M/404 - Electro Magnetic compatibility
Standardisation Mandate to CEN, CENELEC and ETSI for harmonized standard according to the Electro Magnetic Compatibility (EMC) Directive 2004/108/EC
General Information
IEC 60947-5-7:2024 states the requirements for proximity devices that correspond to the scope of IEC 60947-5-2:2019 with analog output (PDAO) and/or a digital output to transmit a corresponding digital value representing the detected sensing input. These devices can provide additional parameters.
This second edition cancels and replaces the first edition published in 2003. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) New structure;
b) Update and expansion of definitions on analog output properties;
c) Expanded performance requirements on analog output;
d) Update and new normative references;
e) Update of EMC requirements;
f) Harmonization with IEC 62828 series;
g) Harmonization with IEC 62683 and IEC 61987 definitions;
h) Harmonization with IEC 61131-2 requirements;
i) Update of the Annex A (former Annex G), Example of the determination of the conformity;
j) New Annex B, Overview tests and influence quantities;
k) New Annex C, Additional requirements for proximity switches with analog output incorporating a built-in communication interface complying with IEC 61131-9;
l) New Annex D, Main characteristics for proximity devices with analog output.
- Standard49 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60947-5-7:2024 states the requirements for proximity devices that correspond to the scope of IEC 60947-5-2:2019 with analog output (PDAO) and/or a digital output to transmit a corresponding digital value representing the detected sensing input. These devices can provide additional parameters. This second edition cancels and replaces the first edition published in 2003. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) New structure; b) Update and expansion of definitions on analog output properties; c) Expanded performance requirements on analog output; d) Update and new normative references; e) Update of EMC requirements; f) Harmonization with IEC 62828 series; g) Harmonization with IEC 62683 and IEC 61987 definitions; h) Harmonization with IEC 61131-2 requirements; i) Update of the Annex A (former Annex G), Example of the determination of the conformity; j) New Annex B, Overview tests and influence quantities; k) New Annex C, Additional requirements for proximity switches with analog output incorporating a built-in communication interface complying with IEC 61131-9; l) New Annex D, Main characteristics for proximity devices with analog output.
- Standard49 pagesEnglish languagesale 10% offe-Library read for1 day
This document applies to electrical equipment using signals in the frequency range 3 kHz to 95 kHz to transmit or receive information on low voltage electrical systems, for electricity suppliers and distributors.
Mains communicating equipment (MCE) may fall into one of the two following categories:
- MCE implementing transmission or reception of information on LV distribution networks or installations of network users connected to the public electricity distribution network as the sole function. Immunity requirements for such equipment are entirely covered by this document;
- MCE being equipment covered by the scope of other standards, integrating mains communication as one of their functions. In this case, only the immunity requirements for the mains communication function of such equipment are covered by the scope of this document. Immunity requirements for all other available functions of this equipment are covered by the relevant product standard or generic standard.
The object of this document is to contribute to ensuring EMC in general. It specifies essential immunity requirements and test methods, including those tests which are to be performed during type-testing of MCE, for electromagnetic interference (EMI) generated on LV installations.
It defines the methods and requirements for testing immunity of MCE on meeting the essential requirements of the EMCD. Test requirements are specified for each port considered.
Furthermore, it provides guidelines for the assessment of the performance of the communication function of an MCE. Normative specifications are under consideration.
This document gives immunity requirements which are applicable to MCE used by electricity suppliers and distributors (e.g. DSOs) for purposes like energy management and network monitoring and automation. The levels do not however cover extreme cases which could occur in any location but with a low probability of occurrence. In special cases situations will arise where the level of disturbances could exceed the levels specified in this document, e.g. where a hand-held transmitter is used in proximity of an apparatus. In these instances special mitigation measures might have to be employed.
It does not specify immunity of MCE to signals from other MCE operating in the same nominal frequency band or immunity to signals originating from power line carrier systems operating on high or medium-voltage networks.
Safety considerations are not included in this document.
- Standard26 pagesEnglish languagesale 10% offe-Library read for1 day
2020-11-24: EC formal rejection for citation under EMCD
2019-11-13: D164/C065: BT approved the Annex ZA and Annexes ZZ for LVD and EMC and asked CCMC to make the standard available without further delay with the inclusion of the approves Annexes.
- Amendment129 pagesEnglish languagesale 10% offe-Library read for1 day
NEW!IEC 61000-3-11:2017 is available as IEC 61000-3-11:2017 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61000-3-11:2017 is concerned with the emission of voltage changes, voltage fluctuations and flicker produced by equipment and impressed on the public low-voltage supply system. It specifies the limits of voltage changes produced by equipment tested under specified conditions. This edition includes the following significant technical changes with respect to the previous edition: a) addition of a new Annex A which explains the limitations and effectiveness of IEC 61000‑3-11 regarding the connection of multiple items of similar equipment at the same location in the supply network.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard – translation24 pagesSlovenian languagesale 10% offe-Library read for1 day
IEC 61000-6-4:2018 is also available as IEC 61000-6-4:2018 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
\r\n
\r\nIEC 61000-6-4:2018 for emission requirements applies to electrical and electronic equipment intended for use within the environment existing at industrial (see 3.1.12) locations. This document does not apply to equipment that fall within the scope of IEC 61000-6-3. The environments encompassed by this document cover both indoor and outdoor locations. Emission requirements in the frequency range 9 kHz to 400 GHz are covered in this document and have been selected to provide an adequate level of protection of radio reception in the defined electromagnetic environment. No measurement needs to be performed at frequencies where no requirement is specified. These requirements are considered essential to provide an adequate level of protection to radio services. Not all disturbance phenomena have been included for testing purposes but only those considered relevant for the equipment intended to operate within the environments included within this document. Requirements are specified for each port considered. This generic EMC emission standard is to be used where no applicable product or product-family EMC emission standard is available. This third edition cancels and replaces the second edition published in 2006 and Amendment 1:2010 This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
\r\na) possible future requirements on DC ports;
\r\nb) possible future radiated polarity specific emission limits within a FAR;
\r\nc) the definition of which average detector is used for emission measurements at frequencies above 1GHz and that results using a peak detector are acceptable for all measurements;
\r\nd) the definition of different EUT test arrangements.
\r\nKeywords: emission standard for industrial environments
- Standard31 pagesEnglish languagesale 10% offe-Library read for1 day
This document applies to electrical equipment using signals in the frequency range 3 kHz to 95 kHz to transmit or receive information on low voltage electrical systems, for electricity suppliers and distributors. Mains communicating equipment (MCE) may fall into one of the two following categories: - MCE implementing transmission or reception of information on LV distribution networks or installations of network users connected to the public electricity distribution network as the sole function. Immunity requirements for such equipment are entirely covered by this document; - MCE being equipment covered by the scope of other standards, integrating mains communication as one of their functions. In this case, only the immunity requirements for the mains communication function of such equipment are covered by the scope of this document. Immunity requirements for all other available functions of this equipment are covered by the relevant product standard or generic standard. The object of this document is to contribute to ensuring EMC in general. It specifies essential immunity requirements and test methods, including those tests which are to be performed during type-testing of MCE, for electromagnetic interference (EMI) generated on LV installations. It defines the methods and requirements for testing immunity of MCE on meeting the essential requirements of the EMCD. Test requirements are specified for each port considered. Furthermore, it provides guidelines for the assessment of the performance of the communication function of an MCE. Normative specifications are under consideration. This document gives immunity requirements which are applicable to MCE used by electricity suppliers and distributors (e.g. DSOs) for purposes like energy management and network monitoring and automation. The levels do not however cover extreme cases which could occur in any location but with a low probability of occurrence. In special cases situations will arise where the level of disturbances could exceed the levels specified in this document, e.g. where a hand-held transmitter is used in proximity of an apparatus. In these instances special mitigation measures might have to be employed. It does not specify immunity of MCE to signals from other MCE operating in the same nominal frequency band or immunity to signals originating from power line carrier systems operating on high or medium-voltage networks. Safety considerations are not included in this document.
