ISO/TC 197 - Hydrogen technologies
Standardization in the field of systems and devices for the production, storage, transport, measurement and use of hydrogen.
Technologies de l'hydrogène
Normalisation dans le domaine des systèmes et dispositifs pour la production, le stockage, le transport, le mesurage et l'utilisation de l'hydrogène.
General Information
- Standard14 pagesEnglish languagesale 15% off
- Draft14 pagesEnglish languagesale 15% off
This document defines the minimum design, installation, commissioning, operation, inspection and maintenance requirements, for the safety, and, where appropriate, for the performance of public and non-public fuelling stations that dispense gaseous hydrogen to light duty road vehicles (e.g. fuel cell electric vehicles). This document is not applicable to the dispensing of cryogenic hydrogen, or hydrogen to metal hydride applications. Since this document is intended to provide minimum requirements for fuelling stations, manufacturers can take additional safety precautions as determined by a risk management methodology to address potential safety risks of specific designs and applications. While this document is targeted for the fuelling of light duty hydrogen road vehicles, requirements and guidance for fuelling medium and heavy duty road vehicles (e.g. buses, trucks) are also covered. Many of the generic requirements within this document are applicable to fuelling stations for other hydrogen applications, including but not limited to the following: — fuelling stations for motorcycles, fork-lift trucks, trams, trains, fluvial and marine applications; — fuelling stations with indoor dispensing; — residential applications to fuel land vehicles; — mobile fuelling stations; and — non-public demonstration fuelling stations. However, further specific requirements that can be necessary for the safe operation of such fuelling stations are not addressed in this document. This document provides requirements for and guidance on the following elements of a fuelling station (see Figure 1 and Figure 2): — hydrogen production/delivery system: — delivery of hydrogen by pipeline, trucked in gaseous and/or liquid hydrogen, or metal hydride storage trailers; — on-site hydrogen generators using water electrolysis process or hydrogen generators using fuel processing technologies; — liquid hydrogen storage; — hydrogen purification systems, as applicable; — compression: — gaseous hydrogen compression; — pumps and vaporizers; — gaseous hydrogen buffer storage; — pre-cooling device; — gaseous hydrogen dispensing systems.
- Standard173 pagesEnglish languagesale 15% off
This document defines the design, safety and operation characteristics of gaseous hydrogen land vehicle (GHLV) refuelling connectors. GHLV refuelling connectors consist of the following components, as applicable: — receptacle and protective cap (mounted on vehicle); — nozzle; — communication hardware. This document is applicable to refuelling connectors which have nominal working pressures or hydrogen service levels up to 70 MPa. This document is not applicable to refuelling connectors dispensing blends of hydrogen with natural gas.
- Standard45 pagesEnglish languagesale 15% off
- Standard47 pagesFrench languagesale 15% off
This document specifies the minimum quality characteristics of hydrogen fuel as distributed for utilization in vehicular and stationary applications. It is applicable to hydrogen fuelling applications, which are listed in Table 1.
- Standard17 pagesEnglish languagesale 15% off
This document specifies the requirements for wire or textile reinforced hoses and hose assemblies suitable for dispensing hydrogen up to 70 MPa nominal working pressure, in the operating temperature range of −40 °C to 65 °C. This document contains safety requirements for material, design, manufacture and testing of gaseous hydrogen hose and hose assemblies for hydrogen fuelling stations. Hoses and hose assemblies excluded from the scope of this document are the following: 1) those used as part of a vehicle high pressure on-board fuel storage system, 2) those used as part of a vehicle low pressure fuel delivery system, and 3) flexible metal hoses. NOTE 1 This document was developed primarily for hoses and hose assemblies for dispensing high pressure hydrogen from refuelling dispensers to hydrogen vehicles. Requirements for hoses used to deliver hydrogen from a transportable vessel (e.g. trailer) into a buffer storage of a station are addressed in ISO 16964. NOTE 2 Hose assemblies include the hose with connectors on each end (see Figure 1). Each connector has two basic functional elements that are addressed as described below: 1) Coupling to hose. This function is defined by requirements and verified (along with the hose itself) by performance-based tests in this document. 2) Fitting for transition and connection to the piping system or equipment. This function is addressed by reference to appropriate hydrogen equipment standards and piping codes.
- Standard27 pagesEnglish languagesale 15% off
This document specifies the protocol for ensuring the quality of the gaseous hydrogen at hydrogen distribution facilities and hydrogen fuelling stations for proton exchange membrane (PEM) fuel cells for road vehicles.
