This document specifies ranges, construction, performances, output characteristics and testing of rotary displacement gas meters (hereinafter referred to as RD meters or simply meters) for gas volume measurement.
This document applies to rotary displacement gas meters used to measure the volume of fuel gases of at least the 1st, 2nd and 3rd gas families, the composition of which is specified in EN 437:2021, at a maximum working pressure up to and including 20 bar over an ambient and gas temperature range of at least −10 °C to +40 °C.
This document applies to meters that are installed in locations with vibration and shocks of low significance (class M1) and in
-   closed locations (indoor or outdoor with protection) with condensing or with non-condensing humidity
or,
-   open locations (outdoor without any covering) with condensing humidity or with non-condensing humidity,
and in locations with electromagnetic disturbances (class E1 and E2). The standard applies to mechanical meters with mechanical index, electronic devices are not covered by this standard.
Unless otherwise specified in this standard:
-   all pressures used are gauge;
-   all influence quantities, except the one under test, are kept relatively constant at their reference value.
This document applies to meters with a maximum allowable pressure PS and the volume V of less than 6 000 bar · L or with a product of PS and DN of less than 3 000 bar.
This document is to be used for both pattern approval and individual meter testing. Cross-reference tables are given in:
-   Annex A for the tests that need to be undertaken for pattern approval;
-   Annex B for individual meter testing.
Some parts of this standard cover meters with mechanical index only.
The risk philosophy adopted in this standard is based on the analysis of hazards including pressure. The standard applies principles to eliminate or reduce hazards. Where these hazards cannot be eliminated appropriate protection measures are specified.

  • Standard
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies ranges, construction, performances, output characteristics and testing of rotary displacement gas meters (hereinafter referred to as RD meters or simply meters) for gas volume measurement.
This document applies to rotary displacement gas meters used to measure the volume of fuel gases of at least the 1st, 2nd and 3rd gas families, the composition of which is specified in EN 437:2021, at a maximum working pressure up to and including 20 bar over an ambient and gas temperature range of at least −10 °C to +40 °C.
This document applies to meters that are installed in locations with vibration and shocks of low significance (class M1) and in
-   closed locations (indoor or outdoor with protection) with condensing or with non-condensing humidity
or,
-   open locations (outdoor without any covering) with condensing humidity or with non-condensing humidity,
and in locations with electromagnetic disturbances (class E1 and E2). The standard applies to mechanical meters with mechanical index, electronic devices are not covered by this standard.
Unless otherwise specified in this standard:
-   all pressures used are gauge;
-   all influence quantities, except the one under test, are kept relatively constant at their reference value.
This document applies to meters with a maximum allowable pressure PS and the volume V of less than 6 000 bar · L or with a product of PS and DN of less than 3 000 bar.
This document is to be used for both pattern approval and individual meter testing. Cross-reference tables are given in:
-   Annex A for the tests that need to be undertaken for pattern approval;
-   Annex B for individual meter testing.
Some parts of this standard cover meters with mechanical index only.
The risk philosophy adopted in this standard is based on the analysis of hazards including pressure. The standard applies principles to eliminate or reduce hazards. Where these hazards cannot be eliminated appropriate protection measures are specified.

  • Standard
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document applies to water meters used to meter the volume of cold potable water and hot water flowing through a fully charged, closed conduit. These water meters incorporate devices which indicate the integrated volume.
This document specifies criteria for the selection of single, combination and concentric water meters, associated fittings, installation, special requirements for meters, and the first operation of new or repaired meters to ensure accurate constant measurement and reliable reading of the meter.
In addition to meters based on mechanical principles, this document also applies to water meters based on electrical or electronic principles, and to water meters based on mechanical principles incorporating electronic devices, used to measure the volume of cold potable water and hot water. It also applies to electronic ancillary devices. Ancillary devices are optional. However, national or international regulations may make some ancillary devices mandatory in relation to the utilization of the water meter.
The recommendations of this document apply to water meters, irrespective of technology, defined as integrating measuring instruments determining the volume of water flowing through them.
NOTE            Any national regulations apply in the country of use.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document applies to water meters used to meter the volume of cold potable water and hot water flowing through a fully charged, closed conduit. These water meters incorporate devices which indicate the integrated volume.
This document specifies criteria for the selection of single, combination and concentric water meters, associated fittings, installation, special requirements for meters, and the first operation of new or repaired meters to ensure accurate constant measurement and reliable reading of the meter.
In addition to meters based on mechanical principles, this document also applies to water meters based on electrical or electronic principles, and to water meters based on mechanical principles incorporating electronic devices, used to measure the volume of cold potable water and hot water. It also applies to electronic ancillary devices. Ancillary devices are optional. However, national or international regulations may make some ancillary devices mandatory in relation to the utilization of the water meter.
The recommendations of this document apply to water meters, irrespective of technology, defined as integrating measuring instruments determining the volume of water flowing through them.
NOTE            Any national regulations apply in the country of use.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the metrological and technical requirements for water meters for cold potable water and hot water flowing through a fully charged, closed conduit. These water meters incorporate devices which indicate the accumulated volume.
In addition to water meters based on mechanical principles, this document applies to devices based on electrical or electronic principles, and mechanical principles incorporating electronic devices, used to measure the volume of cold potable water and hot water.
This document also applies to electronic ancillary devices. Ancillary devices are optional. However, it is possible for national or regional regulations to render some ancillary devices mandatory in relation to the utilization of water meters.
NOTE            Any national regulations apply in the country of use.

