71.060.10 - Chemical elements
ICS 71.060.10 Details
Chemical elements
Chemische Elemente
Elements chimiques
Kemični elementi
General Information
Frequently Asked Questions
ICS 71.060.10 is a classification code in the International Classification for Standards (ICS) system. It covers "Chemical elements". The ICS is a hierarchical classification system used to organize international, regional, and national standards, facilitating the search and identification of standards across different fields.
There are 258 standards classified under ICS 71.060.10 (Chemical elements). These standards are published by international and regional standardization bodies including ISO, IEC, CEN, CENELEC, and ETSI.
The International Classification for Standards (ICS) is a hierarchical classification system maintained by ISO to organize standards and related documents. It uses a three-level structure with field (2 digits), group (3 digits), and sub-group (2 digits) codes. The ICS helps users find standards by subject area and enables statistical analysis of standards development activities.
SIGNIFICANCE AND USE
5.1 This test method is used for determination of the carbon content of water from a variety of natural, domestic, and industrial sources. In its most common form, this test method is used to measure organic carbon as a means of monitoring organic pollutants in industrial wastewater. These measurements are also used in monitoring waste treatment processes.
5.2 The relationship of TOC to other water quality parameters such as chemical oxygen demand (COD) and total oxygen demand (TOD) is described in the literature.4
SCOPE
1.1 This test method covers the determination of total carbon (TC), inorganic carbon (IC), and total organic carbon (TOC) in water, wastewater, and seawater in the range from 0.1 mg/L to 4000 mg/L of carbon.
1.2 This test method was used successfully with reagent water spiked with sodium carbonate, acetic acid, and pyridine. It is the user's responsibility to ensure the validity of this test method for waters of untested matrices.
1.3 This test method is applicable only to carbonaceous matter in the sample that can be introduced into the reaction zone. The syringe needle or injector opening size generally limit the maximum size of particles that can be so introduced.
1.4 In addition to laboratory analyses, this test method may be applied to stream monitoring.
1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard6 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The oil absorption number of a carbon black is related to the processing and vulcanizate properties of rubber compounds containing the carbon black.
SCOPE
1.1 This test method covers the determination of the oil absorption number of carbon black.
1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard10 pagesEnglish languagesale 15% off
- Standard10 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Thermal diffusivity is an important property required for such purposes as design applications under transient heat flow conditions, determination of safe operating temperature, process control, and quality assurance.
5.2 The flash method is used to measure values of thermal diffusivity (α) of a wide range of solid materials. It is particularly advantageous because of the simple specimen geometry, small specimen size requirements, rapidity of measurement, and ease of handling materials having a wide range of thermal diffusivity values over a large temperature range with a single apparatus. The short measurement times involved reduce the chances of contamination and change of specimen properties due to exposure to high temperature environments.
5.3 Thermal diffusivity results in many cases can be combined with values for specific heat (Cp) and density (ρ) to derive thermal conductivity (λ) from the relation λ = αCpρ. For guidance on converting thermal diffusivity to thermal conductivity, refer to Practice C781.
5.4 This test method described in this guide can be used to characterize graphite for design purposes.
5.5 Test Method E1461 is a more detailed form of this test method described in this guide and has applicability to much wider ranges of materials, applications, and temperatures.
SCOPE
1.1 This guide covers the determination of the thermal diffusivity of carbons and graphite at temperatures up to 500 °C. It is applicable only to small easily fabricated specimens. Thermal diffusivity values in the range from 0.04 cm2/s to 2.0 cm2/s are readily measurable by this guide; however, for the reason outlined in Section 7, for materials outside this range this guide may not be applicable.
1.2 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Guide5 pagesEnglish languagesale 15% off
- Guide5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method may be used for material development, characterization, design data generation, and quality control purposes.
5.2 This test method is primarily concerned with the room temperature determination of the dynamic moduli of elasticity and rigidity of slender rods or bars composed of homogeneously distributed carbon or graphite particles.
5.3 This test method can be adapted for other materials that are elastic in their initial stress-strain behavior, as defined in Test Method E111.
5.4 This basic test method can be modified to determine elastic moduli behavior at temperatures from –75 °C to +2500 °C. Thin graphite rods may be used to project the specimen extremities into ambient temperature conditions to provide resonant frequency detection by the use of transducers as described in 7.1.
SCOPE
1.1 This test method covers determination of the dynamic elastic properties of isotropic and near isotropic carbon and graphite materials at ambient temperatures. Specimens of these materials possess specific mechanical resonant frequencies that are determined by the elastic modulus, mass, and geometry of the test specimen. The dynamic elastic properties of a material can therefore be computed if the geometry, mass, and mechanical resonant frequencies of a suitable (rectangular or cylindrical) test specimen of that material can be measured. Dynamic Young's modulus is determined using the resonant frequency in the flexural or longitudinal mode of vibration. The dynamic shear modulus, or modulus of rigidity, is found using torsional resonant vibrations. Dynamic Young's modulus and dynamic shear modulus are used to compute Poisson's ratio.
1.2 This test method determines elastic properties by measuring the fundamental resonant frequency of test specimens of suitable geometry by exciting them mechanically by a singular elastic strike with an impulse tool. Specimen supports, impulse locations, and signal pick-up points are selected to induce and measure specific modes of the transient vibrations. A transducer (for example, contact accelerometer or non-contacting microphone) senses the resulting mechanical vibrations of the specimen and transforms them into electric signals. (See Fig. 1.) The transient signals are analyzed, and the fundamental resonant frequency is isolated and measured by the signal analyzer, which provides a numerical reading that is (or is proportional to) either the frequency or the period of the specimen vibration. The appropriate fundamental resonant frequencies, dimensions, and mass of the specimen are used to calculate dynamic Young's modulus, dynamic shear modulus, and Poisson's ratio. Annex A1 contains an alternative approach using continuous excitation.
FIG. 1 Block Diagram of Typical Test Apparatus
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard19 pagesEnglish languagesale 15% off
- Standard19 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 This test method provides a practical estimate of nonburnable residues in commercially available graphite materials. The ash values determined by this test method are of use in comparing the relative purity of various grades of graphite. To facilitate use, this test method institutes simplifications that preclude the ability to determine absolutely the ash values of the test graphite material due to uncontrolled sources of trace contamination.
4.2 This test method is not intended for use in determining the ash content of purified graphites, for example, nuclear materials. The relationship between the mineral content of a graphite sample and the ash content of that sample is unknown and is not determined by the application of this test method.