- Standard39 pagesEnglish languagesale 15% off
- Standard39 pagesEnglish languagesale 15% off
This document defines the construction, safety, and performance requirements of modular or factory-matched hydrogen gas generation appliances, herein referred to as hydrogen generators, using electrochemical reactions to electrolyse water to produce hydrogen. This document is applicable to hydrogen generators that use the following types of ion transport medium: — group of aqueous bases; — group of aqueous acids; — solid polymeric materials with acidic function group additions, such as acid proton exchange membrane (PEM); — solid polymeric materials with basic function group additions, such as anion exchange membrane (AEM). This document is applicable to hydrogen generators intended for industrial and commercial uses, and indoor and outdoor residential use in sheltered areas, such as car-ports, garages, utility rooms and similar areas of a residence. Hydrogen generators that can also be used to generate electricity, such as reversible fuel cells, are excluded from the scope of this document. Residential hydrogen generators that also supply oxygen as a product are excluded from the scope of this document.
- Standard48 pagesEnglish languagesale 15% off
This document establishes minimum requirements for pressure relief devices intended for use on hydrogen fuelled vehicle fuel containers that comply with ISO 19881, IEC 62282-4-101, ANSI HGV 2, CSA B51 Part 2, EC79/EU406, SAE J2579, or the UN GTR No. 13. The scope of this document is limited to thermally activated pressure relief devices installed on fuel containers used with fuel cell grade hydrogen according to SAE J2719 or ISO 14687 for fuel cell land vehicles, and Grade A or better hydrogen according to ISO 14687 for internal combustion engine land vehicles. This document also contains requirements for thermally activated pressure relief devices acceptable for use on-board light duty vehicles, heavy duty vehicles and industrial powered trucks such as forklifts and other material handling vehicles, as it pertains to UN GTR No. 13. Pressure relief devices designed to comply with this document are intended to be used with high quality hydrogen fuel such as fuel complying with SAE J2719 or ISO 14687 Type 1 Grade D. Pressure relief devices can be of any design or manufacturing method that meets the requirements of this document. This document does not apply to reseating, resealing, or pressure activated devices. Documents which apply to hydrogen fuel vehicles and hydrogen fuel subsystems include IEC 62282- 4- 101, SAE J2578 and SAE J2579. Annex A presents an informative record of recommended fuel container, fuel storage subsystem and vehicle level requirements. The statements in Annex A are intended as recommendations for consideration of inclusion by the organizations and committees developing standards on these sub system and vehicle level standards. Annex B presents a rationale for the design qualification tests in this document.
- Standard28 pagesEnglish languagesale 15% off
This document contains requirements for the material, design, manufacture, marking and testing of serially produced, refillable containers intended only for the storage of compressed hydrogen gas for land vehicle operation. These containers a) are permanently attached to the vehicle, b) have a capacity of up to 1 000 l water capacity, and c) have a nominal working pressure that does not exceed 70 MPa. The scope of this document is limited to fuel containers containing fuel cell grade hydrogen according to ISO 14687 for fuel cell land vehicles and Grade A or better hydrogen as per ISO 14687 for internal combustion engine land vehicles. This document also contains requirements for hydrogen fuel containers acceptable for use on-board light duty vehicles, heavy duty vehicles and industrial powered trucks such as forklifts and other material handling vehicles.
- Standard53 pagesEnglish languagesale 15% off
This document defines the requirements applicable to the material, design, construction, and testing of transportable hydrogen gas storage systems, referred to as "metal hydride assemblies" (MH assemblies) which utilize shells not exceeding 150 l internal volume and having a maximum developed pressure (MDP) not exceeding 25 MPa. This document is applicable to refillable storage MH assemblies where hydrogen is the only transferred media. It is not applicable to storage MH assemblies intended to be used as fixed fuel-storage onboard hydrogen fuelled vehicles.
- Standard43 pagesEnglish languagesale 15% off
This document provides the requirements and test methods for the safety performance of high pressure gas valves that are used in gaseous hydrogen stations of up to the H70 designation. This document covers the following gas valves: - check valve; - excess flow valve; - flow control valve; - hose breakaway device; - manual valve; - pressure safety valve; - shut-off valve.
- Standard30 pagesEnglish languagesale 15% off
ISO/TS 19883:2017 identifies safety measures and applicable design features that are used in the design, commissioning, and operation of pressure swing adsorption systems for hydrogen separation and purification. It applies to hydrogen pressure swing adsorption systems that process all kinds of impure hydrogen streams as feed, including both stationary and skid-mounted pressure swing adsorption systems for hydrogen separation and purification in commercial or industrial use. This document also applies to small-scale PSA hydrogen system installed within containers, where allowed by local regulations.