  • Standard
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to the type evaluation and initial verification testing of water meters for cold potable water and hot water as defined in ISO 4064-1:2024|OIML R 49‑1:2024. OIML Certificates of conformity can be issued for water meters under the scope of the OIML Certificate System, provided that this document, ISO 4064-1:2024|OIML R 49‑1:2024 and ISO 4064-3:2024|OIML R 49‑3:2024 are used in accordance with the rules of the system.
This document sets out details of the test programme, principles, equipment and procedures to be used for the type evaluation, and initial verification of a meter type.
The provisions of this document also apply to ancillary devices, if required by national regulations.
The provisions include requirements for testing the complete water meter and for testing the measurement transducer (including the flow or volume sensor) and the calculator (including the indicating device) of a water meter as separate units.

  • Standard
    114 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to the type evaluation and initial verification testing of water meters for cold potable water and hot water as defined in ISO 4064-1:2024|OIML R 49‑1:2024. OIML Certificates of conformity can be issued for water meters under the scope of the OIML Certificate System, provided that this document, ISO 4064-1:2024|OIML R 49‑1:2024 and ISO 4064-3:2024|OIML R 49‑3:2024 are used in accordance with the rules of the system.
This document sets out details of the test programme, principles, equipment and procedures to be used for the type evaluation, and initial verification of a meter type.
The provisions of this document also apply to ancillary devices, if required by national regulations.
The provisions include requirements for testing the complete water meter and for testing the measurement transducer (including the flow or volume sensor) and the calculator (including the indicating device) of a water meter as separate units.

  • Standard
    114 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the metrological and technical requirements for water meters for cold potable water and hot water flowing through a fully charged, closed conduit. These water meters incorporate devices which indicate the accumulated volume.
In addition to water meters based on mechanical principles, this document applies to devices based on electrical or electronic principles, and mechanical principles incorporating electronic devices, used to measure the volume of cold potable water and hot water.
This document also applies to electronic ancillary devices. Ancillary devices are optional. However, it is possible for national or regional regulations to render some ancillary devices mandatory in relation to the utilization of water meters.
NOTE            Any national regulations apply in the country of use.

  • Standard
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the measuring conditions, requirements and tests for the construction, performance and safety of class 1,0 axial and radial turbine gas meters with mechanical indicating devices, hereinafter referred to as a meter(s), having in-line pipe connections for gas flow measurement.
This document applies to turbine gas meters used to measure the volume of fuel gases of the 1st and 2nd gas families, the composition of which is specified in EN 437:2021, at maximum working pressures up to 420 bar, actual flow rates up to 25 000 m3/h over a gas temperature range of at least 40 K and for a climatic environmental temperature range of at least 50 K.
This document applies to meters that are installed in locations with vibration and shocks of low significance and in:
-   closed locations (indoor or outdoor with protection as specified by the manufacturer) with condensing or with non-condensing humidity;
or, if specified by the manufacturer,
-   open locations (outdoor without any covering) with condensing humidity or with non-condensing humidity;
and in locations with electromagnetic disturbances.
Unless otherwise specified in this document:
-   all pressures used are gauge;
-   all influence quantities, except the one under test, are kept relatively constant at their reference value.
Clauses 1 to 7 and Annex B are for design and type testing only, with the exception of 6.2.4.3, 6.2.5.3, 6.7.1.2.2 and 6.7.2.2.2. Annex C can be used to provide guidance on periodic tests during use. Clause 8 and Annexes D and E are for each meter prior to dispatch. Annex A is intended to be used for both type and individual testing. Annex F is intended to be used for individual testing. Annex G is intended to be used for design.

  • Standard
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the measuring conditions, requirements and tests for the construction, performance and safety of class 1,0 axial and radial turbine gas meters with mechanical indicating devices, hereinafter referred to as a meter(s), having in-line pipe connections for gas flow measurement.
This document applies to turbine gas meters used to measure the volume of fuel gases of the 1st and 2nd gas families, the composition of which is specified in EN 437:2021, at maximum working pressures up to 420 bar, actual flow rates up to 25 000 m3/h over a gas temperature range of at least 40 K and for a climatic environmental temperature range of at least 50 K.
This document applies to meters that are installed in locations with vibration and shocks of low significance and in:
-   closed locations (indoor or outdoor with protection as specified by the manufacturer) with condensing or with non-condensing humidity;
or, if specified by the manufacturer,
-   open locations (outdoor without any covering) with condensing humidity or with non-condensing humidity;
and in locations with electromagnetic disturbances.
Unless otherwise specified in this document:
-   all pressures used are gauge;
-   all influence quantities, except the one under test, are kept relatively constant at their reference value.
Clauses 1 to 7 and Annex B are for design and type testing only, with the exception of 6.2.4.3, 6.2.5.3, 6.7.1.2.2 and 6.7.2.2.2. Annex C can be used to provide guidance on periodic tests during use. Clause 8 and Annexes D and E are for each meter prior to dispatch. Annex A is intended to be used for both type and individual testing. Annex F is intended to be used for individual testing. Annex G is intended to be used for design.

