be sealed by the O-ring gas seal system. Regardless of the operating temperature, the hydrogen gas temperature to be sealed can rise up to 180 °C. NOTE 4 The O-ring seal system for the high-pressure hydrogen devices are designed by the device manufacturers. The detailed specifications of the O-rings and design of static or non-static high-pressure hydrogen seal systems for the high-pressure hydrogen devices are determined as agreed upon between the interested parties by referring to this document.

  • Standard
    23 pages
    English language
    sale 15% off

This document specifies the test method for determining the content of oil vapour in compressed air using pressurized sampling and gas chromatography. This document elaborates sampling, measurement, evaluation, uncertainty considerations and reporting in respect of the compressed air purity class for oil, in accordance with ISO 8573-1. For organic vapours and other gaseous contaminants, the same sampling procedure can be used, however the analysis method will be different depending on the target component. As guidance, ISO 8573-6 and ISO 16000-6 can be used.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    13 pages
    French language
    sale 15% off
  • Standard
    13 pages
    French language
    sale 15% off

This document specifies the safety requirements of hydrogen gas generation appliances or systems that use electrochemical reactions to electrolyse water to produce hydrogen, herein referred to as hydrogen generators.

  • Standard
    73 pages
    English language
    e-Library read for
    1 day

This document specifies the safety requirements of hydrogen gas generation appliances or systems that use electrochemical reactions to electrolyse water to produce hydrogen, herein referred to as hydrogen generators.

  • Standard
    63 pages
    English language
    sale 15% off
  • Standard
    69 pages
    French language
    sale 15% off

This document specifies the requirements for wire or textile reinforced hoses and hose assemblies suitable for dispensing hydrogen up to 70 MPa nominal working pressure, in the operating temperature range of −40 °C to 65 °C. This document specifies safety requirements for material, design, manufacture and testing of gaseous hydrogen hose and hose assemblies for hydrogen fuelling stations. This document does not apply to the following hoses and hose assemblies: a) those used as part of a vehicle high pressure on-board fuel storage system; b) those used as part of a vehicle low pressure fuel delivery system; and c) flexible metal hoses. NOTE 1 This document was developed primarily for hoses and hose assemblies for dispensing high-pressure hydrogen from refuelling dispensers to hydrogen vehicles. ISO 16964 addresses hoses used to deliver hydrogen from a transportable vessel (e.g. trailer) into a buffer storage of a station. NOTE 2 Hose assemblies include a hose with connectors on each end (see Figure 1). Each connector has two basic functional elements that are addressed as described below. a) Coupling to hose. This function is defined by requirements and verified (along with the hose itself) by performance-based tests in this document. b) Fitting for transition and connection to the piping system or equipment. This function is addressed by reference to appropriate hydrogen equipment standards and piping codes.

  • Standard
    29 pages
    English language
    sale 15% off

This document specifies requirements for the material, design, manufacture, marking and testing of serially produced, refillable containers intended only for the storage of compressed hydrogen gas for land vehicle operation. These containers: a) are permanently attached to the vehicle; b) have a capacity of up to 1 000 l water capacity; c) have a nominal working pressure that does not exceed 70 MPa. This document is applicable only to fuel containers containing gaseous hydrogen according to ISO 14687 for fuel cell and internal combustion engine land vehicles. This document specifies requirements for hydrogen fuel containers acceptable for use on-board the following types of land vehicles: light-duty vehicles, heavy-duty vehicles and industrial powered trucks, such as forklifts and other material handling vehicles. Requirements for other types of land vehicles such as rail, off-road, etc., can be derived with due consideration of appropriate service conditions.

  • Standard
    84 pages
    English language
    sale 15% off

This document specifies the requirements for the design, manufacture and testing of cylinders, tubes and other pressure vessels of steel, stainless steel, aluminium alloys or of non-metallic construction material. These are intended for the stationary storage of gaseous hydrogen of up to a maximum water capacity of 10 000 l and a maximum allowable working pressure not exceeding 1 100 bar, of seamless metallic construction (Type 1) or of composite construction (Types 2, 3 and 4), hereafter referred to as pressure vessels.
NOTE   Additional requirements with regard to assemblies (manifolded cylinders and tubes and other pressure vessels) are not covered by this document.
This document is not applicable to Type 2 and 3 vessels with welded liners.
This document is not applicable to pressure vessels used for solid, liquid hydrogen or hybrid cryogenic-high pressure hydrogen storage applications.
This document is not applicable to external piping which can be designed according to recognized standards.

  • Standard
    68 pages
    English language
    e-Library read for
    1 day

IEC 63360:2025 This document specifies the quality of gases alternative to SF6 (subsequently referred to as gases) for use in electrical power equipment.
Detection techniques, applicable to the analysis of gases prior to their introduction into the electrical power equipment, are also described in this document.

  • Standard
    31 pages
    English language
    e-Library read for
    1 day

This document specifies the minimum quality characteristics of hydrogen fuel as distributed for utilization in residential, commercial, industrial, vehicular and stationary applications. This document is applicable to hydrogen fuelling applications, which are listed in Table 2.