SCOPE
1.1 This test method provides a practical determination for the ash content in a graphite sample.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard3 pagesEnglish languagesale 15% off
- Standard3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 This test method is applicable only for determination of the volatile moisture content resulting from adsorption of water vapor from the atmosphere, and is not intended to give representative moisture data for graphite that has been exposed to liquid water contamination.
SCOPE
1.1 This test method provides a practical determination for the percentage of moisture in a graphite sample.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard2 pagesEnglish languagesale 15% off
- Standard2 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
2.1 This terminology ensures that terms peculiar to activated carbon are adequately defined so that other standards in which such terms are used can be understood and interpreted properly.
2.2 This terminology is useful to those who are not conversant with the terms related to activated carbon. However, it is also a ready reference for those directly associated with activated carbon to resolve differences and ensure commonality of usage, particularly in the preparation of ASTM standards.
2.3 Although this terminology is intended to promote uniformity in the usage of terms related to activated carbon, it can never be complete because new terms are constantly arising. The existence of this terminology does not preclude the use or misuse of any term in another context.
SCOPE
1.1 This terminology covers terms particularly related to activated carbon and encompasses finished products, applications, and testing procedures.
1.2 When any of the definitions in this terminology is quoted or published out of context, editorially insert the limiting phrase “in activated carbon” after the dash following the term to properly limit the field of application of the term and definition.
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
SCOPE
1.1 This terminology covers a compilation of definitions of technical terms used in the recovered carbon black industry. Terms that are generally understood or adequately defined in other readily available sources are not included.
1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard1 pageEnglish languagesale 15% off
- Standard1 pageEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The total carbon content of a carbon black is a requirement for the calculation and reporting of carbon dioxide emissions. It can also be used in calculations to estimate yield of the process.
SCOPE
1.1 This test method covers the instrumental determination of carbon content in a carbon black sample. Values obtained represent the total carbon content.
1.2 The method is applicable to tread, carcass and specialty type carbon blacks obtained from partial combustion or thermal decomposition processes, which typically contain 95 to 100 % carbon.
1.3 The results of these tests can be expressed as mass % carbon.
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Two- and three-parameter formulations exist for the Weibull distribution. This practice is restricted to the two-parameter formulation. An objective of this practice is to obtain point estimates of the unknown Weibull distribution parameters by using well-defined functions that incorporate the failure data. These functions are referred to as estimators. It is desirable that an estimator be consistent and efficient. In addition, the estimator should produce unique, unbiased estimates of the distribution parameters (6). Different types of estimators exist, such as moment estimators, least-squares estimators, and maximum likelihood estimators. This practice details the use of maximum likelihood estimators.
5.2 Tensile and flexural specimens are the most commonly used test configurations for graphite. The observed strength values depend on specimen size and test geometry. Tensile and flexural test specimen failure data for a nearly isotropic graphite (7) is depicted in Fig. 1. Since the failure data for a graphite material can be dependent on the test specimen geometry, Weibull distribution parameter estimates (m, Sc) shall be computed for a given specimen geometry.
FIG. 1 Failure Strengths for Tensile Test Specimens (left) and Flexural Test Specimens (right) for a Nearly Isotropic Graphite (7)
5.3 The bias and uncertainty of Weibull parameters depend on the total number of test specimens. Variability in parameter estimates decreases exponentially as more specimens are collected. However, a point of diminishing returns is reached where the cost of performing additional strength tests may not be justified. This suggests a limit to the number of test specimens for determining Weibull parameters to obtain a desired level of confidence associated with a parameter estimate. The number of specimens needed depends on the precision required in the resulting parameter estimate or in the resulting confidence bounds. Details relating to the computation of confidence bo...
SCOPE
1.1 This practice covers the reporting of uniaxial strength data for graphite and the estimation of probability distribution parameters for both censored and uncensored data. The failure strength of graphite materials is treated as a continuous random variable. Typically, a number of test specimens are failed in accordance with the following standards: Test Methods C565, C651, C695, C749, Practice C781 or Guide D7775. The load at which each specimen fails is recorded. The resulting failure stresses are used to obtain parameter estimates associated with the underlying population distribution. This practice is limited to failure strengths that can be characterized by the two-parameter Weibull distribution. Furthermore, this practice is restricted to test specimens (primarily tensile and flexural) that are primarily subjected to uniaxial stress states.
1.2 Measurements of the strength at failure are taken for various reasons: a comparison of the relative quality of two materials, the prediction of the probability of failure for a structure of interest, or to establish limit loads in an application. This practice provides a procedure for estimating the distribution parameters that are needed for estimating load limits for a particular level of probability of failure.
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard9 pagesEnglish languagesale 15% off
- Standard9 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 CCl4 and CHCl3 may be present in trace amounts in liquid chlorine. The use of chlorine to purify water would then transfer these compounds to the water. Therefore, when the concentrations of the CCl4 and CHCl3 in the liquid chlorine are known, the maximum amounts contributed to the water by the chlorine can be estimated.
SCOPE
1.1 This test method is designed for the determination of carbon tetrachloride (CCl4) and chloroform (CHCl3) in liquid chlorine. The lower limit of detection is dependent on the sample size and the instrument used; five ppm (w/w) is achievable.
1.2 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7 and in 9.2.3.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
3.1 This test method is primarily concerned with the oxidation mass loss of manufactured carbon and graphite materials in air at temperatures from 371 °C to 677 °C.
3.2 The test method will provide acceptable results at preselected test temperatures that yield less than 10 % mass loss in 100 h. These results can be used to determine relative service temperatures.
SCOPE
1.1 This test method provides a comparative oxidation mass loss of manufactured carbon and graphite materials in air.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method can be used to measure the rate of oxidation for various grades of manufactured carbon and graphite in standard conditions, and can be used for quality control purposes.
5.2 The following conditions are standardized in this test method: size and shape of the graphite specimens; their placement in the vertical furnace with upwards air flow; the method for continuous weight variation measurement using an analytical scale with under-the-scale port; the air flow rate, which must be high enough to ensure that oxidation is not oxygen-starved at the highest temperature used; the initial and final points on the weight loss curve used for calculation of oxidation rate.
5.3 This test method also provides kinetic parameters (apparent activation energy and logarithm of pre-exponential factor) for the oxidation reaction, and a standard oxidation temperature. The results characterize the effect of temperature on oxidation rates in air, and the oxidation resistance of machined carbon or graphite specimens with standard size and shape, in the kinetic, or chemically controlled, oxidation regime. This information is useful for discrimination between material grades with different impurity levels, grain size, pore structure, degree of graphitization, or antioxidation treatments, or a combination thereof.