- Technical specification15 pagesEnglish languagesale 15% off
ISO/TR 15916:2015 provides guidelines for the use of hydrogen in its gaseous and liquid forms as well as its storage in either of these or other forms (hydrides). It identifies the basic safety concerns, hazards and risks, and describes the properties of hydrogen that are relevant to safety. Detailed safety requirements associated with specific hydrogen applications are treated in separate International Standards. "Hydrogen" in this paper means normal hydrogen (1H2), not deuterium (2H2) or tritium (3H2).
- Technical report62 pagesEnglish languagesale 15% off
ISO 26142:2010 defines the performance requirements and test methods of hydrogen detection apparatus that is designed to measure and monitor hydrogen concentrations in stationary applications. The provisions in ISO 26142:2010 cover the hydrogen detection apparatus used to achieve the single and/or multilevel safety operations, such as nitrogen purging or ventilation and/or system shut-off corresponding to the hydrogen concentration. The requirements applicable to the overall safety system, as well as the installation requirements of such apparatus, are excluded. ISO 26142:2010 sets out only the requirements applicable to a product standard for hydrogen detection apparatus, such as precision, response time, stability, measuring range, selectivity and poisoning. ISO 26142:2010 is intended to be used for certification purposes.
- Standard27 pagesEnglish languagesale 15% off
ISO 16110-2:2010 provides test procedures for determining the performance of packaged, self-contained or factory matched hydrogen generation systems with a capacity less than 400 m3/h at 0 °C and 101,325 kPa, referred to as hydrogen generators, that convert a fuel to a hydrogen‑rich stream of composition and conditions suitable for the type of device using the hydrogen (e.g. a fuel cell power system, or a hydrogen compression, storage and delivery system).
- Standard38 pagesEnglish languagesale 15% off
- Draft65 pagesEnglish languagesale 15% off
- Draft69 pagesFrench languagesale 15% off
ISO 16110-1:2007 applies to packaged, self-contained or factory matched hydrogen generation systems with a capacity of less than 400 m3/h at 0 °C and 101,325 kPa, herein referred to as hydrogen generators, that convert an input fuel to a hydrogen-rich stream of composition and conditions suitable for the type of device using the hydrogen (e.g. a fuel cell power system or a hydrogen compression, storage and delivery system). It applies to hydrogen generators using one or a combination of the following input fuels: — natural gas and other methane-rich gases derived from renewable (biomass) or fossil fuel sources, e.g. landfill gas, digester gas, coal mine gas; — fuels derived from oil refining, e.g. diesel, gasoline, kerosene, liquefied petroleum gases such as propane and butane; — alcohols, esters, ethers, aldehydes, ketones, Fischer-Tropsch liquids and other suitable hydrogen-rich organic compounds derived from renewable (biomass) or fossil fuel sources, e.g. methanol, ethanol, di-methyl ether, biodiesel; — gaseous mixtures containing hydrogen gas, e.g. synthesis gas, town gas. ISO 16110-1:2007 is applicable to stationary hydrogen generators intended for indoor and outdoor commercial, industrial, light industrial and residential use. It aims to cover all significant hazards, hazardous situations and events relevant to hydrogen generators, with the exception of those associated with environmental compatibility (installation conditions), when they are used as intended and under the conditions foreseen by the manufacturer.
- Standard75 pagesEnglish languagesale 15% off
- Standard80 pagesFrench languagesale 15% off
ISO 13985:2006 specifies the construction requirements for refillable fuel tanks for liquid hydrogen used in land vehicles as well as the testing methods required to ensure that a reasonable level of protection from loss of life and property resulting from fire and explosion is provided. It is applicable to fuel tanks intended to be permanently attached to land vehicles.
- Standard17 pagesEnglish languagesale 15% off
This International Standard specifies the characteristics of liquid hydrogen refuelling and dispensing systems on land vehicles of all types in order to reduce the risk of fire and explosion during the refuelling procedure and thus to provide a reasonable level of protection from loss of life and property. This International Standard is applicable to the design and installation of liquid hydrogen (LH2) fuelling and dispensing systems. It describes the system intended for the dispensing of liquid hydrogen to a vehicle, including that portion of the system that handles cold gaseous hydrogen coming from the vehicle tank, that is, the system located between the land vehicle and the storage tank.