  • Standard
    27 pages
    English language
    sale 15% off

This document specifies safety requirements and test methods for the components and systems that enable the transfer of compressed hydrogen to a hydrogen vehicle, as addressed in ISO 19880-1, by a hydrogen dispenser with dispensing pressures up to the H70 pressure class designation. This document applies to a hydrogen dispensing system, referred to as a “dispenser”; the configuration of the dispenser can range from: a) a dispenser cabinet, located in the fuelling area, that can perform all of the functionality needed to deliver hydrogen to a vehicle, to b) a minimum set of components mounted in or on (as applicable) a dispenser cabinet or other supporting structure as appropriate, with the remaining functionality provided elsewhere in the hydrogen fuelling station. A dispensing system includes the user and vehicle interface and can include components starting from the hydrogen supply, such as a connection to the banking system, a cooling unit, a dispenser control system, a flow meter, a pressure sensor, a fuel temperature sensor, an ambient temperature sensor, user interface and a fuelling hose assembly. Not all dispensing system equipment has to be physically housed within the enclosure at the dispensing area, as long as the specification of component design or type and location are adequate to ensure that the overall process meets the requirements in this document. This document specifies the requirements for hydrogen dispensers and can provide specific references to other standards for individual components included in the hydrogen dispenser, such as valves (ISO 19880-3) and hoses (ISO 19880-5). This document specifies general requirements for supporting the fuelling protocol and directs the user to ISO 19880-1 for additional requirements and the test methods required to verify proper fuelling protocol implementation. This document does not specify the accuracy of flow meters that can be used to meter dispensed fuel.

  • Standard
    35 pages
    English language
    sale 15% off

This document specifies the protocol for ensuring the quality of the gaseous hydrogen at hydrogen distribution facilities and hydrogen fuelling stations for proton exchange membrane (PEM) fuel cells for road vehicles.

  • Standard
    36 pages
    English language
    sale 15% off

This document defines the structure of a standardized digital representation of an asset, called Asset Administration Shell. The Asset Administration Shell gives uniform access to information and services.
The purpose of the Asset Administration Shell is to enable two or more software applications to exchange information and to mutually use the information that has been exchanged in a trusted and secure way.
This document focusses on Asset Administration Shells representing assets of manufacturing enterprises including products produced by those enterprises and the full hierarchy of industrial equipment. It defines the related structures, information, and services.
The Asset Administration Shell applies to:
- any type of industrial process (discrete manufacturing, continuous process, batch process, hybrid production);
- any industrial sector applying industrial-process measurement, control and automation;
- the entire life cycle of assets from idea to end of life treatment;
- assets which are physical, digital, or intangible entities.

  • Standard
    76 pages
    English language
    e-Library read for
    1 day

This document outlines requirements for sampling from hydrogen fuelling stations for samples taken at the dispenser. The document defines the best practice for sampling at the nozzle of a hydrogen fuelling station as part of the fuelling station acceptance testing, and ongoing operation. Further, the document describes the minimum safety requirements for sampling. This document is targeted for the sampling from the hydrogen fuelling station dispenser. Many of the generic requirements within this document are applicable to sampling at other locations within the hydrogen fuelling station, which can be carried out for hydrogen quality assurance, see ISO 19880-8, however, further specific requirements that can be necessary for safe sampling are not addressed in this document. The intention of sampling hydrogen is to enable analysis against the requirements of ISO 14687, and by analytical methods validated by protocols described in ISO 21087. This document supersedes, and is an extension to, the guidance published in ISO 19880-1:2020, Annex K. NOTE Analytical methods are divided into on-line analyses and off-line analyses. On-line analysis allows for real time analysis at hydrogen stations and is not covered in this document.

  • Standard
    39 pages
    English language
    sale 15% off

This document defines the structure of a standardized digital representation of an asset, called Asset Administration Shell. The Asset Administration Shell gives uniform access to information and services. The purpose of the Asset Administration Shell is to enable two or more software applications to exchange information and to mutually use the information that has been exchanged in a trusted and secure way. This document focusses on Asset Administration Shells representing assets of manufacturing enterprises including products produced by those enterprises and the full hierarchy of industrial equipment. It defines the related structures, information, and services. The Asset Administration Shell applies to: - any type of industrial process (discrete manufacturing, continuous process, batch process, hybrid production); - any industrial sector applying industrial-process measurement, control and automation; - the entire life cycle of assets from idea to end of life treatment; - assets which are physical, digital, or intangible entities.

  • Standard
    76 pages
    English language
    e-Library read for
    1 day

IEC 63278-1:2023 defines the structure of a standardized digital representation of an asset, called Asset Administration Shell (AAS). The Asset Administration Shell gives uniform access to information and services.
The purpose of the Asset Administration Shell is to enable two or more software applications to exchange information and to mutually use the information that has been exchanged in a trusted and secure way.
This document focuses on Asset Administration Shells representing assets of manufacturing enterprises including products produced by those enterprises and the full hierarchy of industrial equipment. It defines the related structures, information, and services.
The Asset Administration Shell applies to:
any type of industrial process (discrete manufacturing, continuous process, batch process, hybrid production);
any industrial sector applying industrial-process measurement, control and automation;
the entire life cycle of assets from idea to end of life treatment;
assets which are physical, digital, or intangible entities.

