IEC 60794-1-130:2025 describes test procedures to evaluate the coefficient of dynamic friction of the sheathing material of a cable when pulled over or between other cables. Methods E30A and E30B evaluate the coefficient of friction between cables for when either a cable is pulled over the top of other cables (drum test) or when pulling a cable between other cables of the same shape (flat plate test). This document applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. Throughout the document, wording "optical cable" can also include optical fibre units and microduct fibre units.
This first edition cancels and replaces Method E24 of the first edition of IEC 60794‑1‑21 published in 2015, Amendment 1:2020. This edition constitutes a technical revision.

  • Standard
    14 pages
    English language
    e-Library read for
    1 day

IEC 60794-1-119:2025 applies to aerial optical fibre cables such as all-dielectric self-supporting (ADSS) cables, optical ground wire (OPGW) cables, and optical phase conductor (OPPC) cables that can be exposed to aeolian vibrations. This document defines the test procedures to establish uniform mechanical performance requirements relating to aeolian vibrations.
See IEC 60794‑1‑2 for general requirements and definitions and for a complete reference guide to test methods of all types.
This first edition cancels and replaces test method E19 of the first edition of IEC 60794‑1‑21 published in 2015. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60794‑1‑21:
a) addition of a system to maintain a constant cable tension during the test as well as means to measure the free loop antinode amplitude;
b) definition of the cable load which is now fixed to 25 % of the rated tensile strength for OPGW/OPPC, or to the maximum installation tension (MIT) for ADSS cables;
c) addition of the target free loop peak-to-peak antinode amplitude to the procedure. The quality of the aeolian vibration motion is done through the average antinode
d) addition of fatigue damage and ovality changes of the optical core to 4.5.

  • Standard
    14 pages
    English language
    e-Library read for
    1 day

IEC 60794-1-124:2025 contains test procedures, referred to as Method E24, for evaluating the behaviour of microduct cabling (microduct optical cable, fibre unit or hybrid cable etc.) when blown into a microduct or protected microduct. This document describes two blowing track layouts: Method A consists of two mandrels and two long straight sections in between (same curvature). Method B consists of 3 mandrels. The middle mandrel forces the cable to experience both left- and right-hand bending, which is a feature of any realistic blowing route. In addition, this document describes an optional procedure to check the capability of blowing out an installed cable. This first edition cancels and replaces Method E24 of the first edition of IEC 60794‑1‑21 published in 2015 and Amendment 1:2020. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) addition of a blowing route (see Figure 2) which includes a change in the direction of curvature. This was achieved by introducing a third mandrel;
b) addition of Annex A (Figure A.1 which shows a practical implementation of the blowing route;
c) addition of Annex B which describes the so-called Crash Test;
d) addition of Annex C which describes a cable blowing out procedure.

  • Standard
    18 pages
    English language
    e-Library read for
    1 day

IEC 60794-1-101:2024 applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors.
This document defines test procedures to be used in establishing uniform requirements for tensile performance.
Throughout this document the wording "optical cable" includes optical fibre units, microduct fibre units, etc.
See IEC 60794-1-2 for general requirements and definitions and for a complete reference guide to test methods of all types.

  • Standard
    12 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
5.1 Coefficients of linear thermal expansion are used, for example, for design purposes and to determine if failure by thermal stress may occur when a solid body composed of two different materials is subjected to temperature variations.  
5.2 This test method is comparable to Test Method D3386 for testing electrical insulation materials, but it covers a more general group of solid materials and it defines test conditions more specifically. This test method uses a smaller specimen and substantially different apparatus than Test Methods E228 and D696.  
5.3 This test method may be used in research, specification acceptance, regulatory compliance, and quality assurance.
SCOPE
1.1 This test method determines the technical coefficient of linear thermal expansion of solid materials using thermomechanical analysis techniques.  
1.2 This test method is applicable to solid materials that exhibit sufficient rigidity over the test temperature range such that the sensing probe does not produce indentation of the specimen.  
1.3 The recommended lower limit of coefficient of linear thermal expansion measured with this test method is 5 μm/(m·°C). The test method may be used at lower (or negative) expansion levels with decreased accuracy and precision (see Section 12).  
1.4 This test method is applicable to the temperature range from −120 °C to 900 °C. The temperature range may be extended depending upon the instrumentation and calibration materials used.  
1.5 SI units are the standard. No other units of measurement are included in this standard.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

