29.240 - Power transmission and distribution networks
ICS 29.240 Details
Power transmission and distribution networks
Starkstromanlagen
Reseau de transport et de distribution de courant
Omrežja za prenos in distribucijo električne energije
General Information
e-Library Subscription
Create subscription and get permanent access to documents within 29.240 - Power transmission and distribution networks
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
IEC 61643-11:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages.
These devices are intended to be connected to AC power circuits and equipment rated up to 1 000 V RMS, the preferred frequencies taken into account in this document are 50/60 Hz. Other frequencies are not excluded. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents.
The test requirements provided by this document are based on the assumption that the SPD is connected to an AC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source or to a different frequency, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses).
This document can apply for railway applications, when related product standards do not exist for that area or for certain applications.
Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply.
NOTE 1 More information on risk assessment is provided in IEC Guide 116.
NOTE 2 Other exclusions based on national regulations are possible.
This edition includes the following significant technical changes with respect to the previous edition:
a) Specific requirements for SPDs for AC applications are now contained in this document, whereas the common requirements for all SPDs are now contained in IEC 61643-01;
b) Clarification on test application either to a complete SPD, to a "mode of protection", or to a complete "SPD assembly";
c) Additional measurement of voltage protection level on "combined modes of protection" between live conductors and PE;
d) Additional duty test for T1 and T2 SPDs with follow current to check variation of the follow current value at lower impulse currents;
e) Modified and amended short circuit current test requirements to better cover up to date internal SPD disconnector technologies;
f) Improved dielectric test requirements for the SPD's main circuits and added dielectric test requirements for "electrically separated circuits";
g) Additional clearance requirements for "electrically separated circuits".
The requirements of this document supplement, modify or replace certain of the general requirements contained in IEC 61643-01 and shall be read and applied together with the latest edition of IEC 61643-01, as indicated by the undated normative reference in Clause 2 of this document.
- Standard43 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment8 pagesEnglish languagesale 10% offe-Library read for1 day
IEC TR 63282-102:2025 assesses the existing technical requirements (by TC 64, TC 82, SyC LVDC) and close any gaps related to electric island LVDC power supply systems in rural or remote areas without electricity up to a maximum of 1 500 V only. Additionally, it covers the case of LVDC auxiliary power supply systems for ships.
Specific technical items for electric island LVDC systems are explained in this document. Rationale for the proposed voltage level, topology, power quality, etc. are given.
This document gives inputs to several TCs in charge of the standardization of different issues and coordinated by SyC LVDC.
- Technical report61 pagesEnglish languagesale 15% off
IEC 63382-1:2025 series specifies the management of distributed energy storage systems, composed of electrically chargeable vehicle batteries (ECV-DESS), which are handled by an aggregator/flexibility operator (FO) to provide energy flexibility services to grid operators.
IEC 63382-1:2025 describes the technical characteristics and architectures of ECV-DESS, including:
– EV charging stations configurations, comprising several AC-EVSEs and/or DC-EVSEs;
– individual EVs connected to grid via an EVSE and managed by an aggregator/FO.
The focus of this document is on the interface between the FO and the FCSBE and the data exchange at this interface, necessary to perform energy flexibility services (FS).
The data exchange between FO and FCSBE typically includes:
– flexibility service request and response;
– flexibility services parameters;
– EV charging station configuration and technical capabilities;
– credentials check of parties involved in the flexibility service;
– FS execution related notifications;
– event log, detailed service record, proof of work.
The exchange of credentials has the purpose to identify, authenticate and authorize the actors involved in the flexibility service transaction, to check the validity of a FS contract and to verify the technical capabilities of the system EV + CS, and conformity to applicable technical standards to provide the requested flexibility service.
This document also describes the technical requirements of ECV-DESS, the use cases, the information exchange between the EV charging station operator (CSO) and the aggregator/FO, including both technical and business data.
It covers many aspects associated to the operation of ECV-DESS, including:
– privacy issues consequent to GDPR application (general data protection regulation);
– cybersecurity issues;
– grid code requirements, as set in national guidelines, to include ancillary services, mandatory functions and remunerated services;
– grid functions associated to V2G operation, including new services, as fast frequency response;
– authentication/authorization/transactions relative to charging sessions, including roaming, pricing and metering information;
– management of energy transfers and reporting, including information interchange, related to power/energy exchange, contractual data, metering data;
– demand response, as smart charging (V1G).
It makes a distinction between mandatory grid functions and market driven services, taking into account the functions which are embedded in the FW control of DER smart inverters.
This document deals with use cases, requirements and architectures of the ECV-DESSs with the associated EV charging stations.
Some classes of energy flexibility services (FS) have been identified and illustrated in dedicated use cases:
– following a dynamic setpoint from FO;
– automatic execution of a droop curve provided by FO, according to local measurements of frequency, voltage and power;
– demand response tasks, stimulated by price signals from FO;
– fast frequency response.
Furthermore, some other more specific flexibility service use cases include:
– V2G for tertiary control with reserve market;
– V2H with dynamic pricing linked to the wholesale market price;
– distribution grid congestion by EV charging and discharging.