- Standard26 pagesEnglish languagesale 10% offe-Library read for1 day
CISPR 35:2016 applies to multimedia equipment (MME) having a rated AC or DC supply voltage not exceeding 600 V. The objectives of this document are:
- to establish requirements which provide an adequate level of intrinsic immunity so that the MME will operate as intended in its environment in the frequency range 0 kHz to 400 GHz; and
- to specify procedures to ensure the reproducibility of tests and the repeatability of results.
- Standard90 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62026-1:2019 is available as IEC 62026-1:2019 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62026-1:2019 applies to interfaces between low-voltage switchgear, controlgear, and controllers (e.g. programmable controllers, personal computers, etc.). This document does not apply to higher level industrial communication networks that have become known as fieldbuses and are considered by IEC subcommittee 65C. This third edition cancels and replaces the second edition published in 2007. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) additional requirements for safety information and instructions, including the measures to be taken, if any, for achieving EMC compliance; b) EMC immunity requirements aligned with current IEC 61000-6 series of standards. Radiated radio-frequency electromagnetic fields test level increased to 6 GHz; c) EMC emissions requirements aligned with current CISPR 11 publication.
- Standard17 pagesEnglish languagesale 10% offe-Library read for1 day
applies to electrical and electronic apparatus intended for use in industrial environments, as described below. Immunity requirements in the frequency range 0 Hz to 400 GHz are covered. No tests need to be performed at frequencies where no requirements are specified. This generic EMC immunity standard is applicable if no relevant dedicated product or product-family EMC immunity standard exists. This standard applies to apparatus intended to be connected to a power network supplied from a high or medium voltage transformer dedicated to the supply of an installation feeding manufacturing or similar plant, and intended to operate in or in proximity to industrial locations, as described below. This standard applies also to apparatus which is battery operated and intended to be used in industrial locations. The environments encompassed by this standard are industrial, both indoor and outdoor. The immunity requirements have been selected to ensure an adequate level of immunity for apparatus at industrial locations. The levels do not, however, cover extreme cases, which may occur at any location, but with an extremely low probability of occurrence. Not all disturbance phenomena have been included for testing purposes in this standard, but only those considered as relevant for the equipment covered by this standard. These test requirements represent essential electromagnetic compatibility immunity requirements.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
Applies to electrical and electronic apparatus intended for use in residential, commercial and light-industrial environments. Immunity requirements in the frequency range 0 Hz to 400 GHz are covered. No tests need to be performed at frequencies where no requirements are specified. This generic EMC immunity standard is applicable if no relevant dedicated product or product-family EMC immunity standard exists. This standard applies to apparatus intended to be directly connected to a low-voltage public mains network or connected to a dedicated DC source which is intended to interface between the apparatus and the low-voltage public mains network. This standard applies also to apparatus which is battery operated or is powered by a non-public, but non-industrial, low-voltage power distribution system if this apparatus is intended to be used in the locations described below. The environments encompassed by this standard are residential, commercial and light-industrial locations, both indoor and outdoor. The following list, although not comprehensive, gives an indication of locations which are included: - residential properties, for example houses, apartments; - retail outlets, for example shops, supermarkets; - business premises, for example offices, banks; - areas of public entertainment, for example cinemas, public bars, dance halls; - outdoor locations, for example petrol stations, car parks, amusement and sports centres; - light-industrial locations, for example workshops, laboratories, service centres. Locations which are characterised by being supplied directly at low voltage from the public mains network are considered to be residential, commercial or light-industrial. The immunity requirements have been selected to ensure an adequate level of immunity for apparatus at residential, commercial and light-industrial locations. The levels do not, however, cover extreme cases, which may occur at any location, but with an extremely low probability of occurrenc
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard – translation24 pagesSlovenian languagesale 10% offe-Library read for1 day
IEC 61557-12:2018 is available as IEC 61557-12:2018 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 61557-12:2018 specifies requirements for power metering and monitoring devices (PMD) that measure and monitor the electrical quantities within electrical distribution systems, and optionally other external signals. These requirements also define the performance in single- and three-phase AC or DC systems having rated voltages up to 1 000 V AC or up to 1 500 V DC. These devices are fixed or portable. They are intended to be used indoors and/or outdoors. Power metering and monitoring devices (PMD), as defined in this document, give additional safety information, which aids the verification of the installation and enhances the performance of the distribution systems. The power metering and monitoring devices (PMD) for electrical parameters described in this document are used for general industrial and commercial applications. This document does not address functional safety and cyber security aspects. This document is not applicable for:
– electricity metering equipment that complies with IEC 62053-21, IEC 62053-22, IEC 62053-23 and IEC 62053-24. Nevertheless, uncertainties defined in this document for active and reactive energy measurement are derived from those defined in IEC 62053 (all parts);
– the measurement and monitoring of electrical parameters defined in IEC 61557-2 to IEC 61557-9 and IEC 61557-13 or in IEC 62020;
– power quality instrument (PQI) according IEC 62586 (all parts);
– devices covered by IEC 60051 (all parts) (direct acting analogue electrical measuring instrument). IEC 61557-12:2018 cancels and replaces the first edition published in 2007. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) PMD-A has been withdrawn due the fact these devices are now mainly covered by the IEC 62586 series of standards.
b) Three categories of PMD have been created with a list of minimum required functions for each category.
c) Added a new Annex A explaining the different applications linked to the relevant standards and devices, and another new Annex C about the power factor conventions.
- Standard106 pagesEnglish languagesale 10% offe-Library read for1 day
NEW!IEC 60730-2-14:2017 is available as IEC 60730-2-14:2017 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 60730-2-14:2017 applies to electric actuators for use in, on, or in association with equipment for household and similar use. The equipment may use electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof. This International Standard is applicable to controls for building automation within the scope of ISO 16484. This part 2-14 also applies to automatic electrical controls for equipment that may be used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications. EXAMPLE Controls for commercial catering, heating and air-conditioning equipment. Electric actuators for appliances are within the scope of IEC 60335. This second edition cancels and replaces the first edition, published in 1995, its Amendment 1 (2001) and its Amendment 2 (2007). This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: adapting it to the 5th Ed of IEC 60730-1, addition of checking electric actuators with action 1.AB or 2AB, and modification of tests under abnormal condition. This Part 2-14 is intended to be used in conjunction with IEC 60730-1. It was established on the basis of the 5th edition of that standard (2013). Consideration may be given to future editions of, or amendments to, IEC 60730-1. This part 2-14 supplements or modifies the corresponding clauses in IEC 60730-1, so as to convert that publication into the IEC standard: Particular requirements for electric actuators. Where this part 2-14 states "addition", "modification" or "replacement", the relevant requirement, test specification or explanatory matter in part 1 should be adapted accordingly. Where no change is necessary part 2-14 indicates that the relevant clause or subclause applies. Key words: Automatic Controls, Electric Actuators
- Standard24 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61557-12:2018 is available as IEC 61557-12:2018 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61557-12:2018 specifies requirements for power metering and monitoring devices (PMD) that measure and monitor the electrical quantities within electrical distribution systems, and optionally other external signals. These requirements also define the performance in single- and three-phase AC or DC systems having rated voltages up to 1 000 V AC or up to 1 500 V DC. These devices are fixed or portable. They are intended to be used indoors and/or outdoors. Power metering and monitoring devices (PMD), as defined in this document, give additional safety information, which aids the verification of the installation and enhances the performance of the distribution systems. The power metering and monitoring devices (PMD) for electrical parameters described in this document are used for general industrial and commercial applications. This document does not address functional safety and cyber security aspects. This document is not applicable for: – electricity metering equipment that complies with IEC 62053-21, IEC 62053-22, IEC 62053-23 and IEC 62053-24. Nevertheless, uncertainties defined in this document for active and reactive energy measurement are derived from those defined in IEC 62053 (all parts); – the measurement and monitoring of electrical parameters defined in IEC 61557-2 to IEC 61557-9 and IEC 61557-13 or in IEC 62020; – power quality instrument (PQI) according IEC 62586 (all parts); – devices covered by IEC 60051 (all parts) (direct acting analogue electrical measuring instrument). IEC 61557-12:2018 cancels and replaces the first edition published in 2007. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) PMD-A has been withdrawn due the fact these devices are now mainly covered by the IEC 62586 series of standards. b) Three categories of PMD have been created with a list of minimum required functions for each category. c) Added a new Annex A explaining the different applications linked to the relevant standards and devices, and another new Annex C about the power factor conventions.