  • Standard
    149 pages
    English and French language
    sale 15% off

This document specifies the following, in order to determine the corrosiveness of gases and gas mixtures so that a suitable outlet connection can be assigned to each of them:
—    for pure gases and some liquids, a complete list indicating their corrosiveness;
—    for gas mixtures, a calculation method, in the absence of experimental data, relating to the corrosiveness of each of their components.

  • Standard
    15 pages
    English language
    e-Library read for
    1 day
  • Standard
    15 pages
    English language
    e-Library read for
    1 day

ISO 8573-1:2010 specifies purity classes of compressed air with respect to particles, water and oil independent of the location in the compressed air system at which the air is specified or measured.
ISO 8573-1:2010 provides general information about contaminants in compressed-air systems as well as links to the other parts of ISO 8573, either for the measurement of compressed air purity or the specification of compressed-air purity requirements.
In addition to the above-mentioned contaminants of particles, water and oil, ISO 8573-1:2010 also identifies gaseous and microbiological contaminants.
Guidance is given in Annex A on the application of ISO 8573-1:2010.

  • Standard
    14 pages
    English language
    e-Library read for
    1 day
  • Standard
    9 pages
    English language
    sale 15% off
  • Standard
    9 pages
    French language
    sale 15% off

This document lists the best available acute-toxicity data of gases taken from a search of the current literature to allow the classification of gases and gas mixtures for toxicity by inhalation.
Scope of amendment
Changes to formula in clause 4.3

  • Amendment
    7 pages
    English language
    e-Library read for
    1 day

This document specifies the following, in order to determine the corrosiveness of gases and gas mixtures so that a suitable outlet connection can be assigned to each of them:
—    for pure gases and some liquids, a complete list indicating their corrosiveness;
—    for gas mixtures, a calculation method, in the absence of experimental data, relating to the corrosiveness of each of their components.

  • Standard
    15 pages
    English language
    e-Library read for
    1 day
  • Standard
    15 pages
    English language
    e-Library read for
    1 day

This document lists the best available acute-toxicity data of gases taken from a search of the current literature to allow the classification of gases and gas mixtures for toxicity by inhalation.
Scope of amendment
Changes to formula in clause 4.3

  • Amendment
    7 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
5.1 Water vapor is ubiquitous and a basic contaminant in compressed air. It cannot be eliminated but shall be controlled. Knowledge of the vapor content of compressed air is important for industrial processes to ensure that compressors that generate compressed air are functioning properly and equipment and systems that use the compressed air will function properly and maintain high reliability. This test method describes the measurement of water vapor using direct readout electronic instrumentation. Measurements are provided as dew point/frost point and calculations of related unitless quantities (ppm) are provided. Sampling techniques and warnings are provided to reduce false readings caused by contamination from the sampling method. Dry compressed air typically has a frost point between –80 °C and –40 °C (0.5 PPMV to 127 PPMV) at atmospheric pressure.  
5.2 Measurement of moisture in compressed air can be done after regulating the pressure down to ATM or measured at elevated pressure up to the full system pressure. When measurements are made of the actual dew point (for example, condensation) or the related property of vapor pressure, the value of the dew point (and vapor pressure) is directly affected by the sample pressure since the vapor pressure is a component of the total pressure. The relationship between vapor pressure and moisture content (and dew point) is well defined below 5 MPa, but at greater pressures, additional study needs to be done to define this relationship.  
5.3 Electronic moisture analyzers are also used for measuring moisture levels in other gases, including gaseous fuels. See Test Method D5454. In addition, tunable diode laser spectroscopy (TDLAS) is another technology that may be applicable to detecting moisture in compressed air. This technology is already being used in gases. See Test Method D7904.
SCOPE
1.1 This test method covers the determination of the water vapor content in compressed air using portable or in-situ electronic moisture analyzers. Such analyzers commonly use sensing cells based on phosphorus pentoxide, P2O5, aluminum oxide, Al2O3, or silicon piezoelectric-type cells or laser-based technologies.  
1.2 This test method is applicable for the range of condensation temperatures from –80 °C to 60 °C.  
1.3 Testing is often performed at reduced pressure from the full pressure of the system or source of compressed air depending on the capability of the specific analyzer. Testing above 2000 kPa may introduce additional uncertainty because of changes in the relationship between water vapor pressure and actual moisture content at elevated pressures.  
1.4 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    7 pages
    English language
    sale 15% off

This document specifies the following, in order to determine the corrosiveness of gases and gas mixtures so that a suitable outlet connection can be assigned to each of them: - for pure gases and some liquids, a complete list indicating their corrosiveness; - for gas mixtures, a calculation method, in the absence of experimental data, relating to the corrosiveness of each of their components.