SCOPE
1.1 This terminology contains definitions, definitions of terms specific to certain standards, symbols, and abbreviations approved for use in standards on fatigue and fracture testing. The definitions are preceded by two lists. The first is an alphabetical listing of symbols used. (Greek symbols are listed in accordance with their spelling in English.) The second is an alphabetical listing of relevant abbreviations.  
1.2 This terminology includes Annex A1 on Units and Annex A2 on Designation Codes for Specimen Configuration, Applied Loading, and Crack or Notch Orientation.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    25 pages
    English language
    sale 15% off
  • Standard
    25 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 This test method does not purport to interpret the data generated.  
4.2 This test method is intended to compare slow-crack-growth (SCG) resistance for a limited set of HDPE resins.  
4.3 This test method may be used on virgin HDPE resin compression-molded into a plaque or on extruded HDPE corrugated pipe that is chopped and compression-molded into a plaque (see 7.1.1 for details).
SCOPE
1.1 This test method is used to determine the susceptibility of high-density polyethylene (HDPE) resins or corrugated pipe to slow-crack-growth under a constant ligament-stress in an accelerating environment. This test method is intended to apply only to HDPE of a limited melt index (0.947 g/cm3 to 0.955 g/cm3). This test method may be applicable for other materials, but data are not available for other materials at this time.  
1.2 This test method measures the failure time associated with a given test specimen at a constant, specified, ligament-stress level.  
1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.4 Definitions are in accordance with Terminology F412, and abbreviations are in accordance with Terminology D1600, unless otherwise specified.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Sampling shall be selected in a random manner, ensuring that any unit in the lot has an equal chance of being chosen. Sampling should not be localized by selections being taken from the top of a container or from only one container of multi-container lots.  
4.2 The purchaser should be aware of the supplier's quality assurance system. This can be accomplished by auditing the supplier's quality system, if qualified auditors are available, or by third-party assessment certification, such as provided by IATF 16949, or ISO 9001.
SCOPE
1.1 This practice provides sampling methods for determining how many fasteners to include in a random sample in order to determine the acceptability or disposition of a given lot of fasteners.  
1.2 This practice is for mechanical properties, physical properties, performance properties, coating requirements, and other quality requirements specified in the standards of ASTM Committee F16. Dimensional and thread criteria sampling plans are the responsibility of ASME Committee B18.  
1.3 This practice provides for two sampling plans: one designated the “detection process,” as described in Terminology F1789, and one designated the “prevention process,” as described in Terminology F1789.  
1.4 This practice is intended to be used as either a Final Inspection Plan for manufacturers, or as a Receiving Inspection Plan for purchasers/users. It is not valid for third-party qualification testing.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 This test method provides a means of verifying that masonry materials used in construction result in masonry that meets the specified compressive strength (Note 1).
Note 1: A prism is an assembly of components used to measure (in this case, the tested compressive strength of masonry, f mt) or verify a property (in this case, the specified compressive strength of masonry, f 'm). Testing of prisms may be part of a project’s field quality control or assurance program. In these cases, prisms are built as companions to a masonry element (for example, a masonry wall, column, pilaster, or beam) at a jobsite where the masonry element is site-constructed, or within a factory or shop where the element is shop-built. While these prisms can be used to determine compliance with the specified compressive strength of masonry, f 'm, they are not intended to replicate or model all of the performance or design attributes of the as-built element. Prisms may also be fabricated in a laboratory for research purposes (Appendix X2). In each scenario (field or research) the test procedures are structured so that masonry assembly tested compressive strength (fmt) is measured in an accurate and repeatable manner.  
4.2 This test method provides a means of evaluating compressive strength characteristics of in-place masonry construction through testing of prisms obtained from that construction when sampled in accordance with Practice C1532/C1532M. Decisions made in preparing such field-removed prisms for testing, determining the net area, and interpreting the results of compression tests require professional judgment.  
4.3 If this test method is used as a guideline for performing research to determine the effects of various prism construction or test parameters on the compressive strength of masonry, deviations from this test method shall be reported. Such research prisms shall not be used to verify compliance with a specified compressive strength of masonry.
Note 2: The testing labo...
SCOPE
1.1 This test method covers procedures for masonry prism construction and testing, and procedures for determining the tested compressive strength of masonry, fmt, used to determine compliance with the specified compressive strength of masonry,  f ′m. When this test method is used for research purposes, the construction and test procedures within serve as a guideline and provide control parameters.  
1.2 This test method also covers procedures for determining the compressive strength of prisms obtained from field-removed masonry specimens.  
1.3 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.  
1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    10 pages
    English language
    sale 15% off
  • Standard
    10 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Cycle counting is used to summarize (often lengthy) irregular load-versus-time histories by providing the number of times cycles of various sizes occur. The definition of a cycle varies with the method of cycle counting. These practices cover the procedures used to obtain cycle counts by various methods, including level-crossing counting, peak counting, simple-range counting, range-pair counting, and rainflow counting. Cycle counts can be made for time histories of force, stress, strain, torque, acceleration, deflection, or other loading parameters of interest.
SCOPE
1.1 These practices are a compilation of acceptable procedures for cycle-counting methods employed in fatigue analysis. This standard does not intend to recommend a particular method.  
1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    10 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 This test method is often used to determine bulk density values that are necessary for use for many methods of selecting proportions for concrete mixtures.  
4.2 The bulk density also may be used for determining mass/volume relationships for conversions in purchase agreements. However, the relationship between degree of compaction of aggregates in a hauling unit or stockpile and that achieved in this test method is unknown. Further, aggregates in hauling units and stockpiles usually contain absorbed and surface moisture (the latter affecting bulking), while this test method determines the bulk density on a dry basis.  
4.3 A procedure is included for computing the percentage of voids between the aggregate particles based on the bulk density determined by this test method.
SCOPE
1.1 This test method covers the determination of bulk density (“unit weight”) of aggregate in a compacted or loose condition, and calculated voids between particles in fine, coarse, or mixed aggregates based on the same determination. This test method is applicable to aggregates not exceeding 125 mm [5 in.] in nominal maximum size.  
Note 1: Unit weight is the traditional terminology used to describe the property determined by this test method, which is weight per unit volume (more correctly, mass per unit volume or density).  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard, as appropriate for a specification with which this test method is used. An exception is with regard to sieve sizes and nominal size of aggregate, in which the SI values are the standard as stated in Specification E11. Within the text, inch-pound units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Material testing requires repeatable and predictable testing machine speed. The speed measuring devices integral to the testing machines may be used for measurement of crosshead speed over a defined range of operation. The accuracy of the speed value shall be traceable to a National or International Standards Laboratory. Practices E2658 provides procedures to verify testing machines, in order that the indicated speed values may be traceable. A key element to having traceability is that the devices used in the verification produce known speed characteristics, and have been calibrated in accordance with adequate calibration standards.  
4.2 Verification of testing machine speed at a minimum consists of either or both of the following options:  
4.2.1 Verifying the capability of the testing machine to move the crosshead at the speed selected.  
4.2.2 Verifying the capability of the testing machine to adequately indicate the speed of the crosshead.  
4.3 Where applicable, determine the testing machine's ramp-to-speed condition. This condition can be significant especially when verifying fast speeds or testing conditions with very short testing durations.  
4.4 This procedure will establish the relationship between the actual crosshead speed and the testing machine indicated speed and or selected setting. It is this relationship that will allow confidence in the reported displacement over time data acquired by the testing machine during use.
Note 1: Many material tests never reach the desired test speed. Unless the actual data from the material test is examined, it is often impossible to know if the test speed has been reached or is repeatable from test to test.
SCOPE
1.1 These practices cover procedures and requirements for the calibration and verification of testing machine speed by means of standard calibration devices. This practice is not intended to be complete purchase specifications for testing machines.  
1.2 These practices apply to the verification of the speed application and measuring systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, setting, etc. In all cases the buyer/owner/user must designate the speed-measuring system(s) to be verified.  
1.3 These practices give guidance, recommendations, and examples, specific to electro-mechanical testing machines. The practice may also be used to verify actuator speed for hydraulic testing machines.  
1.4 This standard cannot be used to verify cycle counting or frequency related to cyclic fatigue testing applications.  
1.5 Since conversion factors are not required in this practice, either SI units (mm/min), or English [in/min], can be used as the standard.  
1.6 Speed measurement values and or settings on displays/printouts of testing machine data systems-be they instantaneous, delayed, stored, or retransmitted-which are within the Classification criteria listed in Table 1, comply with Practices E2658.  
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    10 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This test method determines the corner impact damage that could be used to measure the relative corner impact resistance.
SCOPE
1.1 This test method shall be used to measure the relative corner impact resistance and other damage that may occur during the rough handling of wood-base panels or composite materials. This test method is suitable for all wood-base panels such as plywood, oriented strand board, hardboard, particleboard and medium density fiberboard as well as other composite panel products.  
1.2 This test method covers determination and evaluation of the effects of panels being dropped from various heights with a predetermined amount of dead load and angle of impact to simulate an equivalent field application.  
1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This test method may be used to estimate the relative resistances of materials to cavitation erosion, as may be encountered for instance in pumps, hydraulic turbines, valves, hydraulic dynamometers and couplings, bearings, diesel engine cylinder liners, ship propellers, hydrofoils, internal flow passages, and various components of fluid power systems or fuel systems of diesel engines. It can also be used to compare erosion produced by different liquids under the conditions simulated by the test. Its general applications are similar to those of Test Method G32.  
5.2 In this test method cavitation is generated in a flowing system. Both the velocity of flow which causes the formation of cavities and the chamber pressure in which they collapse can be changed easily and independently, so it is possible to study the effects of various parameters separately. Cavitation conditions can be controlled easily and precisely. Furthermore, if tests are performed at constant cavitation number (σ), it is possible, by suitably altering the pressures, to accelerate or slow down the testing process (see 11.2 and Fig. A2.2).  
5.3 This test method with standard conditions should not be used to rank materials for applications where electrochemical corrosion or solid particle impingement plays a major role. However, it could be adapted to evaluate erosion-corrosion effects if the appropriate liquid and cavitation number, for the service conditions of interest, are used (see 11.1).  
5.4 For metallic materials, this test method could also be used as a screening test for applications subjected to high-speed liquid drop impingement, if the use of Practice G73 is not feasible. However, this is not recommended for elastomeric coatings, composites, or other nonmetallic aerospace materials.  
5.5 The mechanisms of cavitation erosion and liquid impingement erosion are not fully understood and may vary, depending on the detailed nature, scale, and intensity of the liquid/solid interaction...
SCOPE
1.1 This test method covers a test that can be used to compare the cavitation erosion resistance of solid materials. A submerged cavitating jet, issuing from a nozzle, impinges on a test specimen placed in its path so that cavities collapse on it, thereby causing erosion. The test is carried out under specified conditions in a specified liquid, usually water. This test method can also be used to compare the cavitation erosion capability of various liquids.  
1.2 This test method specifies the nozzle and nozzle holder shape and size, the specimen size and its method of mounting, and the minimum test chamber size. Procedures are described for selecting the standoff distance and one of several standard test conditions. Deviation from some of these conditions is permitted where appropriate and if properly documented. Guidance is given on setting up a suitable apparatus, test and reporting procedures, and the precautions to be taken. Standard reference materials are specified; these must be used to verify the operation of the facility and to define the normalized erosion resistance of other materials.  
1.3 Two types of tests are encompassed, one using test liquids which can be run to waste, for example, tap water, and the other using liquids which must be recirculated, for example, reagent water or various oils. Slightly different test circuits are required for each type.  
1.4 This test method provides an alternative to Test Method G32. In that method, cavitation is induced by vibrating a submerged specimen at high frequency (20 kHz) with a specified amplitude. In the present method, cavitation is generated in a flowing system so that both the jet velocity and the downstream pressure (which causes the bubble collapse) can be varied independently.  
1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.6 This standard does not purport to addres...

  • Standard
    17 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 The use of this guide is voluntary and is intended for use as a procedures guide for selection and application of specific types of strain gages for high-temperature installations. No attempt is made to restrict the type of strain gage types or concepts to be chosen by the user. The provisions of this guide may be invoked in specifications and procedures by specifying those that shall be considered mandatory for the purpose of the specific application. When so invoked, the user shall include in the work statement a notation that provisions of this guide shown as recommendation shall be considered mandatory for the purposes of the specification or procedure concerned, and shall include a statement of any exceptions to or modifications of the affected provisions of this guide.
SCOPE
1.1 This guide covers the selection and application of strain gages for the measurement of static strain up to and including the temperature range from 425 °C to 650 °C (800 °F to 1200 °F). This guide reflects some state-of-the-art techniques in high-temperature strain measurement.  
1.2 This guide assumes that the user is familiar with the use of bonded strain gages and associated signal conditioning circuits and instrumentation as discussed in  (1)  and (2).2 The strain gage systems described are those that have proven effective in the temperature range of interest and were available at the time of issue of this guide. It is not the intent of this guide to limit the user to one of the strain gage types described nor is it the intent to specify the type of strain gage system to be used for a specific application. However, in using any strain gage system including those described, the proposer shall be able to demonstrate the capability of the proposed strain gage system to meet the selection criteria provided in Section 5 and the needs of the specific application.  
1.3 The devices and techniques described in this guide can sometimes be applicable at temperatures above and below the range noted, and for making dynamic strain measurements at high temperatures with proper precautions. The strain gage manufacturer should be consulted for recommendations and details of such applications.  
1.4 The references are a part of this guide to the extent specified in the text.  
1.5 The values stated in metric (SI) units are to be regarded as the standard. The values given in parentheses are for informational purposes only.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Guide
    11 pages
    English language
    sale 15% off
  • Guide
    11 pages
    English language
    sale 15% off