- Standard106 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62020-1:2020 applies to residual current monitors for household and similar purposes, having rated operational voltages and a rated voltage of the monitored circuit not exceeding 440 V AC and rated currents not exceeding 125 A.
This first edition cancels and replaces IEC 62020:1998 and IEC 62020:1998/AMD1:2003. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
– definition of Type F and Type B RCM;
– marking of Type F and Type B RCM;
– introduction of a new subclause, 8.20;
– modification of 9.7;
– update of 9.9;
– modification of 9.14;
– modification of
- Standard119 pagesEnglish languagesale 10% offe-Library read for1 day
specifies electromagnetic compatibility (EMC) requirements for power drive systems (PDSs). A PDS is defined in 3.1. These are adjustable speed a.c. or d.c. motor drives. Requirements are stated for PDSs with converter input and/or output voltages (line-to-line voltage), up to 35 kV a.c. r.m.s.
- Standard126 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard126 pagesEnglish languagesale 10% offe-Library read for1 day
Specifies electromagnetic compatibility (EMC) requirements for power supply units (PSUs) providing d.c. output(s) up to 200 V at a power level of up to 30 kW, operating from a.c. or d.c. source voltages of up to 600 V.
- Standard45 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard45 pagesEnglish languagesale 10% offe-Library read for1 day
Is intended as a product standard allowing the EMC conformity assessment of products of categories C1, C2 and C3 as defined in this part of EN 62040, before placing them on the market.The requirements have been selected so as to ensure an adequate level of electromagnetic compatibility (EMC) for UPS at public and industrial locations.
- Standard51 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard51 pagesEnglish languagesale 10% offe-Library read for1 day
Specifies particular requirements for the type test of newly manufactured indoor time switches with operation reserve that are used to control electrical loads, multi-tariff registers and maximum demand devices of electricity metering equipment
- Amendment6 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62053-21:2020 applies only to static watt-hour meters of accuracy classes 0,5, 1 and 2 for the measurement of alternating current electrical active energy in 50 Hz or 60 Hz networks and it applies to their type tests only.
This document applies to electricity metering equipment designed to:
• measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC;
• have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays;
• operate with integrated or detached indicating displays, or without an indicating display;
• be installed in a specified matching socket or rack;
• optionally, provide additional functions other than those for measurement of electrical energy.
Meters designed for operation with low power instrument transformers (LPITs as defined in the IEC 61869 series) may be tested for compliance with this document only if such meters and their LPITs are tested together and meet the requirements for directly connected meters.
This document does not apply to:
• meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC;
• meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series) when tested without such transformers;
• metering systems comprising multiple devices (except LPITs) physically remote from one another;
• portable meters;
• meters used in rolling stock, vehicles, ships and airplanes;
• laboratory and meter test equipment;
• reference standard meters;
• data interfaces to the register of the meter;
• matching sockets or racks used for installation of electricity metering equipment;
• any additional functions provided in electrical energy meters.
This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering).
This second edition cancels and replaces the first edition published in 2003 and its amendment 1:2016. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) Removed all meter safety requirements; the meter safety requirements are covered in IEC 62052-31: 2015.
b) Replaced Ib with In; Ib is no longer used when referencing directly connected meters.
c) Moved the descriptions of all general requirements and test methods from IEC 62053-21: 2003, IEC 62053-22: 2003, IEC 62053-23: 2003, IEC 62053-24: 2003 to IEC 62052-11:2020; IEC 62053-21:2020, IEC 62053-22:2020, IEC 62053-23:2020, IEC 62053-24:2020 contain only accuracy class specific requirements.
d) Added new requirements and tests concerning:
1) measurement uncertainty and repeatability (7.3, 7.8);
2) influence of fast load current variations (9.4.12);
3) immunity to conducted differential current disturbances in the 2 kHz to 150 kHz frequency range (9.3.8).
e) Meters designed for operation with low power instrument transformers (LPITs) may be tested for compliance with this document as directly connected meters.
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62053-23:2020 applies only to static var-hour meters of accuracy classes 2 and 3 for the measurement of alternating current electrical reactive energy in 50 Hz or 60 Hz networks and it applies to their type tests only.
For practical reasons, this document is based on a conventional definition of reactive energy for sinusoidal currents and voltages containing the fundamental frequency only.
This document applies to electricity metering equipment designed to:
• measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC;
• have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays;
• operate with integrated or detached indicating displays, or without an indicating display;
• be installed in a specified matching socket or rack;
• optionally, provide additional functions other than those for measurement of electrical energy.
Meters designed for operation with low power instrument transformers (LPITs as defined in the IEC 61869 series) may be considered as compliant with this document only if such meters and their LPITs are tested together and meet the requirements for directly connected meters.
This document does not apply to:
• meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC;
• meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series) when tested without such transformers;
• metering systems comprising multiple devices (except LPITs) physically remote from one another;
• portable meters;
• meters used in rolling stock, vehicles, ships and airplanes;
• laboratory and meter test equipment;
• reference standard meters;
• data interfaces to the register of the meter;
• matching sockets or racks used for installation of electricity metering equipment;
• any additional functions provided in electrical energy meters.
This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering).
This second edition cancels and replaces the first edition published in 2003 and its amendment 1:2016. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) Removed all meter safety requirements; the meter safety requirements are covered in IEC 62052-31:2015.
b) Replaced Ib with In; Ib is no longer used when referencing directly connected meters.
c) Moved the descriptions of all general requirements and test methods from IEC 62053-21: 2003, IEC 62053-22: 2003, IEC 62053-23: 2003, IEC 62053-24: 2003 to IEC 62052-11:2020; IEC 62053-21:2020, IEC 62053-22:2020, IEC 62053-23:2020, IEC 62053-24:2020 contain only accuracy class specific requirements.
d) Added new requirements and tests concerning:
1) measurement uncertainty and repeatability (7.3, 7.8);
2) influence of fast load current variations (9.4.12);
3) immunity to conducted differential current disturbances in the 2 kHz to 150 kHz frequency range (9.3.8).
e) Meters designed for operation with low power instrument transformers (LPITs) may be tested for compliance with this document as directly connected meters.
The reactive energy accuracy classes 2 and 3 defined in IEC 62053-23 have also been added to IEC 62053-24. The TC13
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62052-11:2020 (E) specifies requirements and associated tests, with their appropriate conditions for type testing of AC and DC electricity meters. This document details functional, mechanical, electrical and marking requirements, test methods, and test conditions, including immunity to external influences covering electromagnetic and climatic environments.
This document applies to electricity metering equipment designed to:
• measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC, or 1 500 V DC;
• have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays;
• operate with integrated displays (electromechanical or static meters);
• operate with detached indicating displays, or without an indicating display (static meters only);
• be installed in a specified matching sockets or racks;
• optionally, provide additional functions other than those for measurement of electrical energy.