  • Standard
    7 pages
    English language
    sale 15% off
  • Standard
    7 pages
    French language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This practice allows the user to evaluate the effect of service or accelerating aging on the oxygen resistance of polymeric materials used in oxygen service.  
5.2 The use of this practice presupposes that the properties used to evaluate the effect of aging can be shown to relate to the intended use of the material, and are also sensitive to the effect of aging.  
5.3 Polymeric materials will, in general, be more susceptible than metals to aging effects as evidenced by irreversible property loss. Such property loss may lead to catastrophic component failure, including a secondary fire, before primary ignition or combustion of the polymeric material occurs.  
5.4 Polymers aged in the presence of oxygen-containing media may undergo many types of reversible and irreversible physical and chemical property change. The severity of the aging conditions determines the extent and type of changes that take place. Polymers are not necessarily degraded by aging, but may be unchanged or improved. For example, aging may drive off volatile materials, thus raising the ignition temperature without compromising mechanical properties. However, aging under prolonged or severe conditions (for example, elevated oxygen concentration) will usually cause a decrease in mechanical performance, while improving resistance to ignition and combustion.  
5.5 Aging may result in reversible mass increase (physisorption), irreversible mass increase (chemisorption), plasticization, discoloration, loss of volatiles, embrittlement, softening due to sorption of volatiles, cracking, relief of molding stresses, increased crystallinity, dimensional change, advance of cure in thermosets and elastomers, chain scissioning, and crosslinking.  
5.6 After a period of service, a material’s properties may be significantly different from those when new. All materials rated for oxygen service should remain resistant to ignition and combustion (primary fire risk). Furthermore, all materials rated for oxygen s...
SCOPE
1.1 These practices describe procedures that are used to determine the age resistance of plastic, thermosetting, elastomeric, and polymer matrix composite materials exposed to oxygen-containing media.  
1.2 While these practices focus on evaluating the age resistance of polymeric materials in oxygen-containing media prior to ignition and combustion testing, they also have relevance for evaluating the age resistance of metals, and nonmetallic oils and greases.  
1.3 These practices address both established procedures that have a foundation of experience and new procedures that have yet to be validated. The latter are included to promote research and later elaboration in this practice as methods of the former type.  
1.4 The results of these practices may not give exact correlation with service performance since service conditions vary widely and may involve multiple factors such as those listed in 5.8.  
1.5 Three procedures are described for evaluating the age resistance of polymeric materials depending on application and information sought.  
1.5.1 Procedure A: Natural Aging—This procedure is used to simulate the effect(s) of one or more service stressors on a material’s oxygen resistance, and is suitable for evaluating materials that experience continuous or intermittent exposure to elevated temperature during service.  
1.5.2 Procedure B: Accelerated Aging Comparative Oxygen Resistance—This procedure is suitable for evaluating materials that are used in ambient temperature service, or at a temperature that is otherwise lower than the aging temperature, and is useful for developing oxygen compatibility rankings on a laboratory comparison basis.  
1.5.3 Procedure C: Accelerated Aging Lifetime Prediction—This procedure is used to determine the relationship between aging temperature and a fixed level of property change, thereby allowing predictions to be made about the effect of prolonged service on oxidative degra...

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    12 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
3.1 The minimum energies provide a basis for comparing the ease of ignition of gases. The flatplate ignition quenching distances provide an important verification of existing minimum ignition energy data and give approximate values of the propagation quenching distances of the various mixtures. It is emphasized that maximum safe experimental gaps, as from “flame-proof” or “explosion-proof” studies, are less than the flat-plate ignition quenching distances.
SCOPE
1.1 This test method covers the determination of minimum energy for ignition (initiation of deflagration) and associated flat-plate ignition quenching distances.2 The complete description is specific to alkane or alkene fuels admixed with air at normal ambient temperature and pressure. This method is applicable to mixtures of the specified fuels with air, varying from the most easily ignitable mixture to mixtures near to, in theory, the limit-of-flammability compositions.
Note 1: The test apparatus described in Section 4 is not suitable for near limit mixtures. Near limit mixtures require a much larger test volume (that is, reaction vessel), and the capability for producing much larger spark energies.  
1.2 Extensions to other fuel-oxidizer combinations, and to other temperatures and pressures can be accomplished with all the accuracy inherent in this method if certain additional conditions are met: (a) mixture stability and compatibility with bomb, seal, and other materials is established through time tests described in Section 9; (b) the expected peak pressure from the test is within the pressure rating of the bomb (established as required by the particular research laboratory); (c) spark breakdown within the bomb is consistent with Paschen’s law for the distance being tested; (d) the temperature, including that of the discharge electrodes, is uniform; and (e) if the temperature is other than ambient, the energy storage capacitance required is less than about 9 pF.  
1.3 This method is one of several being developed by Committee E27 for determining the hazards of chemicals, including their vapors in air or other oxidant atmospheres. The measurements are useful in assessing fuel ignitability hazards due to static or other electrical sparks. However, the quenching distance data must be used with great prudence since they are primarily applicable to the ignition stage and therefore, represent values for initial pressure and not the smaller values existing at higher pressures.  
1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.5 This standard should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific safety precautions are listed in Section 5.  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    6 pages
    English language
    sale 15% off

ISO 10298:2018 lists the best available acute-toxicity data of gases taken from a search of the current literature to allow the classification of gases and gas mixtures for toxicity by inhalation.