5.4 Accurately determined kinetic parameters, like activation energy and logarithm of pre-exponential factor, can be used for prediction of oxidation rates in air as a function of temperature in conditions similar to those of this test method. However, extrapolation of such predictions outside the temperature range where Arrhenius plots are linear (outside the kinetic or chemically controlled regime of oxidation) should be made with extreme caution. In conditions where (1) oxidation rates become controlled by a mechanism other than chemical reactions (such as in-pore diffusion or boundary transport of the oxidant gas), or (2) the oxidant supply rate is no...
SCOPE
1.1 This test method recommends a standard procedure for measuring oxidation rates in air of various grades of nuclear graphite and/or manufactured carbon. Following the standard procedure recommended here, one can obtain kinetic parameters that characterize the oxidation resistance in standard conditions of tested materials and that can be used to for materials selection and qualification, and for quality control purposes in the fabrication process.
1.2 This test method covers the rate of oxidative weight loss per exposed nominal geometric surface area, or per initial weight of machined test specimens of standard size and shape, or both. The test is valid in the temperature range where the rate of air oxidation of graphite and manufactured carbon is limited by reaction kinetics.
1.3 This test method also provides a standard oxidation temperature (as defined in 3.1.7), and the kinetic parameters of the oxidation reaction, namely the apparent activation energy and the logarithm of pre-exponential factor in Arrhenius equation. The kinetic parameters of Arrhenius equation are calculated from the temperature dependence of oxidation rates measured over the temperature range where Arrhenius plots (as defined in 3.1.8) are linear, which is defined as the “kinetic” or “chemical control” oxidation regime. For typical nuclear grade graphite materials it was found that the practical range of testing temperatures is from about 500 °C to 550 °C up to about 700 °C to 750 °C.
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international s...
- Standard13 pagesEnglish languagesale 15% off
- Standard13 pagesEnglish languagesale 15% off
SCOPE
1.1 This specification covers average or minimum wall thickness electric resistance welded (ERW) tubing to be used for boilers, heat exchangers, condensers, and similar heat-transfer apparatus.
1.2 The tubing sizes and thicknesses usually furnished to the specification are 0.375 in. [9.5 mm] inside diameter (ID) to 1.5 in. [38 mm] outside diameter (OD) and 0.020 to 0.079 in. [0.5 to 2 mm], inclusive, in wall thickness. Tubing having other dimensions may be furnished provided such tubes comply with all other requirements of this specification.
1.3 The steel materials shall have the (1) external tube surface, (2) internal tube surface, or (3) both internal and external tube surfaces textured to improve heat transfer or fluid flow or both. Textured surface(s) are produced by cold forming a specified configuration on the surface(s) of base strip material before welding.
1.4 Optional supplementary requirements are provided and, when desired, shall be so stated on the purchase order.
1.5 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. The inch-pound units shall apply unless the “M” designation (SI) of the product specification is specified in the order.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The sulfur print reveals the distribution of sulfur as sulfide inclusions in the specimen. The sulfur print complements macroetch methods by providing an additional procedure for evaluating the homogeneity of a steel product.
5.2 Sulfur prints of as-cast specimens generally reveal the solidification pattern and may be used to assess the nature of deoxidation, that is, rimming action versus killed steel sulfur distributions.
5.3 Sulfur prints will reveal segregation patterns, including refilled cracks, and may reveal certain physical irregularities, for example, porosity or cracking.
5.4 The nature of metal flow, such as in various forging operations, can be revealed using sulfur prints of specimens cut parallel to the metal flow direction.
5.5 The sulfur print method is suitable for process control, research and development studies, failure analysis, and for material acceptance purposes.
5.6 The intensity of the sulfur print is influenced by the concentration of sulfur in the steel, the chemical composition of the sulfide inclusions, the aggressiveness of the aqueous acid solution, and the duration of the contact printing between the acid soaked emulsion coated paper and the ground surface of the specimen (this time is the order of seconds rather than minutes). Very low sulfur content steels will produce too faint an image to be useful for macrostructural evaluations. Selection of appropriate printing practices including selection of type of emulsion coated media, acid type and strength, will yield satisfactory prints. Very faint images in the sulfur print can be made more visible by scanning the sulfur print into a PC, and using a photo editor to increase the color saturation. Steels with compositions that produce predominantly titanium or chromium sulfides will not produce useful images.
SCOPE
1.1 This practice provides information required to prepare sulfur prints (also referred to as Baumann Prints) of most ferrous alloys to reveal the distribution of sulfide inclusions.
1.2 The sulfur print reveals the distribution of sulfides in steels with bulk sulfur contents between about 0.010 and 0.40 weight percent.
1.3 Certain steels contain complex sulfides that do not respond to the test solutions, for example, steels containing titanium sulfides or chromium sulfides.
1.4 The sulfur print test is a qualitative test. The density of the print image should not be used to assess the sulfur content of a steel. Under carefully controlled conditions, it is possible to compare print image intensities if the images are formed only by manganese sulfides.
1.5 The sulfur print image will reveal details of the solidification pattern or metal flow from hot or cold working on appropriately chosen and prepared test specimens.
1.6 This practice does not address acceptance criteria based on the use of the method.
1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 9.
1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
This document specifies a thermal pre-ageing procedure for leather to obtain indications about the tendency to the formation of hexavalent chromium under specified conditions and the determination of hexavalent chromium according to ISO 17075‑1 or ISO 17075‑2.
This thermal pre-ageing procedure does not simulate any real condition in leather production or use.
It is applicable to all types of chromium tanned leather.
- Standard13 pagesEnglish languagee-Library read for1 day
ABSTRACT
This specification covers industrial grade chlorine normally available as a liquid in pressurized metal containers. Liquid chlorine shall conform to the following requirements: gaseous impurities content, moisture content, and nonvolatile material content.
SCOPE
1.1 This specification covers industrial grade chlorine normally available as a liquid in pressurized metal containers.
1.2 The following applies to all specified limits in this specification: for purposes of determining conformance with this specification, an observed value or a calculated value shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29.
1.3 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.
1.4 Review the current Safety Data Sheets (SDS) for detailed information concerning toxicity, first aid procedures, handling and safety precautions.
1.5 The following safety hazards caveat pertains only to the test methods listed in Sections 3 and 4. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
- Technical specification2 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The Molten Salt Reactor is a nuclear reactor which uses graphite as reflector and structural material, and molten salt as coolant. The graphite components will be submerged in the molten salt during the lifetime of the reactor. The porous structure of graphite may lead to molten salt permeation, which can affect the thermal and mechanical properties of graphite. Consequently, it may be necessary to measure the various strengths of the manufactured graphite materials after impregnation with molten salt and before exposure to the reactor environment in a range of test configurations in order for designers or operators to assess their performance.