Meters designed for operation with Low Power Instrument Transformers (LPITs as defined in the IEC 61869 series) may be tested for compliance with this document and the relevant IEC 62053 series documents only if such meters and their LPITs are tested together as directly connected meters.
This document is also applicable to auxiliary input and output circuits, operation indicators, and test outputs of equipment for electrical energy measurement.
This document also covers the common aspects of accuracy testing such as reference conditions, repeatability and measurement of uncertainty.
This document does not apply to:
• meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC, or 1 500 V DC;
• meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series of standards) when tested without such transformers;
• metering systems comprising multiple devices (except of LPITs) physically remote from one another;
• portable meters;
• meters used in rolling stock, vehicles, ships and airplanes;
• laboratory and meter test equipment;
• reference standard meters;
• data interfaces to the register of the meter;
• matching sockets or racks used for installation of electricity metering equipment;
• any additional functions provided in electrical energy meters.
This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering).
This second edition cancels and replaces the first edition published in 2003, and its amendment 1:2016. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) Removed all meter safety requirements; the meter safety requirements are covered in IEC 62052-31:2015;
b) Included requirements for meter power consumption and voltage requirements from IEC 62053-61; IEC 62053-61 is withdrawn;
c) Included requirements for meter symbols from IEC 62053-52; IEC 62053-52 is withdrawn;
d) Included requirements for meter pulse output devices from IEC 62053-31; IEC 62053-31 is withdrawn;
e) Added new requirements and tests including: meters with detached indicating displays, and meters without indicating displays, meter sealing provisions; measurement uncertainty and repeatability; time-keeping accuracy; type tes
- Standard125 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62053-24:2020 applies only to static var-hour meters of accuracy classes 0,5S, 1S, 1, 2 and 3 for the measurement of alternating current electrical reactive energy in 50 Hz or 60 Hz networks and it applies to their type tests only.
This document uses a conventional definition of reactive energy where the reactive power and energy is calculated from the fundamental frequency components of the currents and voltages only.
This document applies to electricity metering equipment designed to:
• measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC;
• have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays;
• operate with integrated or detached indicating displays, or without an indicating display;
• be installed in a specified matching socket or rack;
• optionally, provide additional functions other than those for measurement of electrical energy.
Meters designed for operation with low power instrument transformers (LPITs as defined in the IEC 61869 series) may be considered as compliant with this document only if such meters and their LPITs are tested together and meet the requirements for directly connected meters.
This document does not apply to:
• meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC;
• meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series) when tested without such transformers;
• metering systems comprising multiple devices (except LPITs) physically remote from one another;
• portable meters;
• meters used in rolling stock, vehicles, ships and airplanes;
• laboratory and meter test equipment;
• reference standard meters;
• data interfaces to the register of the meter;
• matching sockets or racks used for installation of electricity metering equipment;
• any additional functions provided in electrical energy meters.
This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering).
This second edition cancels and replaces the first edition published in 2014 and its amendment 1:2016. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition: see Annex E
- Standard25 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62053-22:2020 applies only to transformer operated static watt-hour meters of accuracy classes 0,1 S, 0,2 S and 0,5 S for the measurement of alternating current electrical active energy in 50 Hz or 60 Hz networks and it applies to their type tests only.
This document applies to electricity metering equipment designed to:
• measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC;
• have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays;
• operate with integrated or detached indicating displays, or without an indicating display;
• be installed in a specified matching socket or rack;
• optionally, provide additional functions other than those for measurement of electrical energy.
This document does not apply to:
• meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC;
• meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series) when tested without such transformers;
• metering systems comprising multiple devices physically remote from one another.
• portable meters;
• meters used in rolling stock, vehicles, ships and airplanes;
• laboratory and meter test equipment;
• reference standard meters;
• data interfaces to the register of the meter;
• matching sockets or racks used for installation of electricity metering equipment;
• any additional functions provided in electrical energy meters.
This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering)
This second edition cancels and replaces the first edition published in 2003 and its amendment 1: 2016. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) Removed all meter safety requirements; the meter safety requirements are covered in IEC 62052-31: 2015.
b) Moved the descriptions of all general requirements and test methods from IEC 62053-21: 2003, IEC 62053-22: 2003, IEC 62053-23: 2003, IEC 62053-24: 2003 to IEC 62052-11:2020; IEC 62053-21:2020, IEC 62053-22:2020, IEC 62053-23:2020, IEC 62053-24:2020 contain only accuracy class specific requirements.
c) Added new requirements and tests concerning:
1) active energy meters of accuracy class 0,1S;
2) measurement uncertainty and repeatability (7.3, 7.8);
3) influence of fast load current variations (9.4.12);
4) immunity to conducted differential current disturbances in the 2 kHz to 150 kHz frequency range (9.3.8)
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
2021-02-25: TC Off confirmed: can be published without link to legislation as agreed by BT D162/C064, link removed
2019-12-02: NEXT ACTION: TC to prepare ZZ
2019-12-02: TC decision to further process document
2019-01-28 - Assessment is missing.
- Amendment13 pagesEnglish languagesale 10% offe-Library read for1 day
NEW!IEC 60730-2-8:2018 is available as IEC 60730-2-8:2018 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 60730-2-8:2018 applies to electrically operated water valves for use in, on or in association with equipment for household and similar use, including heating, air-conditioning and similar applications. The equipment can use electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof. This document is applicable to electrically operated water valves for building automation within the scope of ISO 16484. This document also applies to automatic electrically operated water valves for equipment that can be used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications. This document does not apply to electrically operated water valves intended exclusively for industrial process applications unless explicitly mentioned in the relevant equipment standard. This document applies to electrically operated water valves powered by primary or secondary batteries, requirements for which are contained within the standard, including Annex V. This document does not cover the prevention of contamination of drinking water as a result of contact with materials. This document applies to the inherent safety, to the operating values, operating times and operating sequences where such are associated with equipment safety, and to the testing of automatic electrical control devices used in, on or in association with, household and similar equipment. This document contains requirements for electrical features of water valves and requirements for mechanical features of valves that affect their intended operation. This document is also applicable to electrically operated water valves for appliances within the scope of the IEC 60335 series of standards. This document does not apply to:
- electrically operated water valves of nominal connection size above DN 50;
- electrically operated water valves for admissible nominal pressure rating above 1,6 MPa;
- food dispensers;
- detergent dispensers;
- steam valves;
- electrically operated water valves designed exclusively for industrial applications. This document applies to electrically operated water valves, responsive to or controlling such characteristics as temperature, pressure, passage of time, humidity, light, electrostatic effects, flow, or liquid level, current, voltage, acceleration, or combinations thereof. This document also applies to actuators and to valve bodies which are designed to be fitted to each other. This document applies to individual valves, valves utilized as part of a system and valves mechanically integral with multi-functional controls having non-electrical outputs. This document applies to AC or DC powered electrically operated water valves with a rated voltage not exceeding 690 V AC or 600 V DC. This document does not take into account the response value of an automatic action of a valve, if such a response value is dependent upon the method of mounting the valve in the equipment. Where a response value is of significant purpose for the protection of the user, or surroundings, the value defined in the appropriate equipment standard or as determined by the manufacturer shall apply. This document applies also to electrically operated water valves incorporating electronic devices, requirements for which are contained in
- Standard51 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61000-6-3:2020 is a generic EMC emission standard applicable only if no relevant dedicated product or product family EMC emission standard has been published. This part of IEC 61000 for emission requirements applies to electrical and electronic equipment intended for use at residential (see 3.1.14) locations. This part of IEC 61000 also applies to electrical and electronic equipment intended for use at other locations that do not fall within the scope of IEC 61000-6-8 or IEC 61000-6-4. The intention is that all equipment used in the residential, commercial and light-industrial environments are covered by IEC 61000-6-3 or IEC 61000-6-8. If there is any doubt the requirements in IEC 61000-6-3 apply. The conducted and radiated emission requirements in the frequency range up to 400 GHz are considered essential and have been selected to provide an adequate level of protection of radio reception in the defined electromagnetic environment. Not all disturbance phenomena have been included for testing purposes but only those considered relevant for the equipment intended to operate within the locations included within this document. The emission requirements in this document are not intended to be applicable to the intentional transmissions and their harmonics from a radio transmitter as defined by the ITU. This third edition cancels and replaces the second edition published in 2006 and its Amendment 1:2010. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) alternative method for measuring conducted emissions on DC ports;
b) limits and requirements applicable only to equipment intended to be used in residential locations;
c) more stringent limits for DC power ports.