  • Standard
    23 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
3.1 The laboratory preparation of gas blends of known composition is required to provide primary standards for the calibration of chromatographic and other types of analytical instrumentation.
SCOPE
1.1 This practice covers a laboratory procedure for the preparation of low-pressure multicomponent gas blends. The technique is applicable to the blending of components at percent levels and can be extended to lower concentrations by performing dilutions of a previously prepared base blend. The maximum blend pressure obtainable is dependent upon the range of the manometer used, but ordinarily is about 101 kPa (760 mm Hg). Components must not be condensable at the maximum blend pressure.  
1.2 The possible presence of small leaks in the manifold blending system will preclude applicability of the method to blends containing part per million concentrations of oxygen or nitrogen.  
1.3 This practice is restricted to those compounds that do not react with each other, the manifold, or the blend cylinder.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Knowledge of gas solubility is of extreme importance in the lubrication of gas compressors. It is believed to be a substantial factor in boundary lubrication, where the sudden release of dissolved gas may cause cavitation erosion, or even collapse of the fluid film. In hydraulic and seal oils, gas dissolved at high pressure can cause excessive foaming on release of the pressure. In aviation oils and fuels, the difference in pressure between take-off and cruise altitude can cause foaming out of the storage vessels and interrupt flow to the pumps.
SCOPE
1.1 This test method covers the estimation of the equilibrium solubility of several common gases encountered in the aerospace industry in hydrocarbon liquids. These include petroleum fractions with densities in the range from 0.63 to 0.90 at 288 K (59°F). The solubilities can be estimated over the temperature range 228 K (−50°F) to 423 K (302°F).  
1.2 This test method is based on the Clausius-Clapeyron equation, Henry's law, and the perfect gas law, with empirically assigned constants for the variation with density and for each gas.  
1.3 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off

ISO 10298:2018 lists the best available acute-toxicity data of gases taken from a search of the current literature to allow the classification of gases and gas mixtures for toxicity by inhalation.

  • Standard
    23 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
5.1 Oxygen gas transmission rate is an important determinant of the protection afforded by barrier materials. It is not, however, the sole determinant, and additional tests, based on experience, must be used to correlate package performance with O2GTR. This test method is suitable as a referee method of testing, provided that the user and source have agreed on sampling procedures, standardization procedures, test conditions, and acceptance criteria.
SCOPE
1.1 This test method covers a procedure for the determination of the steady-state rate of transmission of oxygen gas into packages. More specifically, the method is applicable to packages that in normal use will enclose a dry environment.  
1.2 The values stated in SI units are to be regarded as the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    7 pages
    English language
    sale 15% off
  • Standard
    7 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Carbon dioxide gas transmission rate (CO2TR) is an important determinant of the packaging protection afforded by barrier materials. It is not, however, the sole determinant, and additional tests, based on experience, must be used to correlate packaging performance with CO2TR. It is suitable as a referee method of testing, provided that purchaser and seller have agreed on sampling procedures, standardization procedures, test conditions and acceptance criteria.
SCOPE
1.1 This method covers a procedure for determination of the steady-state rate of transmission of carbon dioxide gas through plastics in the form of film, sheeting, laminates, coextrusions, or plastic-coated papers or fabrics. It provides for the determination of (1) carbon dioxide gas transmission rate (CO2TR), (2) the permeance of the film to carbon dioxide gas (PCO2), and (3) carbon dioxide permeability coefficient (P’CO2) in the case of homogeneous materials.  
1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    6 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This test is a functional test in which the water concentration in the product is related to product behavior characteristics in a pressure-reducing system of special design to arrive at a measure of product acceptability in common use applications. Experience has demonstrated that excessive water content (dissolved water) will cause freeze-up difficulties in pressure reducing systems.
SCOPE
1.1 This test method covers the measurement of the dryness of propane products that do not contain antifreeze agents such as, but not limited to, commercial propane and special duty propane (see Specification D1835).  
1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    3 pages
    English language
    sale 15% off
  • Standard
    3 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Mixed flowing gas (MFG) tests are used to simulate or amplify exposure to environmental conditions which electrical contacts or connectors can be expected to experience in various application environments (1, 2).4  
4.2 Test samples which have been exposed to MFG tests have ranged from bare metal surfaces, to electrical connectors, and to complete assemblies.  
4.3 The specific test conditions are usually chosen so as to simulate, in the test laboratory, the effects of certain representative field environments or environmental severity levels on standard metallic surfaces, such as copper and silver coupons or porous gold platings (1, 2).  
4.4 Because MFG tests are simulations, both the test conditions and the degradation reactions (chemical reaction rate, composition of reaction products, etc.) may not always resemble those found in the service environment of the product being tested in the MFG test. A guide to the selection of simulation conditions suitable for a variety of environments is found in Guide B845.  
4.5 The MFG exposures are generally used in conjunction with procedures which evaluate contact or connector electrical performance such as measurement of electrical contact resistance before and after MFG exposure.  
4.6 The MFG tests are useful for connector systems whose contact surfaces are plated or clad with gold or other precious metal finishes. For such surfaces, environmentally produced failures are often due to high resistance or intermittences caused by the formation of insulating contamination in the contact region. This contamination, in the form of films and hard particles, is generally the result of pore corrosion and corrosion product migration or tarnish creepage from pores in the precious metal coating and from unplated base metal boundaries, if present.  
4.7 The MFG exposures can be used to evaluate novel electrical contact metallization for susceptibility to degradation due to environmental exposure to the test corrosive gases...
SCOPE
1.1 This practice provides procedures for conducting environmental tests involving exposures to controlled quantities of corrosive gas mixtures.  
1.2 This practice provides for the required equipment and methods for gas, temperature, and humidity control which enable tests to be conducted in a reproducible manner. Reproducibility is measured through the use of control coupons whose corrosion films are evaluated by mass gain, coulometry, or by various electron and X-ray beam analysis techniques. Reproducibility can also be measured by in situ corrosion rate monitors using electrical resistance or mass/frequency change methods.  
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use. See 5.1.2.4.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    9 pages
    English language
    sale 15% off