  • Standard
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document applies only to static watt-hour meters of accuracy classes A, B and C for the measurement of direct current electrical active energy in DC systems and it applies to their type tests.
NOTE 1   For general requirements, such as construction, EMC, safety, dependability etc., see the relevant EN 62052 series or EN 62059 series.
This document applies to electricity metering equipment designed to:
-   measure and control electrical energy on DC electrical networks with voltages up to 1 500 V;
NOTE 2   Meters for unearthed DC supplies and meters for three-wire DC networks are within the scope of this document.
-   form a complete meter including the legally relevant display of measured values;
NOTE 3   Electrical energy meters constructed from separate parts as described in WELMEC Guide 11.7:2017 are included.
-   operate with integrated or detached legally relevant displays;
-   optionally, provide additional functions other than those for measurement of electrical energy.
They can be used for measuring DC electrical energy, amongst others, in the following application areas:
-   in EV (electrical vehicle) charging stations or in EV charging infrastructure (also called EVSE, electric vehicle supply equipment), if energy is measured on the DC side;
-   in solar PV (photovoltaic) systems where DC power generation is measured;
-   in low voltage DC networks for residential or commercial areas, if energy is measured on the DC side, including similar applications like information technology (IT) server farms or DC supply points for communication equipment;
-   in DC supply points for public transport networks (e.g. for trolleybuses);
-   in mobile applications on vehicles for e-road (electric road) systems.
Meters designed for operation with external DC instrument transformers, transducers or shunts can be tested for compliance with this document only if such meters and their transformers, transducers or shunts are tested together and meet the requirements for directly connected meters. Requirements in this document and in EN IEC 62052 11:20211 applying to meters designed for operation with DC LPITs also apply to meters designed for operation with external instrument transformers, transducers or shunts.
NOTE 4   Modern electricity meters typically contain additional functions such as measurement of voltage magnitude, current magnitude, power, etc.; measurement of power quality parameters; load control functions; delivery, time, test, accounting, recording functions; data communication interfaces and associated data security functions. The relevant standards for these functions could apply in addition to the requirements of this document. However, the requirements for such functions are outside the scope of this document.
NOTE 5   Product requirements for power metering and monitoring devices (PMDs) and measurement functions such as voltage magnitude, current magnitude, power, etc., are covered in EN IEC 61557-12:2022. However, devices compliant with EN IEC 61557-12:2022 are not intended to be used as billing meters unless they are also compliant with EN IEC 62052 11:20211 and this document.
NOTE 6   Requirements for DC power quality (PQ) instruments, DC PQ measuring techniques, and DC PQ instrument testing are under discussion and will be specified in other standards.
This document does not apply to:
—   portable meters;
NOTE 7   Portable meters are meters that are not permanently connected.
—   meters used in rolling stock (railway applications), ships and airplanes;
NOTE 8   DC meters for rolling stock are covered by other standards, e.g. by the EN 50463 series.
[...]

  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document applies only to static watt-hour meters of accuracy classes A, B and C for the measurement of direct current electrical active energy in DC systems and it applies to their type tests. NOTE 1 For general requirements, such as construction, EMC, safety, dependability etc., see the relevant EN 62052 series or EN 62059 series. This document applies to electricity metering equipment designed to: - measure and control electrical energy on DC electrical networks with voltages up to 1 500 V; NOTE 2 Meters for unearthed DC supplies and meters for three-wire DC networks are within the scope of this document. - form a complete meter including the legally relevant display of measured values; NOTE 3 Electrical energy meters constructed from separate parts as described in WELMEC Guide 11.7:2017 are included. - operate with integrated or detached legally relevant displays; - optionally, provide additional functions other than those for measurement of electrical energy. They can be used for measuring DC electrical energy, amongst others, in the following application areas: - in EV (electrical vehicle) charging stations or in EV charging infrastructure (also called EVSE, electric vehicle supply equipment), if energy is measured on the DC side; - in solar PV (photovoltaic) systems where DC power generation is measured; - in low voltage DC networks for residential or commercial areas, if energy is measured on the DC side, including similar applications like information technology (IT) server farms or DC supply points for communication equipment; - in DC supply points for public transport networks (e.g. for trolleybuses); - in mobile applications on vehicles for e-road (electric road) systems. Meters designed for operation with external DC instrument transformers, transducers or shunts can be tested for compliance with this document only if such meters and their transformers, transducers or shunts are tested together and meet the requirements for directly connected meters. Requirements in this document and in EN IEC 62052 11:20211 applying to meters designed for operation with DC LPITs also apply to meters designed for operation with external instrument transformers, transducers or shunts. NOTE 4 Modern electricity meters typically contain additional functions such as measurement of voltage magnitude, current magnitude, power, etc.; measurement of power quality parameters; load control functions; delivery, time, test, accounting, recording functions; data communication interfaces and associated data security functions. The relevant standards for these functions could apply in addition to the requirements of this document. However, the requirements for such functions are outside the scope of this document. NOTE 5 Product requirements for power metering and monitoring devices (PMDs) and measurement functions such as voltage magnitude, current magnitude, power, etc., are covered in EN IEC 61557-12:2022. However, devices compliant with EN IEC 61557-12:2022 are not intended to be used as billing meters unless they are also compliant with EN IEC 62052 11:20211 and this document. NOTE 6 Requirements for DC power quality (PQ) instruments, DC PQ measuring techniques, and DC PQ instrument testing are under discussion and will be specified in other standards. This document does not apply to: — portable meters; NOTE 7 Portable meters are meters that are not permanently connected. — meters used in rolling stock (railway applications), ships and airplanes; NOTE 8 DC meters for rolling stock are covered by other standards, e.g. by the EN 50463 series. [...]

  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies definitions, requirements and testing of additional functionalities for water meters, without metrological impact, in combination with Additional Functionality Devices (AFD) and in response to EU/EFTA Mandate M/441 EN. These AFDs are considered as “ancillary devices” as defined in EN ISO 4064-1:2017 and EN ISO 4064-4:2014.
This document does not cover the changing of metrological software within the meter or the upload/download of metrological software.
NOTE   A manufacturer can claim compliance only for additional functionalities described in this document. It is not mandatory that an AFD complies with all additional functionalities described herein.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies definitions, requirements and testing of additional functionalities for water meters, without metrological impact, in combination with Additional Functionality Devices (AFD) and in response to EU/EFTA Mandate M/441 EN. These AFDs are considered as “ancillary devices” as defined in EN ISO 4064-1:2017 and EN ISO 4064-4:2014.
This document does not cover the changing of metrological software within the meter or the upload/download of metrological software.
NOTE   A manufacturer can claim compliance only for additional functionalities described in this document. It is not mandatory that an AFD complies with all additional functionalities described herein.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable for the general requirements for thermal energy meters. Thermal energy meters are instruments intended for measuring the energy which in a heat-exchange circuit is absorbed (cooling) or given up (heating) by a liquid called the heat-conveying liquid. The thermal energy meter indicates the quantity of thermal energy in legal units.
This document covers meters for closed systems only, where the differential pressure over the thermal load is limited.
This document is not applicable to:
-   electrical safety requirements;
-   pressure safety requirements; and
-   surface mounted temperature sensors.