SCOPE
1.1 This terminology covers the principal terms relating to methods of mechanical testing of solids. The general definitions are restricted and interpreted, when necessary, to make them particularly applicable and practicable for use in standards requiring or relating to mechanical tests. These definitions are published to encourage uniformity of terminology in product specifications.  
1.2 Terms relating to fatigue and fracture testing are defined in Terminology E1823.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    12 pages
    English language
    sale 15% off

ABSTRACT
This practice covers procedures for the verification and classification of extensometer systems, but it is not intended to be a complete purchase specification. The practice is applicable only to instruments that indicate or record values that are proportional to changes in length corresponding to either tensile or compressive strain. Extensometer systems are classified on the basis of the magnitude of their errors. The apparatus for verifying extensometer systems shall provide a means for applying controlled displacements to a simulated specimen and for measuring these displacements accurately. Extensometer systems shall be classified in accordance with the requirements as to maximum error of strain indicated: Class A; Class B-1; Class B-2; Class C; Class D; and Class E. Extensometer systems shall be categorized in three types according to gage length: Type 1; Type 2; and Type 3. A verification procedure for extensometer systems shall be done in accordance with the specified requirements.
SCOPE
1.1 This practice covers procedures for the verification and classification of extensometer systems, but it is not intended to be a complete purchase specification. The practice is applicable only to instruments that indicate or record values that are proportional to changes in length corresponding to either tensile or compressive strain. Extensometer systems are classified on the basis of the magnitude of their errors.  
1.2 Because strain is a dimensionless quantity, this document can be used for extensometers based on either SI or US customary units of displacement.  
Note 1: Bonded resistance strain gauges directly bonded to a specimen cannot be calibrated or verified with the apparatus described in this practice for the verification of extensometers having definite gauge points. (See procedures as described in Test Methods E251.)  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    16 pages
    English language
    sale 15% off
  • Standard
    16 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Dynamic mechanical analysis provides a measure of the rheological properties of roofing and waterproofing membrane materials.  
5.2 Thermogravimetry is used to characterize the thermal stability of roofing and waterproofing membrane materials under the specific temperature program and gaseous atmosphere conditions selected for the analysis.  
5.3 Both dynamic mechanical analysis and thermogravimetry are used to evaluate the effect of either laboratory-simulated or in-service exposure on roofing and waterproofing membrane materials.  
5.4 Both dynamic mechanical analysis and thermogravimetry can be applied to asphalt shingles. However, their application to asphalt shingles is beyond the scope of this practice, which is limited to low-slope membrane materials at this time.  
5.5 This practice can be useful in the development of performance criteria for roofing and waterproofing membrane materials.
SCOPE
1.1 This practice covers test procedures and conditions that are applicable when Test Methods D5023, D5024, D5026, D5279, and D5418 are used for conducting dynamic mechanical analysis of roofing and waterproofing membrane material in three-point bending, compression, tension, torsion, and dual cantilever modes, respectively. The specific method is selected by the analyst and depends on the membrane material and the operating principles of the individual instrument used for the analysis.  
1.2 This practice covers test procedures and conditions that are applicable when Test Method E1131 is used for conducting thermogravimetry of roofing and waterproofing membrane material.  
1.3 Membrane materials include bituminous built-up roofing, polymer-modified bitumen sheets, vulcanized rubbers, non-vulcanized polymeric sheets, and thermoplastics. The membrane materials can be either nonreinforced or reinforced.  
1.4 This practice is applicable to new membrane materials received from the supplier, those exposed artificially in the laboratory or outdoors on an exposure rack, and those sampled from field installations.  
1.5 This practice contains notes which are explanatory and are not part of the mandatory requirements of this practice.  
1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    3 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This test method is designed to simulate the geometry and motions that are experienced in many types of rubbing components whose normal operation results in periodic reversals in the direction of relative sliding. The wear resulting from this mode of movement may differ from that experienced by the same materials sliding continuously in only one direction (unidirectional sliding, for example, using Test Method G99) even for comparable durations of contact. This is particularly true for liquid-lubricated tests where the reversal of motion means that the entrainment velocity transitions through zero but also in unlubricated tests in which stress reversal occurs. The normal load(s) and sliding speed(s) to be used during testing are to be determined by the severity of the proposed application or purpose of the testing. Either of two sets of testing conditions (designated Procedures A and B) may be used.
SCOPE
1.1 This test method covers laboratory procedures for determining the sliding wear of ceramics, metals, and other candidate wear-resistant materials using a linear, reciprocating ball-on-flat plane geometry. The direction of the relative motion between sliding surfaces reverses in a periodic fashion such that the sliding occurs back and forth and in a straight line. The principal quantities of interest are the wear volumes of the contacting ball and flat specimen materials; however, the coefficient of kinetic friction may also be measured using the method described. This test method encompasses both unlubricated and lubricated testing procedures. The scope of this test method does not include testing in corrosive or chemically aggressive environments or extremes of temperature and humidity.  
1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    10 pages
    English language
    sale 15% off
  • Standard
    10 pages
    English language
    sale 15% off

IEC TR 62899-550-1:2022(E), which is a Technical Report, provides a framework for evaluating the mechanical and thermal durability of printed and/or flexible electronics components and products. This includes the bending test, torsion test, stretching test, steady heat test as well as the thermal cycle test. These are typical conditions that are easily encountered in daily life for printed and/or flexible electronics components and products.
This document gives guidance for use for technical committees in the preparation of consistent standards relating to the quality assessment of printed and/or flexible electronics components and products. Consistent standards for durability testing will help users, including businesses, developers, vendors, and end users to select suitable methods for durability testing and make consistent test procedures for printed electronics.

  • Technical report
    13 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Reliable, controlled flow of bulk solids from bins and hoppers is essential in almost every industrial facility. Unfortunately, flow stoppages due to arching and ratholing are common. Additional problems include uncontrolled flow (flooding) of powders, segregation of particle mixtures, useable capacity which is significantly less than design capacity, caking and spoilage of bulk solids in stagnant zones, and structural failures.  
5.2 By measuring the flow properties of bulk solids, and designing bins and hoppers based on these flow properties, most flow problems can be prevented or eliminated.  
5.3 For bulk solids with a significant percentage of particles (typically, one third or more) finer than about 6 mm, the cohesive strength is governed by the fines (-6-mm fraction). For such bulk solids, cohesive strength and wall friction tests may be performed on the fine fraction only.
Note 1: The quality of the result produced by this test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this test method are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors. Practice D3740 was developed for agencies engaged in the testing and/or inspection of soil and rock. As such it is not totally applicable to agencies performing this test method. However, users of this test method should recognize that the framework of Practice D3740 is appropriate for evaluating the quality of an agency performing this test method. Currently there is no known qualifying national authority that inspects agencies that perform this test method.
SCOPE
1.1 This method 2covers the apparatus and procedures for measuring the cohesive strength of bulk solids during both continuous flow and after storage at rest. In addition, measurements of internal friction, bulk density, and wall friction on various wall surfaces are included.  
1.2 This standard is not applicable to testing bulk solids that do not reach the steady state requirement within the travel limit of the shear cell. It is difficult to classify ahead of time which bulk solids cannot be tested, but one example may be those consisting of highly elastic particles.  
1.3 The most common use of this information is in the design of storage bins and hoppers to prevent flow stoppages due to arching and ratholing, including the slope and smoothness of hopper walls to provide mass flow. Parameters for structural design of such equipment also may be derived from this data.  
1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.  
1.4.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.  
1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measure are included in this standard  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental pr...