FS are performed under flexibility service contracts (FSC) which can be stipulated between:
– FO and EV owner (EVU or EV fleet manager);
– FO and CSP;
– FO and CSO.
Any flexibility service is requested by the aggregator/FO with a flexibility service request (FSR) communicated through the FCSBE interface to the available resources.
The actors EVU, CSO, CSP have always the right to choose opt-in or opt-out options in case of a FSR, unless it is mandatory for safety or grid stability reasons.
A use case shows how to discover flexibility service contract (FSC) holders.
This document describes many use cases, some of them are dedicated to special applications such as
- Standard196 pagesEnglish languagesale 15% off
- Standard215 pagesFrench languagesale 15% off
- Standard411 pagesEnglish and French languagesale 15% off
- Amendment8 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-11:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages. These devices are intended to be connected to AC power circuits and equipment rated up to 1 000 V RMS, the preferred frequencies taken into account in this document are 50/60 Hz. Other frequencies are not excluded. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents. The test requirements provided by this document are based on the assumption that the SPD is connected to an AC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source or to a different frequency, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses). This document can apply for railway applications, when related product standards do not exist for that area or for certain applications. Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply. NOTE 1 More information on risk assessment is provided in IEC Guide 116. NOTE 2 Other exclusions based on national regulations are possible. This edition includes the following significant technical changes with respect to the previous edition: a) Specific requirements for SPDs for AC applications are now contained in this document, whereas the common requirements for all SPDs are now contained in IEC 61643-01; b) Clarification on test application either to a complete SPD, to a "mode of protection", or to a complete "SPD assembly"; c) Additional measurement of voltage protection level on "combined modes of protection" between live conductors and PE; d) Additional duty test for T1 and T2 SPDs with follow current to check variation of the follow current value at lower impulse currents; e) Modified and amended short circuit current test requirements to better cover up to date internal SPD disconnector technologies; f) Improved dielectric test requirements for the SPD's main circuits and added dielectric test requirements for "electrically separated circuits"; g) Additional clearance requirements for "electrically separated circuits". The requirements of this document supplement, modify or replace certain of the general requirements contained in IEC 61643-01 and shall be read and applied together with the latest edition of IEC 61643-01, as indicated by the undated normative reference in Clause 2 of this document.
- Standard43 pagesEnglish languagesale 10% offe-Library read for1 day
This document applies to conductor car that are used to access overhead line conductors, shield wires or shield wires with integrated communication systems to undertake work involving rectification of defects and/or installing components and fittings. This document covers also bicycle type access equipment where it is applicable.
- Amendment7 pagesEnglish languagesale 10% offe-Library read for1 day
IEC TS 63346-2-3:2025 specifies common rules and requirements for the design of low voltage (LV) AC auxiliary power systems (APSs) intended to be installed in substations, mainly covering the configuration of AC power sources, system wiring, protection, electric equipment selection and physical layout.
For the purpose of interpreting this document, an AC APS in this document is considered as follows:
- with a nominal voltage up to and including 1 kV AC;
- providing LV AC power to substation AC loads.
Though it is discussed where necessary, AC loads as well as high voltage (HV) part is beyond the scope of this document.
Substations in this document refer to those which are part of an electrical system and contain equipment that either receives and distributes electrical energy or transforms voltages to the levels required by the loads they supply, or both.
- Technical specification31 pagesEnglish languagesale 15% off
HD 626 applies to cables of rated voltage U0/U(Um) = 0,6/1(1,2) kV used in overhead power distribution systems mainly for public distribution, of maximum system voltage not exceeding 1,2 kV. This part (Part 1) specifies the general requirements applicable to these cables, unless otherwise specified in the particular sections of this HD.
The objects of this Harmonisation Document are:
- to standardize cables that are safe and reliable when properly used and equipped with appropriate accessories, in relation to the technical requirements of the system of which they form a part,
- to state the characteristics and manufacturing requirements which have a direct or indirect bearing on safety,
- and to specify methods for checking conformity with those requirements.
- Standardization document377 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-21:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages.
These devices are intended to be connected to telecommunications and signalling networks, and equipment rated up to 1 000 V RMS and 1 500 V DC.
These telecommunications and signalling networks can also provide power on the same line, e.g. Power over Ethernet (PoE).
Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one voltage-limiting component (clamping or switching) and are intended to limit surge voltages and divert surge currents.
This second edition cancels and replaces the first edition published in 2000, Amendment1:2008 and Amendment 2:2012. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) New structure of IEC 61643-21 based on IEC 61643-01:2024;
b) Several safety requirements based on IEC 61643-01:2024 have been added.
This International Standard is to be used in conjunction with IEC 61643-01:2024.
- Standard85 pagesEnglish languagesale 15% off
- Standard92 pagesFrench languagesale 15% off
- Standard177 pagesEnglish and French languagesale 15% off
From this edition, the CLC TS 50654-2 is the adoption (identical) of the IEC TS 63291-2 (not covered by a parallel procedure).