NOTE 1 Safety considerations are not covered by this document.
NOTE 2 In special cases, situations will arise where the levels specified in this document will not offer adequate protection; for example where a sensitive receiver is used in close proximity to an equipment. In these instances, special mitigation measures can be employed. NOTE 3 Disturbances generated in fault conditions of equipment are not covered by this document.
NOTE 4 As the requirements in this document are more stringent or equivalent to those requirements in IEC 61000-6-4 and IEC 61000-6-8, equipment fulfilling the requirements of this document comply with the requirements of IEC 61000-6-4 and IEC 61000-6-8.
- Standard30 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62020-1:2020 applies to residual current monitors for household and similar purposes, having rated operational voltages and a rated voltage of the monitored circuit not exceeding 440 V AC and rated currents not exceeding 125 A. This first edition cancels and replaces IEC 62020:1998 and IEC 62020:1998/AMD1:2003. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: – definition of Type F and Type B RCM; – marking of Type F and Type B RCM; – introduction of a new subclause, REF _Ref521411992 \r \h \* MERGEFORMAT 8.20 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003500320031003400310031003900390032000000 ; – modification of REF _Ref521412027 \r \h \* MERGEFORMAT 9.7 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003500320031003400310032003000320037000000 ; – update of REF _Ref521412044 \r \h \* MERGEFORMAT 9.9 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003500320031003400310032003000340034000000 ; – modification of REF _Ref521412054 \r \h \* MERGEFORMAT 9.14 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003500320031003400310032003000350034000000 ; – modification of
- Standard119 pagesEnglish languagesale 10% offe-Library read for1 day
2021-02-25: TC Off confirmed: can be published without link to legislation as agreed by BT D162/C064, link removed
2019-12-02: NEXT ACTION: TC to prepare ZZ
2019-12-02: TC decision to further process document
2019-01-28 - Assessment is missing.
- Amendment13 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62053-24:2020 applies only to static var-hour meters of accuracy classes 0,5S, 1S, 1, 2 and 3 for the measurement of alternating current electrical reactive energy in 50 Hz or 60 Hz networks and it applies to their type tests only. This document uses a conventional definition of reactive energy where the reactive power and energy is calculated from the fundamental frequency components of the currents and voltages only. This document applies to electricity metering equipment designed to: • measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC; • have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays; • operate with integrated or detached indicating displays, or without an indicating display; • be installed in a specified matching socket or rack; • optionally, provide additional functions other than those for measurement of electrical energy. Meters designed for operation with low power instrument transformers (LPITs as defined in the IEC 61869 series) may be considered as compliant with this document only if such meters and their LPITs are tested together and meet the requirements for directly connected meters. This document does not apply to: • meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC; • meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series) when tested without such transformers; • metering systems comprising multiple devices (except LPITs) physically remote from one another; • portable meters; • meters used in rolling stock, vehicles, ships and airplanes; • laboratory and meter test equipment; • reference standard meters; • data interfaces to the register of the meter; • matching sockets or racks used for installation of electricity metering equipment; • any additional functions provided in electrical energy meters. This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering). This second edition cancels and replaces the first edition published in 2014 and its amendment 1:2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: see Annex E
- Standard25 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62053-22:2020 applies only to transformer operated static watt-hour meters of accuracy classes 0,1 S, 0,2 S and 0,5 S for the measurement of alternating current electrical active energy in 50 Hz or 60 Hz networks and it applies to their type tests only. This document applies to electricity metering equipment designed to: • measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC; • have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays; • operate with integrated or detached indicating displays, or without an indicating display; • be installed in a specified matching socket or rack; • optionally, provide additional functions other than those for measurement of electrical energy. This document does not apply to: • meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC; • meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series) when tested without such transformers; • metering systems comprising multiple devices physically remote from one another. • portable meters; • meters used in rolling stock, vehicles, ships and airplanes; • laboratory and meter test equipment; • reference standard meters; • data interfaces to the register of the meter; • matching sockets or racks used for installation of electricity metering equipment; • any additional functions provided in electrical energy meters. This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering) This second edition cancels and replaces the first edition published in 2003 and its amendment 1: 2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) Removed all meter safety requirements; the meter safety requirements are covered in IEC 62052-31: 2015. b) Moved the descriptions of all general requirements and test methods from IEC 62053-21: 2003, IEC 62053-22: 2003, IEC 62053-23: 2003, IEC 62053-24: 2003 to IEC 62052-11:2020; IEC 62053-21:2020, IEC 62053-22:2020, IEC 62053-23:2020, IEC 62053-24:2020 contain only accuracy class specific requirements. c) Added new requirements and tests concerning: 1) active energy meters of accuracy class 0,1S; 2) measurement uncertainty and repeatability (7.3, 7.8); 3) influence of fast load current variations (9.4.12); 4) immunity to conducted differential current disturbances in the 2 kHz to 150 kHz frequency range (9.3.8)
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62053-23:2020 applies only to static var-hour meters of accuracy classes 2 and 3 for the measurement of alternating current electrical reactive energy in 50 Hz or 60 Hz networks and it applies to their type tests only. For practical reasons, this document is based on a conventional definition of reactive energy for sinusoidal currents and voltages containing the fundamental frequency only. This document applies to electricity metering equipment designed to: • measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC; • have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays; • operate with integrated or detached indicating displays, or without an indicating display; • be installed in a specified matching socket or rack; • optionally, provide additional functions other than those for measurement of electrical energy. Meters designed for operation with low power instrument transformers (LPITs as defined in the IEC 61869 series) may be considered as compliant with this document only if such meters and their LPITs are tested together and meet the requirements for directly connected meters. This document does not apply to: • meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC; • meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series) when tested without such transformers; • metering systems comprising multiple devices (except LPITs) physically remote from one another; • portable meters; • meters used in rolling stock, vehicles, ships and airplanes; • laboratory and meter test equipment; • reference standard meters; • data interfaces to the register of the meter; • matching sockets or racks used for installation of electricity metering equipment; • any additional functions provided in electrical energy meters. This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering). This second edition cancels and replaces the first edition published in 2003 and its amendment 1:2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) Removed all meter safety requirements; the meter safety requirements are covered in IEC 62052-31:2015. b) Replaced Ib with In; Ib is no longer used when referencing directly connected meters. c) Moved the descriptions of all general requirements and test methods from IEC 62053-21: 2003, IEC 62053-22: 2003, IEC 62053-23: 2003, IEC 62053-24: 2003 to IEC 62052-11:2020; IEC 62053-21:2020, IEC 62053-22:2020, IEC 62053-23:2020, IEC 62053-24:2020 contain only accuracy class specific requirements. d) Added new requirements and tests concerning: 1) measurement uncertainty and repeatability (7.3, 7.8); 2) influence of fast load current variations (9.4.12); 3) immunity to conducted differential current disturbances in the 2 kHz to 150 kHz frequency range (9.3.8). e) Meters designed for operation with low power instrument transformers (LPITs) may be tested for compliance with this document as directly connected meters. The reactive energy accuracy classes 2 and 3 defined in IEC 62053-23 have also been added to IEC 62053-24. The TC13
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62053-21:2020 applies only to static watt-hour meters of accuracy classes 0,5, 1 and 2 for the measurement of alternating current electrical active energy in 50 Hz or 60 Hz networks and it applies to their type tests only. This document applies to electricity metering equipment designed to: • measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC; • have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays; • operate with integrated or detached indicating displays, or without an indicating display; • be installed in a specified matching socket or rack; • optionally, provide additional functions other than those for measurement of electrical energy. Meters designed for operation with low power instrument transformers (LPITs as defined in the IEC 61869 series) may be tested for compliance with this document only if such meters and their LPITs are tested together and meet the requirements for directly connected meters. This document does not apply to: • meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC; • meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series) when tested without such transformers; • metering systems comprising multiple devices (except LPITs) physically remote from one another; • portable meters; • meters used in rolling stock, vehicles, ships and airplanes; • laboratory and meter test equipment; • reference standard meters; • data interfaces to the register of the meter; • matching sockets or racks used for installation of electricity metering equipment; • any additional functions provided in electrical energy meters. This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering). This second edition cancels and replaces the first edition published in 2003 and its amendment 1:2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) Removed all meter safety requirements; the meter safety requirements are covered in IEC 62052-31: 2015. b) Replaced Ib with In; Ib is no longer used when referencing directly connected meters. c) Moved the descriptions of all general requirements and test methods from IEC 62053-21: 2003, IEC 62053-22: 2003, IEC 62053-23: 2003, IEC 62053-24: 2003 to IEC 62052-11:2020; IEC 62053-21:2020, IEC 62053-22:2020, IEC 62053-23:2020, IEC 62053-24:2020 contain only accuracy class specific requirements. d) Added new requirements and tests concerning: 1) measurement uncertainty and repeatability (7.3, 7.8); 2) influence of fast load current variations (9.4.12); 3) immunity to conducted differential current disturbances in the 2 kHz to 150 kHz frequency range (9.3.8). e) Meters designed for operation with low power instrument transformers (LPITs) may be tested for compliance with this document as directly connected meters.