  • Standard
    21 pages
    English language
    sale 15% off
  • Standard
    21 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 This test method is for use in evaluating the capability of a container or shipping system to withstand sudden shocks and crushing forces, such as those generated from rail switching impacts or pallet marshalling, or to evaluate the capability of a container and its inner packing, or shipping system, to protect its contents during the sudden shocks and crushing forces resulting from rail switching or pallet marshalling impacts. This test method may also be used to compare the performance of different container designs or shipping systems. The test may also permit observation of the progressive failure of a container or shipping system and damage to the contents. See Practice D4169 for additional guidance.  
4.2 This test method is not suitable for reproducing impact resulting from the switching of rail cars using long-travel draft gear or cushioned underframes. Refer to Test Methods D4003 (revised) as a more suitable method for testing under these circumstances, or when more precise control of shock inputs is required.
SCOPE
1.1 This test method covers the procedures for reproducing and comparing shock damage, such as that which may result from rail switching or pallet marshalling impacts, using an incline impact tester. It is suitable for simulating the types of shock pulses experienced by lading in rail switching of rail cars with standard draft gear, but not for those with long travel draft gear or cushioned underframes. The test method can also be used for pallet marshalling tests.  
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Section 6.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off
  • Standard
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Hardness tests have been found to be very useful for materials evaluation, quality control of manufacturing processes and research and development efforts. Hardness, although empirical in nature, can be correlated to tensile strength for many metals and alloys, and is also an indicator of machinability, wear resistance, toughness and ductility.  
5.2 Microindentation tests are utilized to evaluate and quantify hardness variations that occur over a small distance. These variations may be intentional, such as produced by localized surface hardening, for example, from shot blasting, cold drawing, flame hardening, induction hardening, etc., or from processes such as carburization, nitriding, carbonitriding, etc.; or, they may be unintentional variations due to problems, such as decarburization, localized softening in service, or from compositional/microstructural segregation problems. Low test forces also extend hardness testing to materials too thin or too small for macroindentation tests. Microindentation tests permit hardness testing of specific phases or constituents and regions or gradients too small for evaluation by macroindentation tests.  
5.3 Because microindentation hardness tests will reveal hardness variations that commonly exist within most materials, a single test value may not be representative of the bulk hardness. Vickers tests at 1000 gf can be utilized for determination of the bulk hardness, but, as for any hardness test, it is recommended that a number of indents are made and the average and standard deviation are calculated, as needed or as required.  
5.4 Microindentation hardness testing is generally performed to quantify variations in hardness that occur over small distances. To determine these differences requires a very small physical indentation. Testers that create indents at very low test forces must be carefully constructed to accurately apply the test forces exactly at the desired location and must have a high-quality optical syste...
SCOPE
1.1 This test method covers determination of the microindentation hardness of materials.  
1.2 This test method covers microindentation tests made with Knoop and Vickers indenters under test forces in the range from 9.8 × 10-3 to 9.8 N (1 to 1000 gf).  
1.3 This test method includes an analysis of the possible sources of errors that can occur during microindentation testing and how these factors affect the precision, bias, repeatability, and reproducibility of test results.  
1.4 Information pertaining to the requirements for direct verification and calibration of the testing machine and the requirements for the manufacture and calibration of Vickers and Knoop reference hardness test blocks are in Test Method E92.
Note 1: While Committee E04 is primarily concerned with metals, the test procedures described are applicable to other materials.  
1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    40 pages
    English language
    sale 15% off
  • Standard
    40 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Products are exposed to complex dynamic stresses in the transportation environment. The determination of the resonant frequencies of the product may aid the packaging designer in determining the proper packaging system to provide adequate protection for the product, as well as providing an understanding of the complex interactions between the components of the product as they relate to expected transportation vibration inputs.
SCOPE
1.1 These test methods cover the determination of resonances of unpackaged products and components of unpackaged products by means of vertical linear motion at the surface on which the product is mounted for test. Two alternate test methods are presented:    
Test Method A—Resonance Search Using Sinusoidal Vibration, and  
Test Method B—Resonance Search Using Random Vibration.  
Note 1: The two test methods are not necessarily equivalent and may not produce the same results. It is possible that tests using random vibration may be more representative of the transport environment and may be conducted more quickly than sine tests.  
1.2 This information may be used to examine the response of products to vibration for product design purposes, or for the design of a container or interior package that will minimize transportation vibration inputs at these critical frequencies, when these products resonances are within the expected transportation environment frequency range. Since vibration damage is most likely to occur at product resonant frequencies, these resonances may be thought of as potential product fragility points.  
1.3 Information obtained from the optional dwell test methods may be used to assess the fatigue characteristics of the resonating components and for product modification. This may become necessary if the response of a product would require design of an impractical or excessively costly shipping container.  
1.4 These test methods do not necessarily simulate the vibration effects that the product will encounter in its operational or in-use environment. Other, more suitable test procedures should be used for this purpose.  
1.5 Test levels given in these test methods represent the correlation of the best information currently available from research investigation and from experience in the use of these test methods. If more applicable or accurate data are available, they should be substituted.  
1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 6 for specific precautionary statements.  
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off
  • Standard
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Products are exposed to complex dynamic stresses in the transportation environment. The determination of the resonant frequencies of the product, either horizontal, vertical or both, aids the package designer in determining the proper packaging system to provide adequate protection of the product, as well as providing an understanding of the complex interactions between the components of the product as they relate to expected transportation vibration inputs.
SCOPE
1.1 This test method covers the determination of resonances of unpackaged products and components by means of horizontal linear motion applied at the surface on which the product is mounted. For vertical vibration testing of products see Test Method D3580. Two alternate test methods are presented:  
1.1.1 Test Method A—Resonance Search Using Sinusoidal Vibration, and  
1.1.2 Test Method B—Resonance Search Using Random Vibration.
Note 1: These two test methods are not necessarily equivalent and may not produce the same results.  
1.2 This information may be used to examine the response of products to vibration for product design purposes, or for the design of a container or interior package that will minimize transportation vibration inputs at the critical frequencies, when these product resonances are within the expected transportation environment frequency range. Since vibration damage is most likely to occur at product resonant frequencies, these may be thought of as potential product fragility points.  
1.3 Information obtained from the optional sinusoidal dwell and random test methods may be used to assess the fatigue characteristics of the resonating components and for product modification. This may become necessary if a product's response would require design of an impractical or excessively costly shipping container.  
1.4 This test method does not necessarily simulate vibration effects the product will encounter in operating or end-use environments. Other, more suitable test procedures should be used for this purpose.  
1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  For specific precautionary statements, see Section 6  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off
  • Standard
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 If ASTM Committee E13 has not specified an appropriate test procedure for a specific type of instrument, or if the sample specified by a Committee E13 procedure is incompatible with the intended instrument operation, then this practice can be used to develop practical performance tests.  
4.1.1 For instruments which are equipped with permanent or semi-permanent sampling accessories, the test sample specified in a Committee E13 practice may not be compatible with the instrument configuration. For example, for FT-MIR instruments equipped with transmittance or IRS flow cells, tests based on putting polystyrene films into the sample position are impractical. In such cases, this practice suggests means by which the recommended test procedures can be modified by changing the test material or the location of the recommended test material.  
4.1.2 For instruments used in process measurements, the choice of test materials may be limited due to process contamination and safety considerations. The practice suggests means of developing performance tests based on materials which are compatible with the intended use of the analyzer.  
4.2 Tests developed using the practice are intended to allow the user to compare the performance of an instrument on any given day with prior performance, and specifically to compare performance during calibration of the analyzer to performance during validation of the analyzer and during routine use of the analyzer. The tests are intended to uncover malfunctions or other changes in instrument operation, but they are not designed to diagnose or quantitatively assess the malfunction or change. The tests are not intended for the comparison of analyzers of different manufacture.  
4.3 Tests developed using this practice are also intended to allow the user to compare the performance of a primary analyzer used in development of a multivariate model to the performance of secondary analyzers used to apply that model for the analysis of process or p...
SCOPE
1.1 This practice covers basic procedures that can be used to develop instrument performance tests for spectroscopic based online, at-line, laboratory and field analyzers. The practice is intended to be applicable to Raman spectrometers and to infrared spectrophotometers operating in the near-infrared and mid-infrared regions.  
1.2 This practice is not intended as a replacement for specific practices, such as Practices E275, E925, E932, E958, E1421, or E1683 that exist for measuring performance of specific types of laboratory spectroscopic instruments. Instead, this practice is intended to provide guidelines as to how similar practices should be developed when specific practices do not exist for a particular instrument type, or when specific practices are not applicable due to sampling or safety concerns. This practice can be used to develop instrument performance tests for on-line process spectroscopic-based analyzers.  
1.2.1 The performance tests described in this practice typically only evaluate the performance of the infrared spectrophotometer or Raman spectrometer part of the analyzer system, referred to herein as the instrument.  
1.2.2 Instrument performance tests do not typically evaluate performance of analyzer sampling systems.  
1.3 This practice describes univariate level zero and level one tests, and multivariate level A and level B tests which can be implemented to measure instrument performance. These tests are designed to be used as rapid, routine checks of instrument performance. They are designed to uncover malfunctions or other changes in instrument operation, but do not specifically diagnose or quantitatively assess the malfunction or change. The tests are not intended for the comparison of instruments or analyzers of different manufacture.  
1.4 The instrument performance tests described in this practice are used during the development of multivariate calibrations via Practice D8321 to establ...