- Standard13 pagesEnglish languagesale 15% off
- Standard14 pagesFrench languagesale 15% off
ISO/TS 19880-1:2016 recommends the minimum design characteristics for safety and, where appropriate, for performance of public and non-public fuelling stations that dispense gaseous hydrogen to light duty land vehicles (e.g. Fuel Cell Electric Vehicles). NOTE These recommendations are in addition to applicable national regulations and codes, which can prohibit certain aspects of this document. It is applicable to fuelling for light duty hydrogen land vehicles, but it can also be used as guidance for fuelling buses, trams, motorcycles and fork-lift truck applications, with hydrogen storage capacities outside of current published fuelling protocol standards, such as SAE J2601. Residential applications to fuel land vehicles and non-public demonstration fuelling stations are not included in ISO/TS 19880-1:2016. It provides guidance on the following elements of a fuelling station: - hydrogen production/delivery system - delivery of hydrogen by pipeline, trucked in gaseous and/or liquid hydrogen, or metal hydride storage trailers; - on-site hydrogen generators using water electrolysis process or hydrogen generators using fuel processing technologies; - liquid hydrogen storage; - hydrogen purification systems, as applicable; - compression - gaseous hydrogen compression; - pumps and vaporizers; - gaseous hydrogen buffer storage; - pre-cooling device; - gaseous hydrogen dispensers.
- Technical specification121 pagesEnglish languagesale 15% off
ISO 14687-3:2014 specifies the quality characteristics of hydrogen fuel in order to ensure uniformity of the hydrogen product for utilization in stationary proton exchange membrane (PEM) fuel cell power systems.
- Standard21 pagesEnglish languagesale 15% off
ISO 14687-2:2012 specifies the quality characteristics of hydrogen fuel in order to ensure uniformity of the hydrogen product as dispensed for utilization in proton exchange membrane (PEM) fuel cell road vehicle systems.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard17 pagesEnglish languagesale 15% off
ISO 17268:2012 defines the design, safety and operation characteristics of gaseous hydrogen land vehicle (GHLV) refuelling connectors consisting of, as applicable, a receptacle and a protective cap (mounted on vehicle), and a nozzle. It applies to refuelling connectors which have working pressures of 11 MPa, 25 MPa, 35 MPa and 70 MPa, referred to as H11 - 11 MPa at 15 °C, H25 - 25 MPa at 15 °C, H35 - 35 MPa at 15 °C, H35HF - 35 MPa at 15 °C (high flow for commercial vehicle applications), and H70 - 70 MPa at 15 °C. Nozzles and receptacles that meet the requirements of ISO 17268:2012 will only allow GHLVs to be filled by fuelling stations dispensing hydrogen with nominal working pressures equal to or lower than the vehicle fuel system working pressure. They will not allow GHLV to be filled by fuelling stations dispensing blends of hydrogen with natural gas. Refuelling connectors dispensing blends of hydrogen with natural gas are excluded from the scope of ISO 17268:2012.
- Standard35 pagesEnglish languagesale 15% off
- Standard38 pagesFrench languagesale 15% off
ISO 22734-2:2011 defines the construction, safety and performance requirements of packaged hydrogen gas generation appliances, herein referred to as hydrogen generators, using electrochemical reactions to electrolyse water to produce hydrogen. ISO 22734-2:2011 is applicable to hydrogen generators that use the following types of ion transport medium: a group of aqueous bases or solid polymeric materials with acidic function group additions, such as acid proton exchange membrane. ISO 22734-2:2011 is applicable to hydrogen generators intended for indoor and outdoor residential use in sheltered areas, such as car-ports, garages, utility rooms and similar areas of a residence. ISO 22734-2:2011 includes cord-connected equipment for outdoor and garage use only. Portable generators as well as hydrogen generators that can also be used to generate electricity, such as reversible fuel cells, are excluded from the scope of ISO 22734-2:2011. Hydrogen generators that also supply oxygen as a product are excluded from the scope of ISO 22734-2:2011.
- Standard44 pagesEnglish languagesale 15% off
ISO 15869:2009 specifies the requirements for lightweight refillable fuel tanks intended for the on-board storage of high-pressure compressed gaseous hydrogen or hydrogen blends on land vehicles. It is not intended as a specification for fuel tanks used for solid, liquid hydrogen or hybrid cryogenic high-pressure hydrogen storage applications. ISO 15869:2009 is applicable for fuel tanks of steel, stainless steel, aluminium or non-metallic construction material, using any design or method of manufacture suitable for its specified service conditions. ISO 15869:2009 applies to the following types of fuel tank designs: Type 1: metal fuel tanks; Type 2: hoop-wrapped composite fuel tanks with a metal liner; Type 3: fully wrapped composite fuel tanks with a metal liner; Type 4: fully wrapped composite fuel tanks with no metal liner.