  • Standard
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies commissioning, operational monitoring and maintenance and applies to thermal energy meters. Thermal energy meters are instruments intended for measuring the energy which in a heat-exchange circuit is absorbed (cooling) or given up (heating) by a liquid called the heat-conveying liquid. The thermal energy meter indicates the quantity of thermal energy in legal units.
This document covers meters for closed systems only, where the differential pressure over the thermal load is limited.
This document is not applicable to:
-   electrical safety requirements;
-   pressure safety requirements; and
-   surface mounted temperature sensors.

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies pattern approval tests for thermal energy meters. Thermal energy meters are instruments intended for measuring the energy which in a heat-exchange circuit is absorbed (cooling) or given up (heating) by a liquid called the heat-conveying liquid. The thermal energy meter indicates the quantity of thermal energy in legal units.
This document covers meters for closed systems only, where the differential pressure over the thermal load is limited.
This document is not applicable to:
-   electrical safety requirements;
-   pressure safety requirements; and
-   surface mounted temperature sensors.

  • Standard
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies initial verification tests for thermal energy meters. Thermal energy meters are instruments intended for measuring the energy which in a heat-exchange circuit is absorbed (cooling) or given up (heating) by a liquid called the heat-conveying liquid. The thermal energy meter indicates the quantity of thermal energy in legal units.
This document covers meters for closed systems only, where the differential pressure over the thermal load is limited.
This document is not applicable to:
-   electrical safety requirements;
-   pressure safety requirements; and
-   surface mounted temperature sensors.

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to the constructional requirements for thermal energy meters. Thermal energy meters are instruments intended for measuring the energy which in a heat-exchange circuit is absorbed (cooling) or given up (heating) by a liquid called the heat-conveying liquid. The thermal energy meter indicates the quantity of thermal energy in legal units.
This document covers meters for closed systems only, where the differential pressure over the thermal load is limited.
This document is not applicable to:
-   electrical safety requirements;
-   pressure safety requirements; and
-   surface mounted temperature sensors.

  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable for the general requirements for thermal energy meters. Thermal energy meters are instruments intended for measuring the energy which in a heat-exchange circuit is absorbed (cooling) or given up (heating) by a liquid called the heat-conveying liquid. The thermal energy meter indicates the quantity of thermal energy in legal units.
This document covers meters for closed systems only, where the differential pressure over the thermal load is limited.
This document is not applicable to:
-   electrical safety requirements;
-   pressure safety requirements; and
-   surface mounted temperature sensors.

  • Standard
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies commissioning, operational monitoring and maintenance and applies to thermal energy meters. Thermal energy meters are instruments intended for measuring the energy which in a heat-exchange circuit is absorbed (cooling) or given up (heating) by a liquid called the heat-conveying liquid. The thermal energy meter indicates the quantity of thermal energy in legal units.
This document covers meters for closed systems only, where the differential pressure over the thermal load is limited.
This document is not applicable to:
-   electrical safety requirements;
-   pressure safety requirements; and
-   surface mounted temperature sensors.

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies initial verification tests for thermal energy meters. Thermal energy meters are instruments intended for measuring the energy which in a heat-exchange circuit is absorbed (cooling) or given up (heating) by a liquid called the heat-conveying liquid. The thermal energy meter indicates the quantity of thermal energy in legal units.
This document covers meters for closed systems only, where the differential pressure over the thermal load is limited.
This document is not applicable to:
-   electrical safety requirements;
-   pressure safety requirements; and
-   surface mounted temperature sensors.

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to the constructional requirements for thermal energy meters. Thermal energy meters are instruments intended for measuring the energy which in a heat-exchange circuit is absorbed (cooling) or given up (heating) by a liquid called the heat-conveying liquid. The thermal energy meter indicates the quantity of thermal energy in legal units.
This document covers meters for closed systems only, where the differential pressure over the thermal load is limited.
This document is not applicable to:
-   electrical safety requirements;
-   pressure safety requirements; and
-   surface mounted temperature sensors.

  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies pattern approval tests for thermal energy meters. Thermal energy meters are instruments intended for measuring the energy which in a heat-exchange circuit is absorbed (cooling) or given up (heating) by a liquid called the heat-conveying liquid. The thermal energy meter indicates the quantity of thermal energy in legal units.
This document covers meters for closed systems only, where the differential pressure over the thermal load is limited.
This document is not applicable to:
-   electrical safety requirements;
-   pressure safety requirements; and
-   surface mounted temperature sensors.