Note 1: Depending upon the salt selected for the reactor, there may be some chemical reaction between the salt and the graphite that could affect properties. The user should establish, prior to following this guide, that any interactions between the molten salt and graphite are understood and any implications for the validity of the strength tests have been assessed.
5.2 For gas-cooled reactors, the strength of a graphite specimen is usually measured at room temperature. However, for molten salt reactors, the operating temperature of the reactor must be higher than the melting temperature of the salt, and so the salt will be in solid state at room temperature. Consequently, room temperature measurements may not be representative of the performance of the material at its true operating conditions. It is therefore necessary to measure the strength at an elevated temperature where the salt is in liquid form.
Note 2: Users should be aware that a small increase in graphite strength is expected with increasing temperature. Testing at the plant operating temperature will eliminate this small uncertainty.
5.3 The purpose of this guide is to provide considerations, which should be included in testing graphite specimens impregnated with molten salt at elevated temperature.
5.4 For the test results to be meaningful, the...
SCOPE
1.1 This guide covers the best practice for strength measurements at elevated temperature of graphite impregnated with molten salt.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Guide5 pagesEnglish languagesale 15% off
- Guide5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The molten salt reactor is a nuclear reactor which uses graphite as reflector and structural material and fluoride molten salt as coolant. The graphite components will be submerged in the molten salt during the lifetime of the reactor. The porous structure of graphite may lead to molten salt permeation, which can affect the thermal and mechanical properties of graphite. Consequently, it is important to assess the effect of impregnation of molten salt on the properties of the as-manufactured graphite material.
5.2 The purpose of this guide is to report considerations that should be included in the preparation of graphite specimens representative of that after exposure to a molten salt environment. The degree to which the molten salt will infiltrate the graphite will depend upon a number of factors, including the type of graphite and the type and extent of porosity, the properties of the molten salt, the impregnation pressure and temperature, and the duration of the exposure of the graphite to the molten salt.
5.3 The user of this guide will need to select impregnation parameters sufficiently representative of those in a molten salt reactor based on parameters provided by the designer. Alternatively, the user may select a standard set of impregnation conditions to allow comparisons across a range of graphites.
5.4 This guide is not intended to be prescriptive. A typical apparatus and associated procedure are described. Some indication of the sensitivity of the procedure to graphite type and impregnation conditions is given in He, et al.5
5.5 There are four major practical issues that must be addressed during the impregnation process:
5.5.1 The density of molten salt is greater than that of graphite. A specially designed tool is required to submerge graphite samples in the molten salt during the impregnation process.
5.5.2 Some molten salts (for example, FLiBe) are poisonous and it is therefore necessary to provide containment by performing proced...
SCOPE
1.1 This guide covers procedures for the impregnation of graphite with molten salt under a consistent pressure and temperature. Such procedures are necessary if the user wishes to prepare graphite specimens for testing that represent material that has been exposed to a molten salt environment in a molten salt nuclear reactor. The user will need to ensure that impregnation temperature and pressure conditions reflect those pertaining to the molten salt environment, noting that the properties of the material will change once it becomes irradiated.
Note 1: The term impregnation is used throughout this guide as this is the correct term for the described process. Other terms such as infiltration and intrusion may be encountered by the user in other texts and the term intrusion is commonly used to describe penetration of open porosity in graphite in a molten salt reactor environment.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this guide.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Guide5 pagesEnglish languagesale 15% off
- Guide5 pagesEnglish languagesale 15% off
ABSTRACT
This set of guidelines is offered to users of activated carbon to provide a better understanding of the reactivation process and some of the problems associated with sending carbon off-site or to a third party for thermal reactivation. It is not intended to serve as an operating procedure for those companies or persons that actually operate reactivation facilities. This is true because each reactivation facility is unique, using different types of furnaces, using various operating and performance requirements, and running spent activated carbons either in aggregate pools (combining different suppliers of carbon) or in custom segregated lots. Additionally, proprietary information for each facility relative to the particular equipment used cannot be addressed in a general set of guidelines. The equipment used for thermal reactivation process usually consists of rotary kilns, vertical tube furnaces, fluidized beds, or a multiple hearth furnace. All of these can be fired directly or indirectly. Auxiliary equipment to the furnace or kiln consists of feed screws, dewatering screws, direct feed bins, dust control equipment, product coolers, screening equipment, off-gas pollution abatement equipment, and tankage.
SCOPE
1.1 This set of guidelines is offered to users of activated carbon to provide a better understanding of the reactivation process and some of the problems associated with sending carbon offsite or to a third party for thermal reactivation. It is not intended to serve as an operating procedure for those companies or persons that actually operate reactivation facilities. This is true because each reactivation facility is unique, using different types of furnaces, using various operating and performance requirements, and running spent activated carbons either in aggregate pools (combining different suppliers of carbon) or in custom segregated lots. Additionally, proprietary information for each facility relative to the particular equipment used cannot be addressed in a general set of guidelines.
1.2 This standard does not purport to address any environmental regulatory concerns associated with its use. It is the responsibility of the user of this standard to establish appropriate practices for reactivation prior to use.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Guide3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method may be run together with Test Method C1432 to analyze for trace impurities in Pu metal. Using the technique described in this test method and the technique described in Test Method C1432 will provide the analyst with a more thorough verification of the impurity concentrations contained in the Pu metal sample. In addition, Test Method C1432 can be used to determine impurity concentrations for analytes such as Ca, Fe, Na, and Si, which have not been determined using this test method.
5.2 This test method can be used on Pu matrices in nitrate solutions.
5.3 This test method has been validated for use on materials that meet the specifications described in Specification C757 and Test Methods C758 and C759.
5.4 This test method has been validated for all elements listed in Table 1. (A) Without outlying value.
SCOPE
1.1 This test method covers the determination of trace elements in plutonium (Pu) materials such as Pu metal, Pu oxides, and Pu/uranium (U) mixed oxides. The Pu sample is dissolved in acid, and the concentration of the trace impurities are determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS).
1.2 This test method is specific for the determination of trace impurities where the samples are dissolved and the oxidation state is adjusted to the Pu(IV) and, if applicable, the U(VI) state. It may be applied to other matrices; however, it is the responsibility of the user to evaluate the performance of other matrices.