This document defines the minimum design, installation, commissioning, operation, inspection and maintenance requirements, for the safety, and, where appropriate, for the performance of public and non-public fuelling stations that dispense gaseous hydrogen to light duty road vehicles (e.g. fuel cell electric vehicles). This document is not applicable to the dispensing of cryogenic hydrogen, or hydrogen to metal hydride applications. Since this document is intended to provide minimum requirements for fuelling stations, manufacturers can take additional safety precautions as determined by a risk management methodology to address potential safety risks of specific designs and applications. While this document is targeted for the fuelling of light duty hydrogen road vehicles, requirements and guidance for fuelling medium and heavy duty road vehicles (e.g. buses, trucks) are also covered. Many of the generic requirements within this document are applicable to fuelling stations for other hydrogen applications, including but not limited to the following: — fuelling stations for motorcycles, fork-lift trucks, trams, trains, fluvial and marine applications; — fuelling stations with indoor dispensing; — residential applications to fuel land vehicles; — mobile fuelling stations; and — non-public demonstration fuelling stations. However, further specific requirements that can be necessary for the safe operation of such fuelling stations are not addressed in this document. This document provides requirements for and guidance on the following elements of a fuelling station (see Figure 1 and Figure 2): — hydrogen production/delivery system: — delivery of hydrogen by pipeline, trucked in gaseous and/or liquid hydrogen, or metal hydride storage trailers; — on-site hydrogen generators using water electrolysis process or hydrogen generators using fuel processing technologies; — liquid hydrogen storage; — hydrogen purification systems, as applicable; — compression: — gaseous hydrogen compression; — pumps and vaporizers; — gaseous hydrogen buffer storage; — pre-cooling device; — gaseous hydrogen dispensing systems.

  • Standard
    173 pages
    English language
    sale 15% off

This document defines the design, safety and operation characteristics of gaseous hydrogen land vehicle (GHLV) refuelling connectors. GHLV refuelling connectors consist of the following components, as applicable: — receptacle and protective cap (mounted on vehicle); — nozzle; — communication hardware. This document is applicable to refuelling connectors which have nominal working pressures or hydrogen service levels up to 70 MPa. This document is not applicable to refuelling connectors dispensing blends of hydrogen with natural gas.

  • Standard
    45 pages
    English language
    sale 15% off
  • Standard
    47 pages
    French language
    sale 15% off

ABSTRACT
This guide defines purity standards for carbon dioxide to ensure the suitability of liquefied carbon dioxide gas for use in supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) applications. This guide defines quantitation, labeling, and statistical standards for impurities in carbon dioxide that are necessary for successful SFE or SFC laboratory work, and it suggests methods of analysis for quantifying these impurities. These contaminants are those components that either cause detector signals that interfere with those of the target analytes or physically impede the SFE or SFC experiment. Also, this guide is provided for use by specialty gas suppliers who manufacture carbon dioxide specifically for SFE or SFC applications. SFE or SFC CO2 products offered with a claim of adherence to this guide will meet certain absolute purity and contaminant detectability requirements matched to the needs of current SFE or SFC techniques.
SCOPE
1.1 This guide defines purity standards for carbon dioxide to ensure the suitability of liquefied carbon dioxide gas for use in SFE and SFC applications (see Guide E1449 for definitions of terms). This guide defines quantitation, labeling, and statistical standards for impurities in carbon dioxide that are necessary for successful SFE or SFC laboratory work, and it suggests methods of analysis for quantifying these impurities.  
1.2 This guide is provided for use by specialty gas suppliers who manufacture carbon dioxide specifically for SFE or SFC applications. SFE or SFC carbon dioxide (CO2) products offered with a claim of adherence to this guide will meet certain absolute purity and contaminant detectability requirements matched to the needs of current SFE or SFC techniques. The use of this guide allows different SFE or SFC CO2 product offerings to be compared on an equal purity basis.  
1.3 This guide considers contaminants to be those components that either cause detector signals that interfere with those of the target analytes or physically impede the SFE or SFC experiment.  
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Guide
    6 pages
    English language
    sale 15% off

This document specifies the minimum quality characteristics of hydrogen fuel as distributed for utilization in vehicular and stationary applications. It is applicable to hydrogen fuelling applications, which are listed in Table 1.