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62052-11:2020 (E) specifies requirements and associated tests, with their appropriate conditions for type testing of AC and DC electricity meters. This document details functional, mechanical, electrical and marking requirements, test methods, and test conditions, including immunity to external influences covering electromagnetic and climatic environments. This document applies to electricity metering equipment designed to: • measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC, or 1 500 V DC; • have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays; • operate with integrated displays (electromechanical or static meters); • operate with detached indicating displays, or without an indicating display (static meters only); • be installed in a specified matching sockets or racks; • optionally, provide additional functions other than those for measurement of electrical energy. Meters designed for operation with Low Power Instrument Transformers (LPITs as defined in the IEC 61869 series) may be tested for compliance with this document and the relevant IEC 62053 series documents only if such meters and their LPITs are tested together as directly connected meters. This document is also applicable to auxiliary input and output circuits, operation indicators, and test outputs of equipment for electrical energy measurement. This document also covers the common aspects of accuracy testing such as reference conditions, repeatability and measurement of uncertainty. This document does not apply to: • meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC, or 1 500 V DC; • meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series of standards) when tested without such transformers; • metering systems comprising multiple devices (except of LPITs) physically remote from one another; • portable meters; • meters used in rolling stock, vehicles, ships and airplanes; • laboratory and meter test equipment; • reference standard meters; • data interfaces to the register of the meter; • matching sockets or racks used for installation of electricity metering equipment; • any additional functions provided in electrical energy meters. This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering). This second edition cancels and replaces the first edition published in 2003, and its amendment 1:2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) Removed all meter safety requirements; the meter safety requirements are covered in IEC 62052-31:2015; b) Included requirements for meter power consumption and voltage requirements from IEC 62053-61; IEC 62053-61 is withdrawn; c) Included requirements for meter symbols from IEC 62053-52; IEC 62053-52 is withdrawn; d) Included requirements for meter pulse output devices from IEC 62053-31; IEC 62053-31 is withdrawn; e) Added new requirements and tests including: meters with detached indicating displays, and meters without indicating displays, meter sealing provisions; measurement uncertainty and repeatability; time-keeping accuracy; type tes
- Standard125 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61000-6-3:2020 is a generic EMC emission standard applicable only if no relevant dedicated product or product family EMC emission standard has been published. This part of IEC 61000 for emission requirements applies to electrical and electronic equipment intended for use at residential (see 3.1.14) locations. This part of IEC 61000 also applies to electrical and electronic equipment intended for use at other locations that do not fall within the scope of IEC 61000-6-8 or IEC 61000-6-4. The intention is that all equipment used in the residential, commercial and light-industrial environments are covered by IEC 61000-6-3 or IEC 61000-6-8. If there is any doubt the requirements in IEC 61000-6-3 apply. The conducted and radiated emission requirements in the frequency range up to 400 GHz are considered essential and have been selected to provide an adequate level of protection of radio reception in the defined electromagnetic environment. Not all disturbance phenomena have been included for testing purposes but only those considered relevant for the equipment intended to operate within the locations included within this document. The emission requirements in this document are not intended to be applicable to the intentional transmissions and their harmonics from a radio transmitter as defined by the ITU. This third edition cancels and replaces the second edition published in 2006 and its Amendment 1:2010. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) alternative method for measuring conducted emissions on DC ports; b) limits and requirements applicable only to equipment intended to be used in residential locations; c) more stringent limits for DC power ports. NOTE 1 Safety considerations are not covered by this document. NOTE 2 In special cases, situations will arise where the levels specified in this document will not offer adequate protection; for example where a sensitive receiver is used in close proximity to an equipment. In these instances, special mitigation measures can be employed. NOTE 3 Disturbances generated in fault conditions of equipment are not covered by this document. NOTE 4 As the requirements in this document are more stringent or equivalent to those requirements in IEC 61000-6-4 and IEC 61000-6-8, equipment fulfilling the requirements of this document comply with the requirements of IEC 61000-6-4 and IEC 61000-6-8.
- Standard30 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60947-1:2020 applies, when required by the relevant product standard, to low-voltage switchgear and controlgear hereinafter referred to as "equipment" or “device” and intended to be connected to circuits, the rated voltage of which does not exceed 1 000 V AC or 1 500 V DC.
This document states the general rules and common safety requirements for low-voltage switchgear and controlgear, including:
- definitions;
- characteristics;
- information supplied with the equipment;
- normal service, mounting and transport conditions, decommissioning and dismantling;
- constructional and performance requirements;
- verification of characteristics and performance;
- energy efficiency aspects (see Annex V);
- environmental aspects.
This sixth edition cancels and replaces the fifth edition published in 2007, Amendment 1:2010 and Amendment 2:2014. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
– DC values testing improvement;
– update of EMC tests;
– Annex B deletion;
– update of requirements for environmental tests (Table Q.1);
– improvement of Annex R (new examples);
– deletion of digital input Type 2, and introduction of Type 3 in Annex S;
– example for materials declaration (Annex W);
– new Annex X (co-ordination between short-circuit protective devices associated in the same circuit) created.
- Standard292 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard309 pagesFrench languagesale 10% offe-Library read for1 day
- Standard – translation298 pagesSlovenian languagesale 10% offe-Library read for1 day
Specifies particular requirements for the type test of newly manufactured indoor electronic ripple control receivers for the reception and interpretation of pulses of a single audio frequency superimposed on the voltage of the electricity distribution network and for the execution of the corresponding switching operations. In this system the mains frequency is generally used to synchronize the transmitter and receivers. Neither the control frequency nor the encoding are standardized in this standard.