1.3 The use of a quadrupole ICP-MS or a high resolution ICP-MS (HR-ICP-MS) can be employed in all applications relevant to this test method. HR-ICP-MS is a better option in many cases since it can reduce or potentially eliminate interferences encountered in the following complex sample matrices.
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The greater a carbon black resists compression by having substantial aggregate irregularity and non-sphericity, the greater the compressed volume and void volume. Also, the more that a carbon black resists compression, the greater the energy required to compress the sample per unit void volume.
5.2 Structure is a property that strongly influences the physical properties developed in carbon black-elastomer compounds for use in tires, mechanical rubber goods, and other manufactured rubber products. Structure by void volume is based on compression while structure measurements by OAN (Test Method D2414) and COAN (Test Method D3493) are based on oil absorption.
SCOPE
1.1 This test method covers a procedure to measure a carbon black structure property by Void Volume at mean pressure. Compressed void volumes are obtained by measuring the compressed volume of a weighed sample in a cylindrical chamber as a function of pressure exerted by a movable piston. A profile of void volume as a function of pressure provides a means to assess carbon black structure at varying levels of density and aggregate reduction. For the purposes of standardized testing a single value of void volume is reported at 50 MPa mean pressure.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Volatile matter, when determined as herein described, may be used as a relative measure of the extent of carbonization in an activated carbon and the extent of loading of volatile material on an activated carbon that has been used in an adsorption application.
5.2 Combined with other information, the volatile matter of an activated carbon may be useful in evaluating its performance in an adsorption application.
5.3 Other automated methods for the determination of the volatile content of solids, such as using a thermogravimetric analyzer (TGA), can be used in place of this test method with equally reliable results.
SCOPE
1.1 This test method covers the determination of the percentage of gaseous products, exclusive of moisture vapor, present in virgin and used activated carbons which are released under specific conditions of the test.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard2 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The mean maximum reflectance of the vitrinite component in coal as determined by this test method is often used as an indicator of rank as presented in Classification D388, independent of petrographic composition, and in the characterization of coal as feedstock for carbonization, gasification, liquefaction, and combustion processes.
5.2 This test method is for use in scientific and industrial research.
SCOPE
1.1 This test method covers the microscopical determination of both the mean maximum and mean random reflectances measured in oil of polished surfaces of vitrinite and other macerals present in coals ranging in rank from lignite to anthracite. This test method can be used to determine the reflectance of other macerals.
1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard6 pagesEnglish languagesale 15% off
- Standard6 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Carbon and graphite can usually support higher loads in compression than in any other mode of stress. This test, therefore, provides a measure of the maximum load-bearing capability of carbon and graphite objects.
SCOPE
1.1 This test method covers the determination of the compressive strength of carbon and graphite at room temperature.
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 This test method is used to measure the total and external surface area of carbon blacks based on multipoint nitrogen adsorption. The NSA measurement is based on the B.E.T. theory and it includes the total surface area, inclusive of micropores, pore diameters less than 2 nm (20 Å). The external surface area, based on the statistical thickness method (STSA), is defined as the specific surface area that is accessible to rubber.
4.2 CTAB Surface Area (formerly Test Method D3765) has been withdrawn. The CTAB value may be estimated from the STSA value using Eq 1. The equation is based on a linear regression of the STSA and CTAB measured values of the SRB 5 standards.
SCOPE
1.1 This test method covers the determination of the total surface area by the Brunauer, Emmett, and Teller (B.E.T. NSA) theory of multilayer gas adsorption behavior using multipoint determinations and the external surface area based on the statistical thickness surface area method.
1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (The minimum safety equipment should include protective gloves, sturdy eye and face protection).
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard6 pagesEnglish languagesale 15% off
- Standard6 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 These test methods may be used for quality control testing of established grades of carbon and graphite materials, in the development of new grades, and for other purposes where relative strength levels are the primary quantities of interest. This test method may be applicable only if the ratio of specimen diameter to grain size, or flaw size, is greater than 5.
4.2 These test methods do not substitute for that described in Test Method C749, but are useful where less sophisticated data and less expensive techniques are sufficient.
4.3 Carbon and graphite materials exhibit significant physical property differences within parent materials. Exact sampling patterns and grain orientations must be specified in order to make meaningful tensile strength comparisons.
SCOPE
1.1 These test methods cover the apparatus, specimen, and procedures for the tension testing of carbon and graphite mechanical materials with a grain size smaller than 0.79 mm.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.2.1 Exception—All of the figures are dimensioned in inches in accordance with the original standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The purpose of this practice is to identify sample and test parameters that may influence graphite irradiation test results. This practice should not be construed as a requirement or recommendation that proprietary information be disclosed.
4.2 Irradiation results on graphite include dimensional changes and changes in properties that are used in reactor design. The irradiation data are reported in government documents, open literature publications, and are assembled into data manuals for use by reactor designers.
SCOPE
1.1 This practice covers information recommended for inclusion in reports giving graphite irradiation results.
1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard2 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Sulfur, even in very low concentrations, is of concern in a nuclear reactor because of potential corrosion of metallic components. This test method has the sensitivity to analyze very low sulfur contents in graphite using very small samples.
5.2 This test method can be used to characterize graphite for design purposes.
SCOPE
1.1 This test method covers the determination of sulfur in graphite in the concentration range from 1 μg/g to 1000 μg/g (ppm).
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard2 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This practice is used when activated carbon is considered as an adsorbent in treating water. Since both granular and powdered activated carbons are commercially available, a standard practice is needed to ensure that the activated carbons are evaluated under the same test conditions. Specified particle size carbon is to be used to ensure that the same test conditions are used. The practice is generally performed at 20 °C; however, other temperatures may be used and noted.
SCOPE
1.1 This practice covers the determination of the adsorptive capacity of activated carbon to remove undesirable constituents from water and waste water. It can be used to evaluate the adsorptive capacity of activated or reactivated carbon.
1.2 This practice is not recommended unless special precautions are taken to reduce loss during sample preparation and analysis.
1.3 This practice is recommended to determine the adsorptive capacity of activated carbon for the following applications, but is not limited to these applications:
1.3.1 Removal of color from dye mill waste water,
1.3.2 Removal of taste or odor constituents, or both, from potable waters,
1.3.3 Removal of toxicants from water,
1.3.4 Removal of surface-active agents from water,
1.3.5 Removal of BOD5 from sanitary waste waters, and
1.3.6 Removal of TOC from industrial waste waters.
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Several test methods for carbon black require the reduction in sample size or the blending of the test sample to reduce the variation of the measured characteristic. Other factors being equal, larger samples will tend to be more representative of the total supply. This practice provides procedures for reducing the large sample obtained from the bag and bulk sampling practices to a convenient size for conducting a number of tests to describe the material and measure its quality in such a manner that the smaller portion is most likely to be a representation of the bulk sample. Failure to follow the procedures in this practice could result in providing a nonrepresentative sample to be used in subsequent testing. Individual test methods provide for minimum amounts of material to be tested.