  • Standard
    12 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This test guide provides a means to quantify the abrasion resistance of material surfaces, and may be related to end-use performance, or used to comparatively rank material performance, or both. The resistance of material surfaces to abrasion, as measured on a testing machine in the laboratory, is generally only one of several factors contributing to wear performance as experienced in the actual use of the material. Other factors may need to be considered in any calculation of predicted life from specific abrasion data.  
5.2 The resistance of material surfaces to abrasion may be affected by factors including test conditions; type of abradant; pressure between the specimen and abradant; mounting or tension of the specimen; and type, kind, or amount of finishing materials.  
5.3 Abrasion tests utilizing the rotary platform abraser may be subject to variation due to changes in the abradant during the course of specific tests. Depending on abradant type and test specimen, the abrading wheel surface may change (that is, become clogged) due to the pick-up of finishing or other materials from test specimens. To reduce this variation, the abrading wheels should be resurfaced at regularly defined intervals. See Appendix X2.  
5.4 When evaluating resistance to abrasion of two or more coatings, other factors may need to be considered for an accurate comparison. Flexible coatings that include air entrainment bubbles may result in less mass loss. Coatings that include fillers may result in greater mass loss but have less change in coating thickness or less mass loss but have greater change in coating thickness. Coatings that include aggregates or particulates may generate wear debris that is not removed by the vacuum and contribute to the break-down of the coating. Coatings that have a hardness value greater than the abrasive wheel may cause the abrasive wheel to break down faster and require more wear cycles to generate measureable wear. Examples of coatings that may be...
SCOPE
1.1 This guide covers and is intended to assist in establishing procedures for conducting wear tests of rigid or flexible materials utilizing the rotary platform abraser.  
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.2.1 Exception—Non-SI units are used when stating rotational speed.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Guide
    11 pages
    English language
    sale 15% off
  • Guide
    11 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Coefficients of linear thermal expansion are used for design and quality control purposes and to determine dimensional changes of parts and components (such as carbon anodes, cathodes, and so forth) when subjected to varying temperatures.
SCOPE
1.1 This test method covers the determination of the coefficient of linear thermal expansion (CTE) for carbon anodes and cathodes used in the aluminum industry, in baked form, by use of a vitreous silica dilatometer.  
1.2 The applicable temperature range for this test method for research purposes is ambient to 1000 °C. The recommended maximum use temperature for product evaluation is 500 °C.  
1.3 This test method and procedure is based on Test Method E228, which is a generic all-encompassing method. Specifics dictated by the nature of electrode carbons and the purposes for which they are used are addressed by this procedure.  
1.4 Electrode carbons in the baked form will only exhibit primarily reversible dimensional changes when heated.  
1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    7 pages
    English language
    sale 15% off
  • Standard
    7 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Susceptibility to delamination is one of the major weaknesses of many advanced laminated composite structures. Knowledge of the interlaminar fracture resistance of composites is useful for product development and material selection. Since delaminations can be subjected to and extended by loadings with a wide range of mode mixtures, it is important that the composite toughness be measured at various mode mixtures. The toughness contour, in which fracture toughness is plotted as a function of mode mixtures (see Fig. 3), is useful for establishing failure criterion used in damage tolerance analyses of composite structures made from these materials.
FIG. 3 Mixed-Mode Summary Graph  
5.2 This test method can serve the following purposes:  
5.2.1 To establish quantitatively the effects of fiber surface treatment, local variations in fiber volume fraction, and processing and environmental variables on Gc of a particular composite material at various mode mixtures,  
5.2.2 To compare quantitatively the relative values of Gc versus mode mixture for composite materials with different constituents, and  
5.2.3 To develop delamination failure criteria for composite damage tolerance and durability analyses.  
5.3 This method can be used to determine the following delamination toughness values:  
5.3.1 Delamination Initiation—Two values of delamination initiation shall be reported: (1) at the point of deviation from linearity in the load-displacement curve (NL) and (2) at the point at which the compliance has increased by 5 % or the load has reached a maximum value (5%/max) depending on which occurs first along the load deflection curve (see Fig. 4). Each definition of delamination initiation is associated with its own value of Gc and  GII/G calculated from the load at the corresponding critical point. The 5%/Max  Gc value is typically the most reproducible of the three Gc values. The NL value is, however, the more conservative number. When the option of collecting ...
SCOPE
1.1 This test method covers the determination of interlaminar fracture toughness, Gc, of continuous fiber-reinforced composite materials at various Mode I to Mode II loading ratios using the Mixed-Mode Bending (MMB) Test.  
1.2 This test method is limited to use with composites consisting of unidirectional carbon fiber tape laminates with brittle and tough single-phase polymer matrices. This test method is further limited to the determination of fracture toughness as it initiates from a delamination insert. This limited scope reflects the experience gained in round robin testing. This test method may prove useful for other types of toughness values and for other classes of composite materials; however, certain interferences have been noted (see Section 6). This test method has been successfully used to test the toughness of both glass fiber composites and adhesive joints.  
1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    15 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Erosion Environments—This test method may be used for evaluating the erosion resistance of materials for service environments where solid surfaces are subjected to repeated impacts by liquid drops or jets. Occasionally, liquid impact tests have also been used to evaluate materials exposed to a cavitating liquid environment. The test method is not intended nor applicable for evaluating or predicting the resistance of materials against erosion due to solid particle impingement, due to “impingement corrosion” in bubbly flows, due to liquids or slurries “washing” over a surface, or due to continuous high-velocity liquid jets aimed at a surface. For background on various forms of erosion and erosion tests, see Refs (1) through (2).4 Ref (3) is an excellent comprehensive treatise.  
5.2 Discussion of Erosion Resistance—Liquid impingement erosion and cavitation erosion are, broadly speaking, similar processes and the relative resistance of materials to them is similar. In both, the damage is associated with repeated, small-scale, high-intensity pressure pulses acting on the solid surface. The precise failure mechanisms in the solid have been shown to differ depending on the material, and on the detailed nature, scale, and intensity of the fluid-solid interactions (Note 1). Thus, “erosion resistance” should not be regarded as one precisely-definable property of a material, but rather as a complex of properties whose relative importance may differ depending on the variables just mentioned. (It has not yet been possible to successfully correlate erosion resistance with any independently measurable material property.) For these reasons, the consistency between relative erosion resistance as measured in different facilities or under different conditions is not very good. Differences between two materials of say 20 % or less are probably not significant: another test might well show them ranked in reverse order. For bulk materials such as metals and structural plastics, the...
SCOPE
1.1 This test method covers tests in which solid specimens are eroded or otherwise damaged by repeated discrete impacts of liquid drops or jets. Among the collateral forms of damage considered are degradation of optical properties of window materials, and penetration, separation, or destruction of coatings. The objective of the tests may be to determine the resistance to erosion or other damage of the materials or coatings under test, or to investigate the damage mechanisms and the effect of test variables. Because of the specialized nature of these tests and the desire in many cases to simulate to some degree the expected service environment, the specification of a standard apparatus is not deemed practicable. This test method gives guidance in setting up a test, and specifies test and analysis procedures and reporting requirements that can be followed even with quite widely differing materials, test facilities, and test conditions. It also provides a standardized scale of erosion resistance numbers applicable to metals and other structural materials. It serves, to some degree, as a tutorial on liquid impingement erosion.  
1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    19 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 A large number of industrial processes involve transfer and feeding of bulk solids, and the ability of such materials to flow in a controlled manner during these operations is critical to product quality.  
5.2 Direct shear cells are among the most important methods for measuring the flow properties of bulk solids in industrial applications for bulk solids handling.  
5.3 Direct shear cells have many advantages over simpler methods of measuring bulk solids flow properties, but their operation is more complex and the procedures for their use must be carefully controlled to produce accurate and reproducible data.  
5.4 The three most popular direct shear cell types are: Translational (D6128), Annular (D6773), and Rotational (D6682 and D7891).  
5.5 From shear cell data, a wide variety of parameters can be obtained, including the yield locus representing the shear stress to normal stress relationship at incipient flow, angle of internal friction, unconfined yield strength, cohesion, and a variety of related parameters such as the flow function.  
5.6 In addition, these three direct shear cells can be set up with wall coupons to measure wall friction.  
5.7 When the shear cell data are combined with unconfined yield strength, wall friction data, and bulk density data, they can be used for bin and hopper evaluation and design.
SCOPE
1.1 This guide covers theory and principles for obtaining reliable and accurate bulk solids flow data using a direct shear cell. It includes characteristics and limitations of the three most popular direct shear cell types: Translational (D6128), Annular (D6773), and Rotational (D6682 and D7891).  
1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measure are included in this standard.  
1.3 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.  
1.4 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Guide
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This guide is recommended to be used by anyone acquiring data from a universal testing machine using a computerized data acquisition system.
SCOPE
1.1 This guide is intended to assist the user in the evaluation and documentation of computerized data acquisition systems used to acquire data from quasi-static tests, performed on universal testing machines. The report produced will aid in the correct use and calibration of the computerized universal testing machine.  
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Guide
    7 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
3.1 Practice E185 defines the minimum requirements for light-water reactor surveillance program Charpy V-notch specimens and Practice E2215 describes the evaluation of test specimens from surveillance capsules. It may be desirable to extend the original surveillance program with additional specimens for plant aging management issues, such as plant license renewal, to better define existing data, or to determine fracture toughness of a material when no standard fracture toughness test specimens are available. The possibility to reconstitute the broken halves of existing specimens can provide specimens which can be tested.  
3.2 Charpy-sized specimens are typically machined from material not previously mechanically tested. There are occasions that exist when either (1) no full size specimen blanks are available or (2) the material available with the desired history (such as having been subjected to irradiation) is not sufficient for the machining of full-size specimens, or both.  
3.3 A solution to this problem, which is addressed in this guide, is to fabricate new specimens using the broken halves of previously tested Charpy-sized specimens or other pieces of ferritic steel too small to fabricate a full Charpy-sized specimen. In this guide, the central segment of each new specimen utilizes a broken half of a previously tested specimen and end tabs that are welded to the central segment, or the central section may simply be a piece of untested material shorter than a Charpy-sized specimen. While specifically addressing reconstitution of irradiated pressure vessel steels, this guide can also provide guidance for reconstitution of Charpy-sized specimens for other situations where material availability is limited.
SCOPE
1.1 This guide covers procedures for the reconstitution of ferritic steel, Type A Charpy V-notch specimens (Test Methods E23) and Charpy-sized fracture toughness specimens suitable for testing in three point bending in accordance with Test Methods E1921 or E1820. Ferritic steels (principally broken specimens used in nuclear power plant irradiation programs) are reconstituted by welding end tabs of similar material onto remachined specimen sections that were unaffected by the initial test. Guidelines are given for the selection of suitable specimen halves and end tab materials, for dimensional control, and for avoidance of overheating the notch area. A comprehensive overview of the reconstitution methodologies can be found in Ref  (1).2  
1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Guide
    4 pages
    English language
    sale 15% off
  • Guide
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This test measures an important property to users of sew through flange buttons. This is a means of determining the resistance of the bridge of the button to a strain which can cause it to fall off a garment to which it is attached.  
5.2 If there are differences of practical significance between the reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, test samples should be used that are as homogeneous as possible, that are drawn from the material from which the disparate test results were obtained, and that are randomly assigned in equal numbers to each laboratory for testing, Other materials with established test values may be used for this purpose. The test results for the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.
SCOPE
1.1 This test method measures the resistance of the bridge of a sew-through button to a steadily increasing strain.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    2 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Multiaxial forces often tend to introduce deformation and damage mechanisms that are unique and quite different from those induced under a simple uniaxial loading condition. Since most engineering components are subjected to cyclic multiaxial forces it is necessary to characterize the deformation and fatigue behaviors of materials in this mode. Such a characterization enables reliable prediction of the fatigue lives of many engineering components. Axial-torsional loading is one of several possible types of multiaxial force systems and is essentially a biaxial type of loading. Thin-walled tubular specimens subjected to axial-torsional loading can be used to explore behavior of materials in two of the four quadrants in principal stress or strain spaces. Axial-torsional loading is more convenient than in-plane biaxial loading because the stress state in the thin-walled tubular specimens is constant over the entire test section and is well-known. This practice is useful for generating fatigue life and cyclic deformation data on homogeneous materials under axial, torsional, and combined in- and out-of-phase axial-torsional loading conditions.
SCOPE
1.1 The standard deals with strain-controlled, axial, torsional, and combined in- and out-of-phase axial torsional fatigue testing with thin-walled, circular cross-section, tubular specimens at isothermal, ambient and elevated temperatures. This standard is limited to symmetric, completely-reversed strains (zero mean strains) and axial and torsional waveforms with the same frequency in combined axial-torsional fatigue testing. This standard is also limited to characterization of homogeneous materials with thin-walled tubular specimens and does not cover testing of either large-scale components or structural elements.  
1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    9 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Testing machines that apply and indicate force are used in many industries, in many ways. They might be used in a research laboratory to measure material properties, or in a production line to qualify a product for shipment. No matter what the end use of the testing machine may be, it is necessary for users to know that the amount of force applied and indicated is traceable to the International System of Units (SI) through a National Metrology Institute (NMI). The procedures in Practices E4 may be used to calibrate these testing machines so that the measured forces are traceable to the SI. A key element of traceability to the SI is that the force measurement standards used in the calibration have known force characteristics, and have been calibrated in accordance with Practice E74.  
5.2 The procedures in Practices E4 may be used by those using, manufacturing, and providing calibration service for testing machines and related instrumentation.
SCOPE
1.1 These practices cover procedures for the force calibration and verification, by means of force measurement standards, of tension or compression, or both, static or quasi-static testing machines (which may, or may not, have force-indicators). These practices are not intended to be complete purchase specifications for testing machines.  
1.2 Testing machines may be verified by one of the three following methods or combination thereof. Each of the methods require a specific measurement uncertainty, displaying metrological traceability to The International System of Units (SI).  
1.2.1 Use of standard weights,  
1.2.2 Use of equal-arm balances and standard weights, or  
1.2.3 Use of elastic force measurement standards.  
1.3 The procedures of 1.2.1–1.2.3 apply to the calibration and verification of the force-measuring systems associated with the testing machine, including the force indicators such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the force-measuring system(s) to be verified and included in the certificate and report of calibration and verification.  
1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.  
1.4.1 Other non-SI force units may be used with this standard such as the kilogram-force (kgf) which is often used with hardness testing machines  
1.5 Forces indicated on displays/printouts of testing machine data systems—be they instantaneous, delayed, stored, or retransmitted—which are verified with provisions of 1.2.1, 1.2.2, or 1.2.3, and are within the specifications stated in Section 15, comply with Practices E4.  
1.6 The requirements of these practices limit the major components of measurement uncertainty when calibrating testing machines. These Standard Practices do not require the allowable force measurement error to be reduced by the amount of the measurement uncertainty encountered during a calibration. As a result, a testing machine verified using these practices may produce a deviation from the true force greater than ±1.0 % when the force measurement error is combined with the measurement uncertainty.  
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued...