  • Standard
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document applies only to static watt-hour meters of accuracy classes A, B and C for the measurement of alternating current electrical active energy in 50 Hz or 60 Hz networks and it applies to their type tests.
NOTE 1   For general requirements, such as construction, EMC, safety, dependability etc., see the relevant EN 62052 series or EN 62059 series.
This document applies to electricity metering equipment designed to:
- measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC;
NOTE 2   For AC electricity meters, the voltage mentioned above is the line-to-neutral voltage derived from nominal voltages. See EN 62052-31:2016, Table 7. EN 62052 31:2016 covers AC voltages only up to 600 V and Ed. 2 of EN IEC 62052 31 will cover AC voltages up to 1000 V.
- have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays;
- operate with integrated or detached indicating displays;
- be installed in specified matching sockets or racks;
- optionally, provide additional functions other than those for measurement of electrical energy.
Meters designed for operation with low power instrument transformers (LPITs as defined in the EN 61869 series) can be tested for compliance with this document only if such meters and their LPITs are tested together and meet the requirements for directly connected meters.
NOTE 3   Modern electricity meters typically contain additional functions such as measurement of voltage magnitude, current magnitude, power, frequency, power factor, etc.; measurement of power quality parameters; load control functions; delivery, time, test, accounting, recording functions; data communication interfaces and associated data security functions. The relevant standards for these functions could apply in addition to the requirements of this document. However, the requirements for such functions are outside the scope of this document.
NOTE 4   Product requirements for power metering and monitoring devices (PMDs) and measurement functions such as voltage magnitude, current magnitude, power, frequency, etc., are covered in EN 61557-12:2008. However, devices compliant with EN 61557-12:2008 are not intended to be used as billing meters unless they are also compliant with the EN IEC 62052-11:2021/A11:2022 and EN 50470-3:2022 standards.
NOTE 5   Product requirements for power quality instruments (PQIs) are covered in EN 62586-1:2017. Requirements for power quality measurement techniques (functions) are covered in EN 61000-4-30:2015. Requirements for testing of the power quality measurement functions are covered in EN 62586-2:2017.
This document does not apply to:
- meters for which the line-to-neutral voltage derived from nominal voltages exceeds 1 000 V AC;
- meters intended for connection with low power instrument transformers (LPITs as defined in the EN 61869 series) when tested without such transformers;
- metering systems comprising multiple devices (except of LPITs) physically remote from one another;
- portable meters;
NOTE 6   Portable meters are meters that are not permanently connected.
- meters used in rolling stock, vehicles, ships and airplanes;
- laboratory and meter test equipment;
- reference standard meters;
- data interfaces to the register of the meter;
- matching sockets or racks used for installation of electricity metering equipment;
- any additional functions provided in electrical energy meters.
This document does not cover measures for the detection and prevention of fraudulent attempts to compromise meter’s performance (tampering).
[...]

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 62052 specifies requirements and associated tests, with their appropriate conditions for type testing of AC and DC electricity meters. This document details functional, mechanical, electrical and marking requirements, test methods, and test conditions, including immunity to external influences covering electromagnetic and climatic environments.

  • Amendment
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document applies only to static watt-hour meters of accuracy classes A, B and C for the measurement of alternating current electrical active energy in 50 Hz or 60 Hz networks and it applies to their type tests. NOTE 1 For general requirements, such as construction, EMC, safety, dependability etc., see the relevant EN 62052 series or EN 62059 series. This document applies to electricity metering equipment designed to: - measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC; NOTE 2 For AC electricity meters, the voltage mentioned above is the line-to-neutral voltage derived from nominal voltages. See EN 62052-31:2016, Table 7. EN 62052 31:2016 covers AC voltages only up to 600 V and Ed. 2 of EN IEC 62052 31 will cover AC voltages up to 1000 V. - have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays; - operate with integrated or detached indicating displays; - be installed in specified matching sockets or racks; - optionally, provide additional functions other than those for measurement of electrical energy. Meters designed for operation with low power instrument transformers (LPITs as defined in the EN 61869 series) can be tested for compliance with this document only if such meters and their LPITs are tested together and meet the requirements for directly connected meters. NOTE 3 Modern electricity meters typically contain additional functions such as measurement of voltage magnitude, current magnitude, power, frequency, power factor, etc.; measurement of power quality parameters; load control functions; delivery, time, test, accounting, recording functions; data communication interfaces and associated data security functions. The relevant standards for these functions could apply in addition to the requirements of this document. However, the requirements for such functions are outside the scope of this document. NOTE 4 Product requirements for power metering and monitoring devices (PMDs) and measurement functions such as voltage magnitude, current magnitude, power, frequency, etc., are covered in EN 61557-12:2008. However, devices compliant with EN 61557-12:2008 are not intended to be used as billing meters unless they are also compliant with the EN IEC 62052-11:2021/A11:2022 and EN 50470-3:2022 standards. NOTE 5 Product requirements for power quality instruments (PQIs) are covered in EN 62586-1:2017. Requirements for power quality measurement techniques (functions) are covered in EN 61000-4-30:2015. Requirements for testing of the power quality measurement functions are covered in EN 62586-2:2017. This document does not apply to: - meters for which the line-to-neutral voltage derived from nominal voltages exceeds 1 000 V AC; - meters intended for connection with low power instrument transformers (LPITs as defined in the EN 61869 series) when tested without such transformers; - metering systems comprising multiple devices (except of LPITs) physically remote from one another; - portable meters; NOTE 6 Portable meters are meters that are not permanently connected. - meters used in rolling stock, vehicles, ships and airplanes; - laboratory and meter test equipment; - reference standard meters; - data interfaces to the register of the meter; - matching sockets or racks used for installation of electricity metering equipment; - any additional functions provided in electrical energy meters. This document does not cover measures for the detection and prevention of fraudulent attempts to compromise meter’s performance (tampering). [...]

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 62052 specifies requirements and associated tests, with their appropriate conditions for type testing of AC and DC electricity meters. This document details functional, mechanical, electrical and marking requirements, test methods, and test conditions, including immunity to external influences covering electromagnetic and climatic environments.