4.2 Test Method A, Reduction of Sample Size, is typically used to obtain an aliquot from a large sample, splitting a black into two or more equal portions, or reducing a blended black from Test Method B to a specified sample size. The final sample is always smaller than the original sample and would not be considered to be a “well blended” sample.
4.3 Test Method B, Blending of Carbon Black, is typically used to prepare a homogeneous sample. The homogeneous sample may be used for several tests (see Note 2) or may be reduced in size by Test Method A. The final sample size is the same as the original.
4.4 When a sample is to be blended and reduced, the sample should be blended (Test Method B) before reduction (Test Method A). The blending and reduction must be done before the sample is dried (Test Method C).
SCOPE
1.1 This practice describes the procedure for blending of pelleted carbon black, the procedure for the reduction of gross samples of pelleted carbon black to the appropriate size for testing and the preparation of the sample for testing. These techniques are intended to minimize variations in measured characteristics between test samples. Standard terminology relating to carbon black samples is found in Terminology D3053. The classification system for carbon blacks used in rubber products can be found in Classification System D1765.
1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 These test methods provide a practical way to measure the concentration of certain trace elements in graphite. Many end uses of graphite require that it be free of elements which may be incompatible with certain nuclear applications. Other elemental contamination can affect the rate of oxidative degradation.
4.2 These test methods allow measurement of trace amounts of contaminants with a minimal amount of costly equipment. The colorimetric procedures used are accessible to most laboratories.
4.3 Other instrumental analysis techniques are available, capable of simultaneous quantitative analysis of 76 stable elements in a single run, with detectability limits in the parts per million range. Standards are currently being developed for elemental analysis of impurities in graphite using glow discharge mass spectrometry (GDMS), inductively coupled plasma optical emission spectroscopy (ICP-OES), combustion ion chromatography (CIC).
SCOPE
1.1 These test methods cover the chemical analysis of graphite.
1.2 The analytical procedures appear in the following order:
Sections
Silicon by the Molybdenum Blue (Colorimetric) Test Method
9 to 15
Iron by the o-Phenanthroline (Colorimetric) Test Method
16 to 22
Calcium by the Permanganate (Colorimetric) Test Method
23 to 29
Aluminum by the 2-Quinizarin Sulfonic Acid Test Method
30 to 36
Titanium by the Peroxide (Colorimetric) Test Method
37 to 44
Vanadium by the 3,3′-Dimethylnaphthidine (Colorimetric)
Test Method
45 to 52
Boron by the Curcumin-Oxalic Acid (Colorimetric) Test Method
53 to 60
1.3 The preferred concentration of sought element in the final solution, the limits of sensitivity, and the precision of the results are given in Table 1.
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See 56.1 for specific caution statement.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard9 pagesEnglish languagesale 15% off
- Standard9 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The round robin testing on which the precision and bias for this test method have been determined employed a range of graphites (see Table 2) whose grain sizes were of the order of 1 mil to 1/4 in. (0.0254 mm to 6.4 mm) and larger. This wide range of carbons and graphites can be tested with uniform gauge diameters with minimum parasitic stresses to provide quality data for use in engineering applications rather than simply for quality control. This test method can be easily adapted to elevated temperature testing of carbons and graphites without changing the specimen size or configuration by simply utilizing elevated temperature materials for the load train. This test method has been utilized for temperatures as high as 4352 °F (2400 °C). The design of the fixtures (Figs. 2-9 and Table 1) and description of the procedures are intended to bring about, on the average, parasitic stresses of less than 5 %. The specimens for the different graphites have been designed to ensure fracture within the gauge section commensurate with experienced variability in machining and testing care at different facilities. The constant gauge diameter permits rigorous analytical treatment.
Note 1: Refer to Fig. 2, Items 101 and 115.
Note 1: Refer to Fig. 2, Items 103 and 117. (A) Screw size.
Note 1: Refer to Fig. 2, Items 107, 109, 111, 113, 121, 123, and 129.
Note 1: Refer to Fig. 2, Items 105, 109, 113, 119, 123, 125, and 129.
Note 1: Refer to Fig. 2, Items 108, 112, 122, and 128.
FIG. 9 Attachment for Strain Flags or Extensometers to Provide Minimum Damage to Surface of Specimen
Note 1: Jig align to ensure precision gauge length; mount post or groove to match type of extensometer.
5.2 Carbon and graphite materials exhibit significant physical property differences within parent materials. Exact sampling patterns and grain orientations must be specified in order to make meaningful tensile strength comparisons. See also Test Methods C565.
SCOPE
1.1 This test method covers the testing of carbon and graphite in tension to obtain the tensile stress-strain behavior, to failure, from which the ultimate strength, the strain to failure, and the elastic moduli may be calculated as may be required for engineering applications. Table 2 lists suggested sizes of specimens that can be used in the tests.
Note 1: The results of about 400 tests, on file at ASTM as a research report, show the ranges of materials that have been tested, the ranges of specimen configurations, and the agreement between the testers. See Section 11.
Note 2: For safety considerations, it is recommended that the chains be surrounded by suitable members so that at failure all parts of the load train behave predictably and do not constitute a hazard for the operator.
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. Conversions are not provided in the tables and figures.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard11 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 A Rockwell L scale hardness number is a number derived from the net increase in depth of impression as the load on a 6.3500 mm ± 0.0025 mm diameter steel-ball indenter is increased from a fixed 10 kg minor load to a 60 kg major load and then returned to the minor load.
4.2 A Rockwell hardness number is directly related to the indentation hardness of a material; the higher the Rockwell L scale reading, the harder the material. The test is useful in the evaluation and the manufacturing control of carbon and graphite materials.
SCOPE
1.1 This test method covers Rockwell L scale hardness testing of graphite materials with grain size less than 0.8 mm and a hardness range between 0 and 120.
1.2 Test Methods E18 shall be followed except where otherwise indicated.
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard3 pagesEnglish languagesale 15% off
- Standard3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The emission of mercury during coal combustion can be an environmental concern.
5.2 When representative test portions are analyzed according to this procedure, the total mercury is representative of mass fractions in the sample.
SCOPE
1.1 These test methods cover procedures to determine the total mercury content in a sample of coal or coal combustion residue.
1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.