- Amendment6 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60947-1:2020 applies, when required by the relevant product standard, to low-voltage switchgear and controlgear hereinafter referred to as "equipment" or “device” and intended to be connected to circuits, the rated voltage of which does not exceed 1 000 V AC or 1 500 V DC. This document states the general rules and common safety requirements for low-voltage switchgear and controlgear, including: - definitions; - characteristics; - information supplied with the equipment; - normal service, mounting and transport conditions, decommissioning and dismantling; - constructional and performance requirements; - verification of characteristics and performance; - energy efficiency aspects (see Annex V); - environmental aspects. This sixth edition cancels and replaces the fifth edition published in 2007, Amendment 1:2010 and Amendment 2:2014. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: – DC values testing improvement; – update of EMC tests; – Annex B deletion; – update of requirements for environmental tests (Table Q.1); – improvement of Annex R (new examples); – deletion of digital input Type 2, and introduction of Type 3 in Annex S; – example for materials declaration (Annex W); – new Annex X (co-ordination between short-circuit protective devices associated in the same circuit) created.
- Standard292 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard309 pagesFrench languagesale 10% offe-Library read for1 day
- Standard – translation298 pagesSlovenian languagesale 10% offe-Library read for1 day
Specifies general requirements for the type test of newly manufactured indoor tariff and load control equipment, like electronic ripple control receivers and time switches that are used to control electrical loads, multi-tariff registers and maximum demand indicator devices.
- Amendment16 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60947-5-1:2016 is available as IEC 60947-5-1:2016 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition. IEC 60947-5-1:2016 applies to control circuit devices and switching elements intended for controlling, signalling, interlocking, etc., of switchgear and controlgear. It applies to control circuit devices having a rated voltage not exceeding 1 000 V a.c. (at a frequency not exceeding 1 000 Hz) or 600 V d.c. This fourth edition cancels and replaces the third edition published in 2003 and its Amendment 1:2009. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) update of normative references; b) update and restructuration of subclauses in 7.1; c) addition of material requirements and test; d) udpate of EMC requirements; e) clarification of requirements and update of 8.2; f) addition of requirements for screwless-type clamping units; g) udpate of existing Tables 4 and 5; h) addition of new Tables 6, 7, 8 and 9; i) addition of a new Figure 10 ; j) addition of a new Annex N. This publication is to be read in conjunction with IEC 60947-1:2007.
- Standard119 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60947-2:2016 is available as IEC 60947-2:2016 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition. IEC 60947-2:2016 applies to circuit-breakers, the main contacts of which are intended to be connected to circuits, the rated voltage of which does not exceed 1 000 V a.c. or 1 500 V d.c.; it also contains additional requirements for integrally fused circuit-breakers. This fifth edition cancels and replaces the fourth edition published in 2006, Amendment 1:2009 and Amendment 2:2013. This edition constitutes a technical revision. This edition includes the following significant additions with respect to the previous edition: - tests for verification of selectivity in Annex A (see A.5.3); - critical load current tests for d.c. circuit-breakers (see 8.3.9); - new Annex P for circuit-breakers for use in photovoltaic applications; - new Annex R for residual-current circuit-breakers with automatic reclosing functions.
- Standard249 pagesEnglish languagesale 10% offe-Library read for1 day
NEW!IEC 60730-2-8:2018 is available as IEC 60730-2-8:2018 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 60730-2-8:2018 applies to electrically operated water valves for use in, on or in association with equipment for household and similar use, including heating, air-conditioning and similar applications. The equipment can use electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof. This document is applicable to electrically operated water valves for building automation within the scope of ISO 16484. This document also applies to automatic electrically operated water valves for equipment that can be used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications. This document does not apply to electrically operated water valves intended exclusively for industrial process applications unless explicitly mentioned in the relevant equipment standard. This document applies to electrically operated water valves powered by primary or secondary batteries, requirements for which are contained within the standard, including Annex V. This document does not cover the prevention of contamination of drinking water as a result of contact with materials. This document applies to the inherent safety, to the operating values, operating times and operating sequences where such are associated with equipment safety, and to the testing of automatic electrical control devices used in, on or in association with, household and similar equipment. This document contains requirements for electrical features of water valves and requirements for mechanical features of valves that affect their intended operation. This document is also applicable to electrically operated water valves for appliances within the scope of the IEC 60335 series of standards. This document does not apply to: - electrically operated water valves of nominal connection size above DN 50; - electrically operated water valves for admissible nominal pressure rating above 1,6 MPa; - food dispensers; - detergent dispensers; - steam valves; - electrically operated water valves designed exclusively for industrial applications. This document applies to electrically operated water valves, responsive to or controlling such characteristics as temperature, pressure, passage of time, humidity, light, electrostatic effects, flow, or liquid level, current, voltage, acceleration, or combinations thereof. This document also applies to actuators and to valve bodies which are designed to be fitted to each other. This document applies to individual valves, valves utilized as part of a system and valves mechanically integral with multi-functional controls having non-electrical outputs. This document applies to AC or DC powered electrically operated water valves with a rated voltage not exceeding 690 V AC or 600 V DC. This document does not take into account the response value of an automatic action of a valve, if such a response value is dependent upon the method of mounting the valve in the equipment. Where a response value is of significant purpose for the protection of the user, or surroundings, the value defined in the appropriate equipment standard or as determined by the manufacturer shall apply. This document applies also to electrically operated water valves incorporating electronic devices, requirements for which are contained in
- Standard51 pagesEnglish languagesale 10% offe-Library read for1 day
2020-11-24: EC formal rejection for citation under EMCD
2019-11-13: D164/C065: BT approved the Annex ZA and Annexes ZZ for LVD and EMC and asked CCMC to make the standard available without further delay with the inclusion of the approves Annexes.
- Amendment129 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard applies to emission and immunity aspects of EMC for electrical and electronic apparatus and systems intended for use in railway fixed installations for power supply. This includes the power feed to the apparatus, the apparatus itself with its protective control circuits, trackside items such as switching stations, power autotransformers, booster transformers, substation power switchgear and power switchgear to other longitudinal and local supplies. Filters operating at railway system voltage (for example, for harmonic suppression or power factor correction) are not included in this standard since each site has special requirements. Filters would normally have separate enclosures with separate rules for access. If electromagnetic limits are required, these will appear in the specification for the equipment. If a port is intended to transmit or receive for the purpose of radio communication (intentional radiators, e.g. transponder systems), then the radiated emission requirement in this standard are not intended to be applicable to the intentional transmission from a radio-transmitter as defined by the ITU. The frequency range considered is from DC to 400 GHz. No measurements need to be performed at frequencies where no requirement is specified. Emission and immunity limits are given for items of apparatus which are situated: a) within the boundary of a substation which delivers electric power to a railway; b) beside the track for the purpose of controlling or regulating the railway power supply, including power factor correction; c) along the track for the purpose of supplying electrical power to the railway other than by means of the conductors used for contact current collection, and associated return conductors. Included are high voltage feeder systems within the boundary of the railway which supply substations at which the voltage is reduced to the railway system voltage; d) beside the track for controlling or regulating electric power supplies to ancillary railway uses. This category includes power supplies to marshalling yards, maintenance depots and stations; e) various other non-traction power supplies from railway sources which are shared with railway traction. The immunity levels given in this standard apply for: - vital equipment such as protection devices; - equipment having connections to the traction power conductors; - apparatus inside the 3 m zone; - ports of apparatus inside the 10 m zone with connection inside the 3 m zone; - ports of apparatus inside the 10 m zone with cable length > 30 m. Apparatus and systems which are in an environment which can be described as residential, commercial or light industry, even when placed within the physical boundary of the railway substation, shall comply with EN 61000 6 1:2007 for immunity and EN 61000 6 3:2007 for emission requirements. Excluded from the immunity requirements of this standard is power supply apparatus which is intrinsically immune to the tests defined in Tables 1 to 6. NOTE An example is an 18 MVA 230 kV to 25 kV power supply transformer. These specific provisions are to be used in conjunction with the general provisions in EN 50121 1. This part of the standard covers requirements for both apparatus and fixed installations. The sections for fixed installations are not relevant for CE marking.