  • Standard
    14 pages
    English language
    sale 15% off
  • Standard
    14 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Strain gages are the most widely used devices for measuring strains and for evaluating stresses in structures. In many applications there are often cyclic loads that can cause strain gage failure. Performance characteristics of strain gages are affected by both the materials from which they are made and their geometric design.  
4.2 The determination of most strain gage performance characteristics requires mechanical testing that is destructive. Since strain gages tested for fatigue life cannot be used again, it is necessary to treat data statistically. In general, longer and wider strain gages with lower resistances will have greater fatigue life. Optional additions to strain gages (integral lead wires are an example) will often reduce fatigue life.  
4.3 To be used, strain gages must be bonded to a structure. Good results, particularly in a fatigue environment, depend heavily on the materials used to clean the bonding surface, to bond the strain gage, and to provide a protective coating. Skill of the installer is another major factor in success. Finally, instrumentation systems shall be carefully selected and calibrated to ensure that they do not unduly degrade the performance of the strain gages.  
4.4 Fatigue failure of a strain gage often does not involve visible cracking or fracture of the strain gage, but merely sufficient zero shift to compromise the accuracy of the strain gage output for static strain components.
SCOPE
1.1 This test method covers a uniform procedure for the determination of strain gage fatigue life at ambient temperature. A suggested testing equipment design is included.  
1.2 This test method does not apply to force transducers or extensometers that use metallic bonded resistance strain gages as sensing elements.  
1.3 Strain gages are part of a complex system that includes structure, adhesive, strain gage, lead wires, instrumentation, and (often) environmental protection. As a result, many things affect the performance of strain gages, including user technique. A further complication is that strain gages, once installed, normally cannot be reinstalled in another location. Therefore, it is not possible to calibrate individual strain gages; performance characteristics are normally presented on a statistical basis.  
1.4 This test method encompasses only fully reversed stain cycles.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 These test methods provide a rapid, simple to apply method to detect small leaks in flexible package seals or walls at the leak rate level of greater than 1 × 10−4 sccs, thus providing a measure of package integrity. Porous barrier film packages made non-porous with an impermeable film forming coating may demonstrate lateral leakage through the barrier material. Verification of leakage differences from background leakage must be included in validation methods. The use of calibrated hole sizes or orifices may be appropriate to determine leakage sensitivity or barrier integrity for these materials.  
5.2 While theoretical leak rate sensitivity can be established by calculation, the test measurement is in pressure units and the measuring instrument must be calibrated, certified, and verified with these units.  
5.3 The pressure decay method of leak testing is a physical measure of package integrity. When testing medical packaging which must conform to ISO 11607–1: 2006 standards, it may necessary to verify the results of the pressure decay test method with other sterile package integrity test methods.  
5.4 Test Method A allows packages to be pressurized without restraint. In Test Method A the pouch, tray, or other type package will contain a volume of air defined by its mechanical configuration and its ability to resist internal pressure applied. This test method requires that the package reach a stable volume configuration (stop stretching) to make a measurement.  
5.5 Test Method B allows the use of rigid restraining plates against the walls of the package to limit its volume and stabilize the package volume.
SCOPE
1.1 These test methods cover the measurement of leaks in nonporous film, foil, or laminate flexible pouches and foil-sealed trays, which may be empty or enclose solid product. If product is enclosed, seals or surfaces cannot be in contact with water, oils, or other liquid.  
1.2 These test methods will detect leaks at a rate of 1 × 10−4 sccs (standard cubic centimetres per second) or greater, in flexible packages. The limitation of leak rate is dependent on package volume as tested.  
1.3 The following test methods are included:  
1.3.1 Test Method A—Pressure Decay Leak Test for Flexible Packages Without Restraining Plates  
1.3.2 Test Method B—Pressure Decay Leak Test for Flexible Packages With Restraining Plates  
1.4 These test methods are destructive in that they require entry into the package to supply an internal pressure of gas, typically air or nitrogen, although other gases may be used. The entry connection into the flexible package must be leak-tight.  
1.5 For porous packages, see 9.3.  
1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.  
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    7 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 The significance of this test method in any overall measurements program to assess the erosion behavior of materials will depend on many factors concerning the conditions of service applications. The users of this test method should determine the degree of correlation of the results obtained with those from field performance or results using other test systems and methods. This test method may be used to rank the erosion resistance of materials under the specified conditions of testing.
SCOPE
1.1 This test method is concerned with the determination of material loss by gas-entrained solid particle impingement erosion with jet nozzle type erosion equipment. This test method can be used in the laboratory to measure the solid particle erosion of different materials and has been used as a screening test for ranking solid particle erosion rates of materials in simulated service environments. Erosion service takes place under conditions where particle sizes, chemistry, microstructure, velocity, attack angles, temperature, environments, etc., vary over a wide range. Hence, any single laboratory test may not be sufficient to evaluate expected service performance. This test method describes one well characterized procedure for solid particle impingement erosion measurement for which interlaboratory test results are available from multiple laboratories.  
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    15 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Methods and procedures used in installing bonded resistance strain gages can have significant effects upon the performance of those sensors. Optimum and reproducible detection of surface deformation requires appropriate and consistent strain gage and bonding technique selection, surface preparation, procedures for gage installation and adhesive use, lead wire connection, validation of operation, and protective coating application.
SCOPE
1.1 This guide provides guidelines for installing bonded resistance strain gages. It is not intended to be used for bulk or diffused semiconductor gages. This guide pertains only to adhesively bonded strain gages.  
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Guide
    5 pages
    English language
    sale 15% off
  • Guide
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This practice is used to calibrate the James Machine for determination of static coefficient of friction of polish surfaces in accordance with Test Method D2047. Over considerable time and repeated use the James Machine may tend to mechanical misalignment, giving self-evident, anomalous readings. The periodic accumulation and comparison of data generated by this practice provides an indication of when the machine is no longer within the calibration limits and can no longer be expected to provide accurate and reliable data.  
5.2 Semi-automated James machines may perform an internal calibration/alignment test. These automated tests should be routinely run per the manufacturer's recommendation. If the repeatability tests of this practice indicate that the machine is out of calibration, the manufacturer should be contacted and their suggestions followed. Unqualified disassembly, modification, or adjustment may void the instrument warranty of semi-automated James Machines.
SCOPE
1.1 This practice covers the testing of the James Machine for repeatability of static coefficient of friction, relative to a standard reference interface consisting of the working surfaces of Borco2 board and standard leather shoe sole material, or a control polish film and standard leather shoe material. The practice provides basis data on the stability of the James Machine to ensure accurate static coefficient of friction determinations over time and repeated use and for determining if the James Machine is mechanically calibrated and properly aligned.  
1.2 This practice is written specifically for James Machines with manual or motorized test table transport. Variations of this practice for the calibration of versions of James Machines which are semi-automated are obvious. Calibration practices suggested by the manufacturer of semi-automatic James Machines should be followed in preference to this practice.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    6 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Strain gages are the most widely used devices for the determination of materials, properties and for analyzing stresses in structures. However, performance characteristics of strain gages are affected by both the materials from which they are made and their geometric design. These test methods detail the minimum information that must accompany strain gages if they are to be used with acceptable accuracy of measurement.  
4.2 Most performance characteristics of strain gages require mechanical testing that is destructive. Since test strain gages cannot be used again, it is necessary to treat data statistically and then apply values to the remaining population from the same lot or batch. Failure to acknowledge the resulting uncertainties can have serious repercussions. Resistance measurement is non-destructive and can be made for each strain gage.  
4.3 Properly designed and manufactured strain gages, whose performance characteristics have been accurately determined and with appropriate uncertainties applied, represent powerful measurement tools. They can determine small dimensional changes in structures with excellent accuracy, far beyond that of other known devices. It is important to recognize, however, that individual strain gages cannot be calibrated. If calibration and traceability to a standard are required, strain gages should not be employed.  
4.4 To be used, strain gages must be bonded to a structure. Good results depend heavily on the materials used to clean the bonding surface, to bond the strain gage, and to provide a protective coating. Skill of the installer is another major factor in success. Finally, instrumentation systems must be carefully designed to assure that they do not unduly degrade the performance of the strain gages. In many cases, it is impossible to achieve this goal. If so, allowance must be made when considering accuracy of data. Test conditions can, in some instances, be so severe that error signals from strain gage systems far ...
SCOPE
1.1 The purpose of these test methods are to provide uniform test methods for the determination of strain gage performance characteristics. Suggested testing equipment designs are included.  
1.2 Test Methods E251 describes methods and procedures for determining five strain gage performance characteristics:    
Section  
Part I—General Requirements  
7  
Part II—Resistance at a Reference Temperature  
8  
Part III—Gage Factor at a Reference Temperature  
9  
Part IV—Temperature Coefficient of Gage Factor  
10  
Part V—Transverse Sensitivity  
11  
Part VI—Thermal Output  
12  
1.3 Strain gages are very sensitive devices with essentially infinite resolution. Their response to strain, however, is low and great care must be exercised in their use. The performance characteristics identified by these test methods must be known to an acceptable accuracy to obtain meaningful results in field applications.  
1.3.1 Strain gage resistance is used to balance instrumentation circuits and to provide a reference value for measurements since all data are related to a change in the strain gage resistance from a known reference value.  
1.3.2 Gage factor is the transfer function of a strain gage. It relates resistance change in the strain gage and strain to which it is subjected. Accuracy of strain gage data can be no better than the accuracy of the gage factor.  
1.3.3 Changes in gage factor as temperature varies also affect accuracy although to a much lesser degree since variations are usually small.  
1.3.4 Transverse sensitivity is a measure of the strain gage's response to strains perpendicular to its measurement axis. Although transverse sensitivity is usually much less than 10 % of the gage factor, large errors can occur if the value is not known with reasonable precision.  
1.3.5 Thermal output is the response of a strain gage to temperature changes. Thermal output is an additive (not multiplica...