  • Amendment
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the safety and performance requirements and tests methods for the components for supply systems. Their intended use is the supply with liquid fuel for one or more consuming units from one or more tanks.
This European Standard applies to pressurised, negative pressurised, unpressurised, underground, above ground, inside and/or outside systems to supply liquid fuels.
The components for supply systems covered by this standard are piping kits/systems and their components.
Not covered by this standard are items belonging to the consuming unit (e. g.: heating/cooling appliances in buildings) and items used for the mounting and support of components.
Not covered by this standard are items with the intended use of gas for building heating/cooling systems and any items of heating networks.
Not covered are items used for drainage (including highways) and disposal of other liquids and gaseous waste, supply of gases, pressure and vacuum systems, communications, sanitary and cleaning fixtures and storage fixtures.

  • Standard
    220 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    220 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements and tests for the construction, performance, safety and conformity of gas-volume electronic conversion devices associated to gas meters, used to measure volumes of fuel gases of the 1st and 2nd families according to EN 437.
This document is intended for type testing, the detailed relevant provisions of which are given in Annex A.
Only three kinds of conversion are treated in this document:
-   conversion as a function of temperature only (called T conversion);
-   conversion as a function of the pressure and of the temperature with constant compression factor (called PT conversion);
-   conversion as a function of the pressure, the temperature and taking into account the compression factor (called PTZ conversion).
This document is not relevant to temperature conversion integrated into gas meters which only indicate the converted volume.
Gas-volume conversion devices consist of a calculator and a temperature transducer or a calculator, a temperature transducer and a pressure transducer locally installed.
For application of this document, a conversion device may be, as a choice of the manufacturer, considered as a complete instrument (Type 1) or made of separate elements (Type 2), according to the definitions given in 3.1.20.1 and 3.1.20.2.
In this last case, the provisions concerning pressure transducers, temperature sensors and temperature transducers are given in Annexes B, C and D respectively.
Any conversion device can provide an error curve correction for a gas meter.
NOTE   When rendering an account to an end user the readings from the conversion device can be used in conjunction with the readings from a gas meter conforming to EN 1359, EN 12480, or EN 12261, as appropriate, or to any other appropriate and relevant international or national standard for gas meters, without prejudice of national regulations.

  • Standard
    122 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements and tests for the construction, performance, safety and conformity of gas-volume electronic conversion devices associated to gas meters, used to measure volumes of fuel gases of the 1st and 2nd families according to EN 437.
This document is intended for type testing, the detailed relevant provisions of which are given in Annex A.
Only three kinds of conversion are treated in this document:
-   conversion as a function of temperature only (called T conversion);
-   conversion as a function of the pressure and of the temperature with constant compression factor (called PT conversion);
-   conversion as a function of the pressure, the temperature and taking into account the compression factor (called PTZ conversion).
This document is not relevant to temperature conversion integrated into gas meters which only indicate the converted volume.
Gas-volume conversion devices consist of a calculator and a temperature transducer or a calculator, a temperature transducer and a pressure transducer locally installed.
For application of this document, a conversion device may be, as a choice of the manufacturer, considered as a complete instrument (Type 1) or made of separate elements (Type 2), according to the definitions given in 3.1.20.1 and 3.1.20.2.
In this last case, the provisions concerning pressure transducers, temperature sensors and temperature transducers are given in Annexes B, C and D respectively.
Any conversion device can provide an error curve correction for a gas meter.
NOTE   When rendering an account to an end user the readings from the conversion device can be used in conjunction with the readings from a gas meter conforming to EN 1359, EN 12480, or EN 12261, as appropriate, or to any other appropriate and relevant international or national standard for gas meters, without prejudice of national regulations.

  • Standard
    122 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2020-02-07: EC rejected for citation EMC
2018-09-12: positive assessments for MID and EMC.
2021: CLC legacy converted by DCLab NISOSTS

  • Amendment
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60086-1:2021 is available as IEC 60086-1:2021 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.

IEC 60086-1:2021 is intended to standardize primary batteries with respect to dimensions, nomenclature, terminal configurations, markings, test methods, typical performance, safety and environmental aspects. This document on one side specifies requirements for primary cells and batteries. On the other side, this document also specifies procedures of how requirements for these batteries are to be standardised. As a classification tool for primary batteries, this document specifies system letters, electrodes, electrolytes, and nominal as well as maximum open circuit voltage of electrochemical systems. The object of this part of IEC 60086 is to benefit primary battery users, device designers and battery manufacturers by ensuring that batteries from different manufacturers are interchangeable according to standard form, fit and function. Furthermore, to ensure compliance with the above, this part specifies standard test methods for testing primary cells and batteries.

  • Standard
    51 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the test gases, test pressures and categories of appliances relative to the use of gaseous fuels of the first, second and third families. It serves as a reference document in the specific standards for appliances.
The document makes recommendations for the use of the gases and pressures to be applied for the tests of appliances burning gaseous fuels.
NOTE   Procedures for tests are given in the corresponding appliance standards. The test gases and the test pressures specified in this standard are in principle intended to be used with all types of appliances.
However, the use of some test gases and test pressures may not be appropriate in the following cases:
-   appliances with nominal heat input greater than 300 kW;
-   appliances constructed on site;
-   appliances in which the final design is influenced by the user;
-   appliances constructed for use with high supply pressures (notably direct use of the saturated vapour pressure).
In these cases, the specific appliance standards may specify other test conditions in order to establish compliance with their requirements.