- Technical specification41 pagesEnglish languagesale 15% off
ISO/TS 20100:2008 specifies the characteristics of outdoor public and non-public fuelling stations that dispense gaseous hydrogen used as fuel onboard land vehicles of all types. Residential and home applications to fuel land vehicles are not covered.
- Technical specification47 pagesEnglish languagesale 15% off
- Technical specification52 pagesEnglish languagesale 10% offe-Library read for1 day
ISO 16111:2008 defines the requirements applicable to the material, design, construction, and testing of transportable hydrogen gas storage systems, referred to as “metal hydride assemblies” (MH assemblies) which utilize shells not exceeding 150 l internal volume and having a maximum developed pressure (MDP) not exceeding 25 MPa (250 bar). It only applies to refillable storage MH assemblies where hydrogen is the only transferred media. Storage MH assemblies intended to be used as fixed fuel-storage onboard hydrogen fuelled vehicles are excluded. ISO 16111:2008 is intended to be used for certification purposes.
- Standard38 pagesEnglish languagesale 15% off
- Standard41 pagesFrench languagesale 15% off
ISO 22734-1:2008 defines the construction, safety and performance requirements of packaged or factory matched hydrogen gas generation appliances, herein referred to as hydrogen generators, using electrochemical reactions to electrolyse water to produce hydrogen and oxygen gas. It is applicable to hydrogen generators that use the following types of ion transport medium: Group of aqueous bases; Solid polymeric materials with acidic function group additions such as acid proton exchange membrane (PEM). ISO 22734-1:2008 is applicable to hydrogen generators intended for indoor and outdoor commercial and industrial use (non-residential use). Hydrogen generators that can also be used to generate electricity such as reversible fuel cells are excluded from the scope of this International Standard. ISO 22734-1:2008 is intended to be used for certification purposes.
- Standard40 pagesEnglish languagesale 15% off
- Standard43 pagesFrench languagesale 15% off
ISO/TS 14687-2:2008 specifies the quality characteristics of hydrogen fuel in order to assure uniformity of the hydrogen product as dispensed for utilization in proton exchange membrane (PEM) fuel cell road vehicle systems.
- Technical specification7 pagesEnglish languagesale 15% off
- Technical specification7 pagesFrench languagesale 15% off
ISO/TS 16111:2006 defines the requirements applicable to the safe design and use of transportable hydrogen gas storage canisters, including all necessary shut-off valve, pressure-relief devices (PRD), and appurtenances, intended for use with reversible metal hydride hydrogen storage systems. ISO/TS 16111:2006 only applies to refillable storage canisters where hydrogen is the only transferred media. Storage canisters intended to be used as fixed fuel storage onboard hydrogen fuelled vehicles are excluded.
- Technical specification22 pagesEnglish languagesale 15% off
ISO 17268:2006 applies to design, safety and operation verification of Compressed Hydrogen Surface Vehicle (CHSV) refuelling connection devices hereinafter referred to as nozzle and receptacle. CHSV Refuelling nozzles and receptacles consist of the following components, as applicable: Receptacle and protective cap (mounted on vehicle); and Nozzle. ISO 17268:2006 applies to devices which have working pressures of 25 MPa and 35 MPa, hereinafter referred to as the following: H25 - 25 MPa at 15 °C H35 - 35 MPa at 15 °C ISO 17268:2006 applies to nozzles and receptacles which (1) prevent hydrogen fuelled vehicles from being refuelled by dispenser stations with working pressures higher than the vehicle; (2) allow hydrogen vehicles to be refuelled by dispenser stations with working pressures equal to or lower than the vehicle fuel system working pressure; (3) prevent hydrogen fuelled vehicles from being refuelled by other compressed gases dispensing stations; and (4) prevent other gaseous fuelled vehicles from being refuelled by hydrogen dispensing stations.
- Standard19 pagesEnglish languagesale 15% off
- Standard26 pagesFrench languagesale 15% off
ISO/PAS 15594:2004 specifies the fuelling procedures, hydrogen boil-off management procedures, hydrogen storage requirements, and characteristics of the ground support equipment required to operate an airport hydrogen fuelling facility.
- Technical specification17 pagesEnglish languagesale 15% off
ISO/TR 15916:2004 provides guidelines for the use of hydrogen in its gaseous and liquid forms. It identifies the basic safety concerns and risks, and describes the properties of hydrogen that are relevant to safety. Detailed safety requirements associated with specific hydrogen applications are treated in separate International Standards.
- Technical report61 pagesEnglish languagesale 15% off
- Technical report69 pagesFrench languagesale 15% off
- Standard9 pagesEnglish languagesale 15% off
- Standard10 pagesFrench languagesale 15% off