  • Standard
    17 pages
    English language
    sale 15% off

This document specifies the requirements for wire or textile reinforced hoses and hose assemblies suitable for dispensing hydrogen up to 70 MPa nominal working pressure, in the operating temperature range of −40 °C to 65 °C. This document contains safety requirements for material, design, manufacture and testing of gaseous hydrogen hose and hose assemblies for hydrogen fuelling stations. Hoses and hose assemblies excluded from the scope of this document are the following: 1) those used as part of a vehicle high pressure on-board fuel storage system, 2) those used as part of a vehicle low pressure fuel delivery system, and 3) flexible metal hoses. NOTE 1 This document was developed primarily for hoses and hose assemblies for dispensing high pressure hydrogen from refuelling dispensers to hydrogen vehicles. Requirements for hoses used to deliver hydrogen from a transportable vessel (e.g. trailer) into a buffer storage of a station are addressed in ISO 16964. NOTE 2 Hose assemblies include the hose with connectors on each end (see Figure 1). Each connector has two basic functional elements that are addressed as described below: 1) Coupling to hose. This function is defined by requirements and verified (along with the hose itself) by performance-based tests in this document. 2) Fitting for transition and connection to the piping system or equipment. This function is addressed by reference to appropriate hydrogen equipment standards and piping codes.

  • Standard
    27 pages
    English language
    sale 15% off

This document specifies the protocol for ensuring the quality of the gaseous hydrogen at hydrogen distribution facilities and hydrogen fuelling stations for proton exchange membrane (PEM) fuel cells for road vehicles.

  • Standard
    39 pages
    English language
    sale 15% off
  • Standard
    39 pages
    English language
    sale 15% off

This document defines the construction, safety, and performance requirements of modular or factory-matched hydrogen gas generation appliances, herein referred to as hydrogen generators, using electrochemical reactions to electrolyse water to produce hydrogen. This document is applicable to hydrogen generators that use the following types of ion transport medium: - group of aqueous bases; - group of aqueous acids; - solid polymeric materials with acidic function group additions, such as acid proton exchange membrane (PEM); - solid polymeric materials with basic function group additions, such as anion exchange membrane (AEM). This document is applicable to hydrogen generators intended for industrial and commercial uses, and indoor and outdoor residential use in sheltered areas, such as car-ports, garages, utility rooms and similar areas of a residence. Hydrogen generators that can also be used to generate electricity, such as reversible fuel cells, are excluded from the scope of this document. Residential hydrogen generators that also supply oxygen as a product are excluded from the scope of this document.

  • Standard
    48 pages
    English language
    sale 15% off

This document specifies the validation protocol of analytical methods used for ensuring the quality of the gaseous hydrogen (H2) at hydrogen distribution bases and hydrogen fuelling stations for road vehicles using proton exchange membrane (PEM) fuel cells. It also gives recommendations on the calculation of an uncertainty budget for the amount fraction. This document is established mainly for analysis done in laboratories after the sampling of hydrogen either at hydrogen distribution bases or at hydrogen refuelling stations. The specific requirements for on-line monitoring are not covered by this document. This document gives a list of suitable analytical techniques used to measure each impurity in hydrogen, according to the specification of hydrogen grade D defined by ISO 14687:-[1]. Moreover, recommendations for keeping the integrity of the sample are also given in order to ensure the quality of the measurement. It also includes the requirements for reporting the analytical results. [1] Under preparation. Stage at the time of publication: ISO/DIS 14687:2018.

  • Standard
    17 pages
    English language
    sale 15% off
  • Standard
    17 pages
    French language
    sale 15% off

This document provides a method for sampling compressed air and a guide for choosing suitable measuring equipment to determine its particle size and concentration by number (to be referenced as "concentration" throughout this document). It also describes the limitations of the various measurement methods and describes the evaluation and uncertainty considerations. This document will report the particle size and concentration of all types of particle combined and does not aim to be able to segregate the separate solid and liquid particle fractions. When it is required that the concentration of a specific fraction is to be determined then recourse to the relevant standard method from the ISO 8573 series is recommended. NOTE 1 The test methods described in this document are those suitable for determining the purity classes given in ISO 8573‑1. NOTE 2 Particle content determined as concentration by mass is dealt with in ISO 8573‑8. NOTE 3 This document does not address instances where non-isothermal conditions exist, and separate arrangements should be made where particles may be formed by vapour condensation or lost through evaporation.