  • Standard
    57 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62052-11:2020 (E) specifies requirements and associated tests, with their appropriate conditions for type testing of AC and DC electricity meters. This document details functional, mechanical, electrical and marking requirements, test methods, and test conditions, including immunity to external influences covering electromagnetic and climatic environments.
This document applies to electricity metering equipment designed to:
• measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC, or 1 500 V DC;
• have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays;
• operate with integrated displays (electromechanical or static meters);
• operate with detached indicating displays, or without an indicating display (static meters only);
• be installed in a specified matching sockets or racks;
• optionally, provide additional functions other than those for measurement of electrical energy.
Meters designed for operation with Low Power Instrument Transformers (LPITs as defined in the IEC 61869 series) may be tested for compliance with this document and the relevant IEC 62053 series documents only if such meters and their LPITs are tested together as directly connected meters.
This document is also applicable to auxiliary input and output circuits, operation indicators, and test outputs of equipment for electrical energy measurement.
This document also covers the common aspects of accuracy testing such as reference conditions, repeatability and measurement of uncertainty.
This document does not apply to:
• meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC, or 1 500 V DC;
• meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series of standards) when tested without such transformers;
• metering systems comprising multiple devices (except of LPITs) physically remote from one another;
• portable meters;
• meters used in rolling stock, vehicles, ships and airplanes;
• laboratory and meter test equipment;
• reference standard meters;
• data interfaces to the register of the meter;
• matching sockets or racks used for installation of electricity metering equipment;
• any additional functions provided in electrical energy meters.
This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering).
This second edition cancels and replaces the first edition published in 2003, and its amendment 1:2016. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) Removed all meter safety requirements; the meter safety requirements are covered in IEC 62052-31:2015;
b) Included requirements for meter power consumption and voltage requirements from IEC 62053-61; IEC 62053-61 is withdrawn;
c) Included requirements for meter symbols from IEC 62053-52; IEC 62053-52 is withdrawn;
d) Included requirements for meter pulse output devices from IEC 62053-31; IEC 62053-31 is withdrawn;
e) Added new requirements and tests including: meters with detached indicating displays, and meters without indicating displays, meter sealing provisions; measurement uncertainty and repeatability; time-keeping accuracy; type tes

  • Standard
    125 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2021-02-25: TC Off confirmed: can be published without link to legislation as agreed by BT D162/C064, link removed
2019-12-02: NEXT ACTION: TC to prepare ZZ
2019-12-02: TC decision to further process document
2019-01-28 - Assessment is missing.

  • Amendment
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62052-11:2020 (E) specifies requirements and associated tests, with their appropriate conditions for type testing of AC and DC electricity meters. This document details functional, mechanical, electrical and marking requirements, test methods, and test conditions, including immunity to external influences covering electromagnetic and climatic environments. This document applies to electricity metering equipment designed to: • measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC, or 1 500 V DC; • have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays; • operate with integrated displays (electromechanical or static meters); • operate with detached indicating displays, or without an indicating display (static meters only); • be installed in a specified matching sockets or racks; • optionally, provide additional functions other than those for measurement of electrical energy. Meters designed for operation with Low Power Instrument Transformers (LPITs as defined in the IEC 61869 series) may be tested for compliance with this document and the relevant IEC 62053 series documents only if such meters and their LPITs are tested together as directly connected meters. This document is also applicable to auxiliary input and output circuits, operation indicators, and test outputs of equipment for electrical energy measurement. This document also covers the common aspects of accuracy testing such as reference conditions, repeatability and measurement of uncertainty. This document does not apply to: • meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC, or 1 500 V DC; • meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series of standards) when tested without such transformers; • metering systems comprising multiple devices (except of LPITs) physically remote from one another; • portable meters; • meters used in rolling stock, vehicles, ships and airplanes; • laboratory and meter test equipment; • reference standard meters; • data interfaces to the register of the meter; • matching sockets or racks used for installation of electricity metering equipment; • any additional functions provided in electrical energy meters. This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering). This second edition cancels and replaces the first edition published in 2003, and its amendment 1:2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) Removed all meter safety requirements; the meter safety requirements are covered in IEC 62052-31:2015; b) Included requirements for meter power consumption and voltage requirements from IEC 62053-61; IEC 62053-61 is withdrawn; c) Included requirements for meter symbols from IEC 62053-52; IEC 62053-52 is withdrawn; d) Included requirements for meter pulse output devices from IEC 62053-31; IEC 62053-31 is withdrawn; e) Added new requirements and tests including: meters with detached indicating displays, and meters without indicating displays, meter sealing provisions; measurement uncertainty and repeatability; time-keeping accuracy; type tes

  • Standard
    125 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2021-01-15 - JE- TC - Corrects the wording related to Formula (6) in 5.5.1.2.1.4, 5.5.1.2.2.3, 5.5.1.3.3, 5.5.1.4.3, 5.12.2.1.3, 5.12.2.2.3 and 5.19.20.4.3 + Consolidated text not in XML, as mother standard EN 12514:2020 was not prepared in XML

  • Corrigendum
    2 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2021-01-15 - JE- TC - Corrects the wording related to Formula (6) in 5.5.1.2.1.4, 5.5.1.2.2.3, 5.5.1.3.3, 5.5.1.4.3, 5.12.2.1.3, 5.12.2.2.3 and 5.19.20.4.3 + Consolidated text not in XML, as mother standard EN 12514:2020 was not prepared in XML