1.3 Warning—Mercury has been designated by EPA and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA’s website (http://www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury or mercury-containing products, or both, in your state may be prohibited by state law.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Nuclear grade graphite is a composite material made from petroleum or a coal-tar-based coke and a pitch binder. Manufacturing graphite is an iterative process of baking and pitch impregnation of a formed billet prior to final graphitization, which occurs at temperatures greater than 2500 °C. The impregnation and rebake step is repeated several times until the desired product density is obtained. Integral to this process is the use of isotropic cokes and a forming process (that is, isostatically molded, vibrationally molded, or extruded) that is intended to obtain an isotropic or near isotropic material. However, the source, size, and blend of the starting materials as well as the forming process of the green billet will impart unique material properties as well as variations within the final product. There will be density variations from the billet surface inward and different physical properties with and transverse to the grain direction. Material variations are expected within individual billets as well as billet-to-billet and lot-to-lot. Other manufacturing defects of interest include large pores, inclusions, and cracks. In addition to the material variation inherent to the manufacturing process, graphite will experience changes in volume, mechanical strength, and thermal properties while in service in a nuclear reactor along with the possibility of cracking due to stress and oxidation resulting from constituents in the gas coolant or oxygen ingress. Therefore, there is the recognized need to be able to nondestructively characterize a variety of material attributes such as uniformity, isotropy, and porosity distributions as a means to assure consistent stock material. This need also includes the ability to detect isolated defects such as cracks, large pores and inclusions, or distributed material damage such as material loss due to oxidation. The use of this guide is to acquire a basic understanding of the unique attributes of nuclear grade graphite and its a...
SCOPE
1.1 This guide provides general tutorial information regarding the application of conventional nondestructive evaluation technologies (NDE) to nuclear grade graphite. An introduction will be provided to the characteristics of graphite that defines the inspection technologies that can be applied and the limitations imposed by the microstructure. This guide does not provide specific techniques or acceptance criteria for end-user examinations but is intended to provide information that will assist in identifying and developing suitable approaches.
1.2 The values stated in SI units are to be regarded as the standard.
1.2.1 Exception—Alternative units provided in parentheses are for information only.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Guide18 pagesEnglish languagesale 15% off
- Guide18 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Structural integrity assessments typically use values of strength and elastic modulus to predict crack initiation in graphite components and there is a suite of ASTM standards (Section 2, Test Methods C651, C695, C747, C749, C769, and D7775) to cover the measurement of these properties.
5.2 The graphite component behavior after crack initiation depends on fracture mechanics parameters, such as fracture toughness and the work of fracture. Test Method D7779 provides the specification and requirements for measuring the fracture toughness of graphite based on linear-elastic stress analysis. Moreover, Test Method D7779 applies to cases where there are no restrictions on specimen size and on applicable machining and specimen preparation techniques.
5.3 Most polycrystalline graphites are non-linear elastic, non-uniform, quasi-brittle materials. For such materials, an effective approach for the determination of fracture properties is the analysis of the global energy balance associated with crack extension, similar to Griffith's theory of brittle fracture. This approach does not have the mathematical complexity of the non-linear elastic fracture and is easier to implement in practice.
5.4 Work of Fracture, γf (J/m2), is defined as the energy required to form a crack divided by the cross sectional area of the crack. It is assumed that the energy per unit area is constant during crack propagation. In general, components that have an excess of strain energy to the point of fracture, compared to the work needed to extend the crack to full dimension, fail by fast fracture. Any excess energy is converted into kinetic energy through a process that generates stress waves. If the amount of excess energy is sufficiently large, the stress waves will have peak magnitudes greater than the material strength, leading to the initiation and propagation of secondary cracks that could result in the fragmentation of the component.
5.5 However, some components that have less str...
SCOPE
1.1 This guide provides general tutorial information and best practice for measuring the work of fracture on manufactured graphite and carbon specimens. Although applicable to all carbon and graphite materials, this guide is aimed specifically at measurements required on nuclear graphites, where there may be constraints on the geometry and/or volume of the test specimen.
1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Guide9 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The presence and content of various impurities in graphite are major considerations in determining the suitability of graphite for various applications. This test method provides an alternative means of determining the content of trace impurities in a graphite sample which has considerable advantages compared to classical wet-chemical analysis methods.
5.2 The test method provides a standard procedure to measure impurities in graphite and to assure required graphite specifications.
SCOPE
1.1 This test method covers the measurement of mass fractions of the elements silver (Ag), aluminum (Al), arsenic (As), boron (B), barium (Ba), berylium (Be), bismuth (Bi), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni), phosphorus (P), lead (Pb), sulfur (S), antimony (Sb), silicon (Si), tin (Sn), strontium (Sr), titanium (Ti), vanadium (V), tungsten (W), yitrium (Y), zinc (Zn), and zirconium (Zr) in graphite.
1.2 Provided that an appropriate validation procedure is carried out, this test method is also applicable to other carbon materials such as coal, coke, carbon black, graphite-felt, graphite-foil, graphite-foam, and fiber reinforced carbon-carbon composites.
1.3 This test method is applicable to element contents from approximately 0.0001 mg/kg to 1000 mg/kg (0.1 ppmw to 1000 ppmw), depending on element, wavelength, measurement parameters, and sample mass.
1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard10 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method is used when the determination of 238Pu isotopic abundance is required for plutonium samples.
SCOPE
1.1 This test method covers the use of alpha spectrometry for determining the 238Pu isotopic abundance in plutonium samples. It is particularly useful for samples in which the 238Pu content is less than 1 % of the total plutonium content. For such samples, mass spectrometric results are vulnerable to bias because of potential interference from any 238U isobar remaining after ion exchange.
1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 It is very difficult to exclude sample contamination by ambient air during the process of sampling. The levels of atmospheric contamination caused by poor sampling methods are often equal to or larger than the levels of the gaseous impurities present in the chlorine. This results in markedly elevated levels of detected impurities. As specifications become tighter, it becomes more important to measure the gaseous impurity levels in liquid chlorine correctly.
4.2 Additional problems are experienced in the sampling of liquefied gases for the gaseous impurities. The gaseous impurities reach an equilibrium between the liquid phase and vapor phase in a sample bomb. The quantity of gases measured in any particular sample containing both liquid and vapor will be a function of the amount of vapor space in the sample bomb. This test method avoids the presence of liquid in the sample bomb.
SCOPE
1.1 This test method covers sampling and analysis of liquid chlorine for the determination of oxygen (200 to 400 μg/g), nitrogen (400 to 800 μg/g), and carbon dioxide (800 to 1000 ppm) content at levels normally seen in liquid chlorine. Hydrogen and carbon monoxide concentrations in liquid chlorine are typically at or below the detection limit of this test method.