  • Standard
    21 pages
    English language
    sale 15% off
  • Standard
    21 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Creep-fatigue testing is typically performed at elevated temperatures and involves the sequential or simultaneous application of the loading conditions necessary to generate cyclic deformation/damage enhanced by creep deformation/damage or vice versa. Unless such tests are performed in vacuum or an inert environment, oxidation can also be responsible for important interaction effects relating to damage accumulation. The purpose of creep-fatigue tests can be to determine material property data for (a) assessment input data for the deformation and damage condition analysis of engineering structures operating at elevated temperatures (b) the verification of constitutive deformation and damage model effectiveness (c) material characterization, or (d) development and verification of rules for new construction and life assessment of high-temperature components subject to cyclic service with low frequencies or with periods of steady operation, or both.  
4.2 In every case, it is advisable to have complementary continuous cycling fatigue data (gathered at the same strain/loading rate) and creep data determined from test conducted as per Practice E139 for the same material and test temperature(s). The procedure is primarily concerned with the testing of round bar test specimens subjected (at least remotely) to uniaxial loading in either force or strain control. The focus of the procedure is on tests in which creep and fatigue deformation and damage is generated simultaneously within a given cycle. Data which may be determined from creep-fatigue tests performed under such conditions may characterize  (a) cyclic stress-strain deformation response (b) cyclic creep (or relaxation) deformation response (c) cyclic hardening, cyclic softening response or (d) cycles to crack formation, or both.  
4.3 While there are a number of testing Standards and Codes of Practice that cover the determination of low cycle fatigue deformation and cycles to crack initiation properties (See Pr...
SCOPE
1.1 This test method covers the determination of mechanical properties pertaining to creep-fatigue deformation or crack formation in nominally homogeneous materials, or both by the use of test specimens subjected to uniaxial forces under isothermal conditions. It concerns fatigue testing at strain rates or with cycles involving sufficiently long hold times to be responsible for the cyclic deformation response and cycles to crack formation to be affected by creep (and oxidation). It is intended as a test method for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. The cyclic conditions responsible for creep-fatigue deformation and cracking vary with material and with temperature for a given material.  
1.2 The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products.  
1.3 This test method is primarily aimed at providing the material properties required for assessment of defect-free engineering structures containing features that are subject to cyclic loading at temperatures that are sufficiently high to cause creep deformation.  
1.4 This test method is applicable to the determination of deformation and crack formation or nucleation properties as a consequence of either constant-amplitude strain-controlled tests or constant-amplitude force-controlled tests. It is primarily concerned with the testing of round bar test specimens subjected to uniaxial loading in either force or strain control. The focus of the procedure is on tests in which creep and fatigue deformation and damage is generated simultaneously within a given cycle. It does not cover block cycle testing in which creep and fatigue damage is generated sequentially. Data that may be determined from creep-fatigue tests performed under conditions in whi...