  • Corrigendum
    2 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60079-10-1:2020 is concerned with the classification of areas where flammable gas or vapour hazards may arise and may then be used as a basis to support the proper design, construction, operation and maintenance of equipment for use in hazardous areas.
It is intended to be applied where there may be an ignition hazard due to the presence of flammable gas or vapour, mixed with air, but it does not apply to:
a) mines susceptible to firedamp;
b) the processing and manufacture of explosives;
c) catastrophic failures or rare malfunctions which are beyond the concept of normality dealt with in this standard;
d) rooms used for medical purposes;
e) domestic premises;
f) where a hazard may arise due to the presence of combustible dusts or combustible flyings but the principles may be used in assessment of a hybrid mixture.
Flammable mists may form or be present at the same time as flammable vapour. In such case the strict application of the details in this document may not be appropriate. Flammable mists may also form when liquids not considered to be a hazard due to the high flash point are released under pressure. In these cases the classifications and details given in this document do not apply.
For the purpose of this document, an area is a three-dimensional region or space.
Atmospheric conditions include variations above and below reference levels of 101,3 kPa (1 013 mbar) and 20 °C (293 K), provided that the variations have a negligible effect on the explosion properties of the flammable substances.
In any site, irrespective of size, there may be numerous sources of ignition apart from those associated with equipment. Appropriate precautions will be necessary to ensure safety in this context. This standard is applicable with judgement for other ignition sources but in some applications other safeguards may also need to be considered. E.g. larger distances may apply for naked flames when considering hot work permits.
This document does not take into account the consequences of ignition of an explosive atmosphere except where a zone is so small that if ignition did occur it would have negligible consequences.
This third edition of IEC 60079-10-1 cancels and replaces the second edition, published in 2015, and constitutes a technical revision, see foreword for further details.

  • Standard
    115 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61000-4-3:2020 is applicable to the immunity requirements of electrical and electronic equipment to radiated electromagnetic energy. It establishes test levels and the required test procedures. The object of this document is to establish a common reference for evaluating the immunity of electrical and electronic equipment when subjected to radiated, radio-frequency electromagnetic fields. The test method documented in this part of IEC 61000 describes a consistent method to assess the immunity of an equipment or system against RF electromagnetic fields from RF sources not in close proximity to the EUT. The test environment is specified in Clause 6. NOTE 1 As described in IEC Guide 107, this is a basic EMC publication for use by product committees of the IEC. As also stated in Guide 107, the IEC product committees are responsible for determining whether this immunity test standard should be applied or not, and if applied, they are responsible for determining the appropriate test levels and performance criteria. TC 77 and its sub-committees are prepared to co-operate with product committees in the evaluation of the value of particular immunity tests for their products. NOTE 2 Immunity testing against RF sources in close proximity to the EUT is defined in IEC 61000-4-39. Particular considerations are devoted to the protection against radio-frequency emissions from digital radiotelephones and other RF emitting devices. NOTE 3 Test methods are defined in this part for evaluating the effect that electromagnetic radiation has on the equipment concerned. The simulation and measurement of electromagnetic radiation is not adequately exact for quantitative determination of effects. The test methods defined in this basic document have the primary objective of establishing an adequate reproducibility of testing configuration and repeatability of test results at various test facilities. This document is an independent test method. It is not possible to use other test methods as substitutes for claiming compliance with this document. This fourth edition cancels and replaces the third edition published in 2006, Amendment 1:2007 and Amendment 2:2010. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
- testing using multiple test signals has been described;
- additional information on EUT and cable layout has been added;
- the upper frequency limitation has been removed to take account of new services;
- the characterization of the field as well as the checking of power amplifier linearity of the immunity chain are specified.

  • Standard
    84 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method for assessing the resistance of paint coatings and varnishes (including wood stains) to separation from substrates when a right-angle lattice pattern is cut into the coating, penetrating through to the substrate. The property determined by this empirical test procedure depends, among other factors, on the adhesion of the coating to either the preceding coat or the substrate. This procedure is not, however, a means of measuring adhesion.
NOTE 1  Where a measurement of adhesion is required, see the method described in ISO 4624.
NOTE 2  Although the test is primarily intended for use in the laboratory, the test is also suitable for field testing.
The method described can be used either as a pass/fail test or, where circumstances are appropriate, as a six-step classification test. When applied to a multi-coat system, assessment of the resistance to separation of individual layers of the coating from each other can be made.
The test can be carried out on finished objects and/or on specially prepared test specimens.
Although the method is applicable to paint on hard (e.g. metal) and soft (e.g. wood and plaster) substrates, these different substrates need a different test procedure (see Clause 8).
The method is not suitable for coatings of total thickness greater than 250 µm or for textured coatings.
NOTE 3  The method, when applied to coatings designed to give a rough patterned surface, will give results which will show too much variation (see also ISO 16276-2).

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the safety and performance requirements and tests methods for the components for supply systems. Their intended use is the supply with liquid fuel for one or more consuming units from one or more tanks.
This European Standard applies to pressurised, negative pressurised, unpressurised, underground, above ground, inside and/or outside systems to supply liquid fuels.
The components for supply systems covered by this standard are piping kits/systems and their components.
Not covered by this standard are items belonging to the consuming unit (e. g.: heating/cooling appliances in buildings) and items used for the mounting and support of components.
Not covered by this standard are items with the intended use of gas for building heating/cooling systems and any items of heating networks.
Not covered are items used for drainage (including highways) and disposal of other liquids and gaseous waste, supply of gases, pressure and vacuum systems, communications, sanitary and cleaning fixtures and storage fixtures.

  • Standard
    220 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    220 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2021-03-25 CV: rejected for OJEU citation but corrigenda are out of EY scope
TAN - // IEC Corrigendum

  • Corrigendum
    3 pages
    English and French language
    sale 10% off
    e-Library read for
    1 day

TAN - // IEC Corrigendum

  • Corrigendum
    3 pages
    French language
    sale 10% off
    e-Library read for
    1 day

2019-10-29: D164/C050: Amendment to add Annex ZZ to EN 55032:2015 & enable citation in OJEU

  • Amendment
    3 pages
    English language
    sale 10% off
    e-Library read for
    1 day