Note 1: The minimum detection limit of hydrogen using a 1 cm3 gas sample and argon carrier gas is 100 to 200 μg/g.2 The detection limit for the other components is significantly lower.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 Review the current Safety Data Sheets (SDS) for detailed information concerning toxicity, first aid procedures, and safety precautions.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 This test method was developed primarily for the determination of traces of mercury in chlorine produced by the mercury-cell process.
SCOPE
1.1 This test method2 covers the determination of mercury in liquid chlorine with a lower limit of detection of 0.1 μg/L.
1.2 Review the current Safety Data Sheet (SDS) for detailed information concerning toxicity, first-aid procedures, and safety precautions.
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Sections 7, 6.3, 6.4, 6.5, and Note 2.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Low levels of bromine contaminant in chlorine cause problems in some industrial uses. This test method may be used to determine bromine in liquid or gaseous chlorine at levels as low as 4 ug/kg.
SCOPE
1.1 This test method covers the determination of bromine in liquid chlorine and in gaseous chlorine with a lower limit of detection of 4 ug/kg by weight.
1.2 Review the current Safety Data Sheets (SDS) for detailed information concerning toxicity, first-aid procedures, handling, and safety precautions.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 This test method provides for the determination of moisture and residue in liquid chlorine. The concentration levels of these impurities are important factors in many commercial uses of liquid chlorine.
SCOPE
1.1 This test method covers the determination of moisture and residue in liquid chlorine. Lower limits of detection of 10 μg/g based on a 150-mL sample are achievable.
1.2 This test method describes operations and special apparatus for sampling liquid chlorine from cylinders. Sampling other commercial facilities such as tank cars, barges, and storage tanks require special techniques of manipulation in filling sample cylinders for testing. If conditions and facilities are favorable, the analysis apparatus may be connected directly to these larger storage and transportation units and on-the-spot tests may be completed.
1.3 The analytical methods are empirical and are gravimetric. They are applicable to the determination of the residue and moisture content of commercial grades of liquid chlorine (condensed gaseous product).
1.4 Residue is defined as being those substances which remain in the sample flask after sample volatilization under the conditions of the test. Moisture is defined as the volatile substances evolved during volatilization and purging of the sample-residue flask and absorbed on the desiccant contained in the absorption tubes under the conditions of the test. Some of the volatile chlorinated hydrocarbons may also be evolved from the sample residue flask during purge and absorbed, thus contributing to the apparent moisture analysis value.
1.5 This test method may be used for determining the moisture content only of gaseous chlorine if suitable and appropriate modifications are made for sample measurement and calculation.
1.6 Review the current Safety Data Sheet (SDS) for detailed information concerning toxicity, first aid procedures, and safety precautions.
1.7 The values stated in inch-pound units are to be regarded as the standard. No other units of measurement are included in this standard.
1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7.
1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard6 pagesEnglish languagesale 15% off
- Standard6 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The electrical resistivity of anode and cathode carbon material is important for efficient aluminum cell operation. It is a quality parameter that determines the suitability of an anode/cathode for operation in an aluminum cell.
5.2 The electrical resistivity may be selected as a requirement in a customer specification.
SCOPE
1.1 This test method covers the determination of the electrical resistivity at room temperature of solid cylindrical specimens cored from commercial sized carbon anodes and cathodes. This test method also applies to samples from carbon blocks prepared in a laboratory.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitation prior to use. For specific warning information, see .
- Standard3 pagesEnglish languagesale 15% off
This European Standard defines the specifications and the test methods for carbon black feedstock i.e. coal tar, coal tar fractions or coal tar distillates used for the manufacture of carbon black.
- Standard5 pagesEnglish languagee-Library read for1 day
Applicable to products having acidities, expressed as H2 SO4 , equal to or more than 0.01 % (m/m). Describes the extraction of acidic substances with a mixture of water and propan-2-ol (isopropyl alcohol). Titration of the extract with standard volumetric sodium hydroxide solution in the presence of phenolphthalein as indicator. The preparation of the sample from the laboratory sample is carried out by grinding a sufficient quantity of the undried material until it passes through a sieve of nominal mesh of 250 m.
- Standard2 pagesEnglish languagesale 15% off
- Standard2 pagesFrench languagesale 15% off
- Standard2 pagesFrench languagesale 15% off
Applicable to products having As contents equal or more than 0.5 mg/kg. In a well-ventilated cupboard, dissolution of a test portion in carbon tetrachloride. Oxidation of sulphur by bromine and nitric acid. Heating in a boiling water bath to eliminate the exess of bromine, carbon tetrachloride and nitric acid. The analysis is carried out according to ISO 2590. The replacement of some reagents shall be noted.
- Standard2 pagesEnglish languagesale 15% off
- Standard2 pagesFrench languagesale 15% off
- Standard2 pagesFrench languagesale 15% off
The method is applicable when an agreement has previously been reached between the interested parties for the removal of two representative samples during filling of the tank-wagon at the manufacturer's premises. It cannot be applied when it is intended to determine the water content. The principle consists in checking that the equipment used is gas-tight; collection of the samples in steel bottles. One bottle is intended for the customer and the other is retained by the manufacturer in case an analysis is required for checking purposes. - Replaces ISO Recommendation R 1552-1970.
- Standard6 pagesEnglish languagesale 15% off
- Standard6 pagesFrench languagesale 15% off
- Standard6 pagesFrench languagesale 15% off
Application to products containing at least 98 % of elemental sulphur, expressed as a percentage by mass, of the product dried at 80 °C for 2 h. The difference between the ash and the residue corresponds to the "non-volatile bituminous matter" content at 200 °C. The principle of ashing consists in slow combustion in air of a test portion of the dried product. Heating in a furnace, controlled at 850 °C to 900 °C, and weighing. The determination of non-volatile matter is carried out by slow evaporation in a furnace, controlled at (200 10) °C, in a flow of nitrogen, of the volatile matter and the sulphur. Weighing of the residue after about 10 h.
- Standard2 pagesEnglish languagesale 15% off
- Standard2 pagesFrench languagesale 15% off
- Standard2 pagesFrench languagesale 15% off
Specifies the heating of a test portion in an oven at 80 0C and the determination of the resulting difference in mass by weighing.
- Standard2 pagesEnglish languagesale 15% off
- Standard2 pagesFrench languagesale 15% off
- Standard2 pagesFrench languagesale 15% off