  • Standard
    26 pages
    English language
    sale 15% off
  • Standard
    26 pages
    French language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Fuel cell users have implicated trace impurities in feed gases as compromising the performance and lifespan of proton exchange membrane fuel cells (PEMFCs). PEMFCs may be damaged by the presence of some contaminants through poisoning of fuel cell electrode materials; therefore detection of these impurities at low concentrations is critical to fuel cell manufacturers and feed gas suppliers in order to support the facilities and infrastructure required for widespread applicability of fuel cells in transportation and energy production. With field-portable equipment, this test method can be used to quickly analyze hydrogen fuel for impurities at vehicle fueling stations or storage tanks used to supply stationary power plants. This test method can also be used by gas suppliers, customers, and regulatory agencies to certify hydrogen fuel quality.  
5.2 Users include hydrogen producers, gaseous fuel custody transfer stakeholders, fueling stations, fuel cell manufacturers, automotive manufacturers, regulators, and stationary fuel cell power plant operators.
SCOPE
1.1 This test method employs an FTIR gas analysis system for the determination of trace impurities in gaseous hydrogen fuels relative to the hydrogen fuel quality limits described in SAE TIR J2719 (April 2008) or in hydrogen fuel quality standards from other governing bodies. This FTIR method is used to quantify gas phase concentrations of multiple target contaminants in hydrogen fuel either directly at the fueling station or on an extracted sample that is sent to be analyzed elsewhere. Multiple contaminants can be measured simultaneously as long as they are in the gaseous phase and absorb in the infrared wavelength region. The detection limits as well as specific target contaminants for this standard were selected based upon those set forth in SAE TIR J2719.  
1.2 This test method allows the tester to determine which specific contaminants for hydrogen fuel impurities that are in the gaseous phase and are active infrared absorbers which meet or exceed the detection limits set by SAE TIR J2719 for their particular FTIR instrument. Specific target contaminants include, but are not limited to, ammonia, carbon monoxide, carbon dioxide, formaldehyde, formic acid, methane, ethane, ethylene, propane, and water. This test method may be extended to other impurities provided that they are in the gaseous phase or can be vaporized and are active infrared absorbers.  
1.3 This test method is intended for analysis of hydrogen fuels used for fuel cell feed gases or for internal combustion engine fuels. This method may also be extended to the analysis of high purity hydrogen gas used for other applications including industrial applications, provided that target impurities and required limits are also identified.  
1.4 This test method can be used to analyze hydrogen fuel sampled directly at the point-of-use from fueling station nozzles or other feed gas sources. The sampling apparatus includes a pressure regulator and metering valve to provide an appropriate gas stream for direct analysis by the FTIR spectrometer.  
1.5 This test method can also be used to analyze samples captured in storage vessels from point-of-use or other sources. Analysis of the stored samples can be performed either in a mobile laboratory near the sample source or in a standard analytical laboratory.  
1.6 A test plan should be prepared that includes (1) the specific impurity species to be measured, (2) the concentration limits for each impurity species, and (3) the determination of the minimum detectable concentration for each impurity species as measured on the apparatus before testing.  
1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.7.1 Exception—All values are based upon common terms used in the industry of those particular values and when not consistent with SI units, the appropriate...

  • Standard
    13 pages
    English language
    sale 15% off
  • Standard
    13 pages
    English language
    sale 15% off

This document contains requirements for the material, design, manufacture, marking and testing of serially produced, refillable containers intended only for the storage of compressed hydrogen gas for land vehicle operation. These containers a) are permanently attached to the vehicle, b) have a capacity of up to 1 000 l water capacity, and c) have a nominal working pressure that does not exceed 70 MPa. The scope of this document is limited to fuel containers containing fuel cell grade hydrogen according to ISO 14687 for fuel cell land vehicles and Grade A or better hydrogen as per ISO 14687 for internal combustion engine land vehicles. This document also contains requirements for hydrogen fuel containers acceptable for use on-board light duty vehicles, heavy duty vehicles and industrial powered trucks such as forklifts and other material handling vehicles.

  • Standard
    53 pages
    English language
    sale 15% off

This document defines the requirements applicable to the material, design, construction, and testing of transportable hydrogen gas storage systems, referred to as "metal hydride assemblies" (MH assemblies) which utilize shells not exceeding 150 l internal volume and having a maximum developed pressure (MDP) not exceeding 25 MPa. This document is applicable to refillable storage MH assemblies where hydrogen is the only transferred media. It is not applicable to storage MH assemblies intended to be used as fixed fuel-storage onboard hydrogen fuelled vehicles.

  • Standard
    43 pages
    English language
    sale 15% off

This document provides the requirements and test methods for the safety performance of high pressure gas valves that are used in gaseous hydrogen stations of up to the H70 designation. This document covers the following gas valves: - check valve; - excess flow valve; - flow control valve; - hose breakaway device; - manual valve; - pressure safety valve; - shut-off valve.

  • Standard
    30 pages
    English language
    sale 15% off