  • Standard
    15 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 The procedure described in this test method for determination of the shear resistance for the GCL or the GCL interface is intended as a performance test to provide the user with a set of design values for the test conditions examined. The test specimens and conditions, including normal stresses, are generally selected by the user.  
5.2 This test method may be used for acceptance testing of commercial shipments of GCLs, but caution is advised as outlined in 5.2.1.  
5.2.1 The shear resistance can be expressed only in terms of actual test conditions (see Notes 2 and 3). The determined value may be a function of the applied normal stress, material characteristics (for example, of the geosynthetic), soil properties, size of sample, moisture content, drainage conditions, displacement rate, magnitude of displacement, and other parameters.
Note 2: In the case of acceptance testing requiring the use of soil, the user must furnish the soil sample, soil parameters, and direct shear test parameters. The method of test data interpretation for purposes of acceptance should be mutually agreed to by the users of this standard.
Note 3: Testing under this test method should be performed by laboratories qualified in the direct shear testing of soils and meeting the requirements of Practice D3740, especially since the test results may depend on site-specific and test conditions.  
5.2.2 This test method measures the total resistance to shear within a GCL or between a GCL and adjacent material. The total shear resistance may be a combination of sliding, rolling, and interlocking of material components.  
5.2.3 This test method does not distinguish between individual mechanisms, which may be a function of the soil and GCL used, method of material placement and hydration, normal and shear stresses applied, means used to hold the GCL in place, rate of horizontal displacement, and other factors. Every effort should be made to identify, as closely as is practicable, the sheared...
SCOPE
1.1 This test method covers a procedure for determining the internal shear resistance of a geosynthetic clay liner (GCL) or the interface shear resistance between the GCL and an adjacent material under a constant rate of deformation.  
1.2 This test method is intended to indicate the performance of the selected specimen by attempting to model certain field conditions.  
1.3 This test method is applicable to all GCLs. Remolded or undisturbed soil samples can be used in the test device. See Test Method D5321/D5321M for interface shear testing of non-GCL geosynthetics. See Guide D7702/D7702M for a summary of available information related to the evaluation of direct shear results obtained using this test method.  
1.4 This test method is not suited for the development of exact stress-strain relationships within the test specimen due to the nonuniform distribution of shearing forces and displacement.  
1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    12 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 It has been shown that bending stresses that inadvertently occur due to misalignment between the applied force and the specimen axes during the application of tensile and compressive forces can affect the test results. In recognition of this effect, some test methods include a statement limiting the misalignment that is permitted. The purpose of this practice is to provide a reference for test methods and practices that require the application of tensile or compressive forces under conditions where alignment is important. The objective is to implement the use of common terminology and methods for verification of alignment of testing machines, associated components and test specimens.  
4.2 Alignment verification intervals when required are specified in the methods or practices that require the alignment verification. Certain types of testing can provide an indication of the current alignment condition of a testing frame with each specimen tested. If a test method requires alignment verification, the frequency of the alignment verification should capture all the considerations that is, time interval, changes to the testing frame and when applicable, current indicators of the alignment condition through test results.  
4.3 Whether or not to improve axiality should be a matter of negotiation between the interested parties.
SCOPE
1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens during routine testing in the elastic range. These methods are particularly applicable to the force levels normally used for tension testing, compression testing, creep testing, and uniaxial fatigue testing. The principal objective of this practice is to assess the amount of bending exerted upon a test specimen by the ordinary components assembled into a materials testing machine, during routine tests.  
1.2 This practice is valid for metallic and nonmetallic testing.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    17 pages
    English language
    sale 15% off
  • Standard
    17 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Puncture resistance is very important in end-use performance of stretch wrap film used in consumer and industrial product applications. Puncture resistance is a measure of the energy-absorbing ability of a stretch wrap film in resisting a protrusion. The test method is designed to provide the user with a means of measuring the stretch wrap film's puncture resistance performance under essentially biaxial deformation conditions. A biaxial stress is representative of the type of stress encountered by stretch wrap products in many end-use applications.  
4.2 Although this test method cannot be expected to duplicate all field experiences, since the rate of speed, weight, and configuration of such destructive forces vary widely, a generally reliable comparison of samples may be made from the data obtained.
SCOPE
1.1 This test method determines the resistance of a stretch wrap film to the penetration of a probe at a standard low rate, a single test velocity. Performed at standard conditions, the test method imparts a biaxial stress that is representative of the type of stress encountered in many product end-use applications. The maximum force, force at break, penetration distance, and energy to break are determined.  
1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 The internal pressurization test method provides a practical way to examine packages for gross leaks.  
5.2 This test method is extremely useful in a test laboratory environment where no common package material/size exists.  
5.3 This test method may apply to large or long packages that do not fit into any other package integrity test method apparatus.  
5.4 This test method may be used as a means to evaluate package integrity. Package integrity is crucial to consumer safety since heat sealed packages are designed to provide a contamination free or sterile environment, or both, to the product.  
5.5 This test method may be used to detect substrate holes and channels.
SCOPE
1.1 This test method covers the detection of gross leaks in packaging. Method sensitivity is down to 250 μm (0.010 in.) with an 81 % probability (see Section 11). This test method may be used for tray and pouch packages.  
1.2 The sensitivity of this test method has not been evaluated for use with porous materials other than spunbonded polyolefin or with nonporous packaging.  
1.3 This test method is destructive in that it requires entry into the package to supply an internal air pressure  
1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off

ISO 6506-2:2017 specifies methods of direct and indirect verification of testing machines used for determining Brinell hardness in accordance with ISO 6506‑1 and also specifies when these two types of verification have to be performed.
The direct verification involves checking that individual machine performance parameters fall within specified limits whereas the indirect verification utilizes hardness measurements of reference blocks, calibrated in accordance with ISO 6506‑3, to check the machine's overall performance.
If a testing machine is also to be used for other methods of hardness testing, it has to be verified independently for each method.
ISO 6506-2:2017 is applicable to both fixed location and portable hardness testing machines. For machines that are incapable of satisfying the specified force-time profile, the direct verification of force and testing cycle can be modified by the use of Annex B.

  • Standard
    23 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
4.1 This test method is used to determine the equilibrium rate of wear and coefficient of friction of materials in rubbing contact under useful operating conditions, that is, combinations of pressure and velocity that fall below the PV (pressure × velocity) limit of the test material. The user of this test method should determine to his own satisfaction whether the results of this test procedure correlate with field performance or other bench test machines. If the test conditions are changed, the wear rates may change and the relative value of one material with respect to another may also change.  
4.2 Test conditions may be selected from Table 1. (A) For many applications a wear rate exceeding 1.0 × 10−5  in./h (2.5 × 10−7 m/h) is considered excessive. Typical wear rates for some commonly used materials at different PV levels are:
Acetal homopolymer at PV1:  
5 × 10−6 in./h to 1 × 10−5 in./h (1.3 × 10−7 m/h to 2.5 × 10−7 m/h)  
Acetal homopolymer at PV2:  
1 × 10−5 in./h to 3 × 10−5 in./h (2.5 × 10−7 m/h to 7.5 × 10−7 m/h)  
22 % PTFE-filled acetal homopolymer at PV2:  
3 × 10−6 in./h to 6 × 10−6 in./h (7.5 × 10−8 m/h to 1.5 × 10−7 m/h)  
Polyamide (Type 6-6) at PV2:  
1 × 10−5 in./h to 5 × 10−5 in./h (2.5 × 10−7 m/h to 1.3 × 10−6 m/h)  
15 % graphite filled polyimide restin at PV3:  
1 × 10−5 in./h to 2 × 10−5 in./h (2.5 × 10−7 m/h to 5 × 10−7 m/h)  
4.3 The precision of wear measurement is relatively independent of test duration or amount of wear, but the precision of wear rate (calculation) improves with test duration and amount of wear. It is generally believed that useful wear rate precision requires the selection of a test duration sufficient to produce 0.1 mm (0.004 in.) of wear. Test durations will often be in the 50 h to 4000 h range.
SCOPE
1.1 This test method covers the determination of wear rate and coefficient of friction for self-lubricated materials in rubbing contact by a testing machine2 that utilizes a thrust washer specimen configuration.  
Note 1: This machine may also be used to measure coefficient of friction.  
1.2 The values in SI units are to be regarded as the standard. In cases where materials, products, or equipment are available only in inch-pound units, SI values in parentheses are for information only.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    6 pages
    English language
    sale 15% off