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard – translation24 pagesSlovenian languagesale 10% offe-Library read for1 day
This European Standard specifies the emission and immunity requirements for all types of rolling stock. It covers traction stock, hauled stock and trainsets including urban vehicles for use in city streets. This European standard specifies the emission limits of the rolling stock to the outside world. The scope of this part of the standard ends at the interface of the rolling stock with its respective energy inputs and outputs. In the case of locomotives, trainsets, trams etc., this is the current collector (pantograph, shoe gear). In the case of hauled stock, this is the AC or DC auxiliary power connector. However, since the current collector is part of the traction stock, it is not entirely possible to exclude the effects of this interface with the power supply line. The slow moving test has been designed to minimize these effects. There may be additional compatibility requirements within the railway system identified in the EMC plan (e.g. as specified in EN 50238). Basically, all apparatus to be integrated into a vehicle meet the requirements of EN 50121-3-2. In exceptional cases, where apparatus meets another EMC Standard, but full compliance with EN 50121-3-2 is not demonstrated, EMC is ensured by adequate integration measures of the apparatus into the vehicle system and/or by an appropriate EMC analysis and test which justifies deviating from EN 50121-3-2. Electromagnetic interference concerning the railway system as a whole is dealt with in EN 50121-2. These specific provisions are to be used in conjunction with the general provisions in EN 50121-1. The frequency range considered is from 0 Hz (DC) to 400 GHz. No measurements need to be performed at frequencies where no requirement is specified.
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard applies to signalling and telecommunication apparatus that is installed inside the railway environment. Signalling and telecommunication apparatus mounted in vehicles is covered by FprEN 50121 3 2:2016, signalling and telecommunication apparatus installed inside the substation and connected to substation equipment is covered by FprEN 50121 5:2016. This European Standard specifies limits for emission and immunity and provides performance criteria for signalling and telecommunications (S&T) apparatus (including power supply systems belonging to S&T) which may interfere with other apparatus inside the railway environment, or increase the total emissions for the railway environment and so risk causing Electro-Magnetic Interference (EMI) to apparatus outside the railway system. The requirements specified given in this standard apply for: — vital equipment such as interlocking or command and control; — apparatus inside the 3 m zone; — ports of apparatus inside the 10 m zone with connection inside the 3 m zone; — ports of apparatus inside the 10 m zone with cable length > 30 m. Other apparatus not covered by at least one of these given cases should be in compliance with EN 61000 6 2. If a port is intended to transmit or receive for the purpose of radio communication (intentional radiators, e.g. transponder systems), then the radiated emission requirement in this standard are not intended to be applicable to the intentional transmission from a radio-transmitter as defined by the ITU. Immunity limits do not apply in the exclusion bands as defined in the corresponding EMC related standard for radio equipment. The standard does not specify basic personal safety requirements for apparatus such as protection against electric shock, unsafe operation, insulation co-ordination and related dielectric tests. The requirements were developed for and are applicable to this set of apparatus when operating under normal conditions. Fault conditions of the apparatus have not been taken into account. The frequency range considered is from DC to 400 GHz. No measurements need to be performed at frequencies where no requirement is specified. For products in the scope of EN 61000 3 2, EN 61000 3 3, EN 61000 3 11 or EN 61000 3 12 the requirements of those standards also apply. These specific provisions are to be used in conjunction with the general provisions in FprEN 50121 1:2016. The immunity and emission levels do not of themselves guarantee that the integration of apparatus will necessarily be satisfactory. The standard cannot cover all the possible configurations of the apparatus, but the test levels are sufficient to achieve satisfactory EMC in the majority of cases.
- Standard17 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard applies to emission and immunity aspects of EMC for electrical and electronic apparatus intended for use on railway rolling stock. EN 50121-3-2 applies for the integration of apparatus on rolling stock. The frequency range considered is from DC to 400 GHz. No measurements need to be performed at frequencies where no requirement is specified. The application of tests shall depend on the particular apparatus, its configuration, its ports, its technology and its operating conditions. This standard takes into account the internal environment of the railway rolling stock and the external environment of the railway, and interference to the apparatus from equipment such as hand-held radio-transmitters. If a port is intended to transmit or receive for the purpose of radio communication (intentional radiators, e.g. transponder systems), then the radiated emission requirement in this standard is not intended to be applicable to the intentional transmission from a radio-transmitter as defined by the ITU. Immunity limits do not apply in the exclusion bands as defined in the corresponding EMC related standard for radio equipment. This standard does not apply to transient emissions when starting or stopping the apparatus. The objective of this standard is to define limits and test methods for electromagnetic emissions and immunity test requirements in relation to conducted and radiated disturbances. These limits and tests represent essential electromagnetic compatibility requirements. Emission requirements have been selected so as to ensure that disturbances generated by the apparatus operated normally on railway rolling stock do not exceed a level which could prevent other apparatus from operating as intended. The emission limits given in this standard take precedence over emission requirements for individual apparatus on board the rolling stock given in other standards. Likewise, the immunity requirements have been selected so as to ensure an adequate level of immunity for rolling stock apparatus. The levels do not however cover all cases which may occur with an extremely low probability of occurrence in any location. Specific requirements which deviate from this standard shall be specified. Test requirements are specified for each port considered. These specific provisions are to be used in conjunction with the general provisions in EN 50121-1.
- Standard24 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61000-6-4:2018 is also available as IEC 61000-6-4:2018 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
\r\n
\r\nIEC 61000-6-4:2018 for emission requirements applies to electrical and electronic equipment intended for use within the environment existing at industrial (see 3.1.12) locations. This document does not apply to equipment that fall within the scope of IEC 61000-6-3. The environments encompassed by this document cover both indoor and outdoor locations. Emission requirements in the frequency range 9 kHz to 400 GHz are covered in this document and have been selected to provide an adequate level of protection of radio reception in the defined electromagnetic environment. No measurement needs to be performed at frequencies where no requirement is specified. These requirements are considered essential to provide an adequate level of protection to radio services. Not all disturbance phenomena have been included for testing purposes but only those considered relevant for the equipment intended to operate within the environments included within this document. Requirements are specified for each port considered. This generic EMC emission standard is to be used where no applicable product or product-family EMC emission standard is available. This third edition cancels and replaces the second edition published in 2006 and Amendment 1:2010 This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
\r\na) possible future requirements on DC ports;
\r\nb) possible future radiated polarity specific emission limits within a FAR;
\r\nc) the definition of which average detector is used for emission measurements at frequencies above 1GHz and that results using a peak detector are acceptable for all measurements;
\r\nd) the definition of different EUT test arrangements.
\r\nKeywords: emission standard for industrial environments
- Standard31 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62026-1:2019 is available as IEC 62026-1:2019 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 62026-1:2019 applies to interfaces between low-voltage switchgear, controlgear, and controllers (e.g. programmable controllers, personal computers, etc.). This document does not apply to higher level industrial communication networks that have become known as fieldbuses and are considered by IEC subcommittee 65C. This third edition cancels and replaces the second edition published in 2007. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) additional requirements for safety information and instructions, including the measures to be taken, if any, for achieving EMC compliance;
b) EMC immunity requirements aligned with current IEC 61000-6 series of standards. Radiated radio-frequency electromagnetic fields test level increased to 6 GHz;
c) EMC emissions requirements aligned with current CISPR 11 publication.
- Standard17 pagesEnglish languagesale 10% offe-Library read for1 day