This document defines aspects on planning, specification, and execution of multi-vendor HVDC grid systems also referred to as HVDC grids. The terms "HVDC grid systems" or "HVDC grids" are used in this document to describe HVDC systems for power transmission having more than two HVDC stations connected to a common DC circuit. The DC circuit can be of radial or meshed topology or a combination thereof. In this document, the term "HVDC grids" is used.
While this document focuses on requirements specific for HVDC grids, some requirements are considered applicable to all HVDC systems in general, i.e., including point-to-point HVDC systems. Existing IEC (e.g., IEC TR 63363-1 [1]), Cigre or other relevant documents have been used for reference as far as possible.
Corresponding to electric power transmission applications, this document is applicable to high voltage systems, i.e., those having typically nominal DC voltages higher than 50 kV with respect to earth are considered in this document.
NOTE While the physical principles of DC networks are basically voltage independent, the technical options for designing equipment get much wider with lower DC voltage levels, e.g. in the case of converters or switchgear.
This document covers technical aspects of:
• coordination of HVDC grid and AC systems,
• HVDC grid characteristics,
• HVDC grid control,
• HVDC grid protection,
• AC/DC converter stations,
• HVDC grid installations, including DC switching stations and HVDC transmission lines,
• studies and associated models,
• testing.
Beyond the scope of this document, the following content is proposed for future work:
• DC/DC converter stations.
- Technical specification93 pagesEnglish languagesale 10% offe-Library read for1 day
From this edition, the CLC TS 50654-1 is the adoption (identical) of the IEC TS 63291-1 (not covered by a parallel procedure).
This document contains guidelines on planning, specification, and execution of multi-vendor HVDC grid systems also referred to as HVDC grids. The terms "HVDC grid systems" or "HVDC grids" are used in this document to describe HVDC systems for power transmission having more than two HVDC stations connected to a common DC circuit. The DC circuit can be of radial or meshed topology or a combination thereof. In this document, the term "HVDC grids" is used.
While this document focuses on requirements specific for HVDC grids, some requirements are considered applicable to all HVDC systems in general, i.e., including point-to-point HVDC systems. Existing IEC (e.g. IEC TR 63363-1 [1]), Cigre or other relevant documents have been used for reference as far as possible.
Corresponding to electric power transmission applications, this document is applicable to high voltage systems, i.e. those having typically nominal DC voltages higher than 50 kV with respect to earth are considered in this document. NOTE While the physical principles of DC networks are basically voltage independent, the technical options for designing equipment get much wider with lower DC voltage levels, e.g. in the case of converters or switchgear.
This document covers technical aspects of:
• coordination of HVDC grid and AC systems,
• HVDC grid characteristics,
• HVDC grid control,
• HVDC grid protection,
• AC/DC converter stations,
• HVDC grid installations, including DC switching stations and HVDC transmission lines,
• studies and associated models,
• testing.
Beyond the scope of this document, the following content is proposed for future work:
• DC/DC converter stations.
- Technical specification136 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63380-3:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager.
This document specifies the application of relevant transport protocols; in this case, SPINE (smart premises interoperable neutral-message exchange), SHIP (smart home IP), and ECHONET Lite. Other communication protocols can be defined in future editions
- Standard184 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63380-2:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager. This document maps the generic use case functions defined in IEC 63380-1 to specific data model. This edition of this document defines specifically SPINE Resources and ECHONET Lite Resources mapped from the high-level use case functions defined in IEC 63380-1.
- Standard202 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62488-1:2025 applies to the planning of analogue (APLC), digital (DPLC) and hybrid analogue-digital (ADPLC) power line carrier communication systems operating over HV electric power networks. The object of this document is to establish the planning of the services and performance parameters for the operational requirements to transmit and receive data efficiently and reliably.
Such analogue and digital power line carrier systems are used by the different electricity supply industries and integrated into their communication infrastructure using common communication technologies such as radio links, fibre optic and satellite networks
This second edition cancels and replaces the first edition published in 2012. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) Complete revision of this edition with respect to the previous edition with the main focus on planning of analogue and digital power line carrier systems operating over HV power networks;
b) A general structure of a bidirectional point-to-multipoint APLC, DPLC or ADPLC link has been introduced;
c) Introduction of a new approach for global frequency planning.
- Standard108 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment76 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63380-3:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager. This document specifies the application of relevant transport protocols; in this case, SPINE (smart premises interoperable neutral-message exchange), SHIP (smart home IP), and ECHONET Lite. Other communication protocols can be defined in future editions
- Standard184 pagesEnglish languagesale 10% offe-Library read for1 day
From this edition, the CLC TS 50654-1 is the adoption (identical) of the IEC TS 63291-1 (not covered by a parallel procedure). This document contains guidelines on planning, specification, and execution of multi-vendor HVDC grid systems also referred to as HVDC grids. The terms "HVDC grid systems" or "HVDC grids" are used in this document to describe HVDC systems for power transmission having more than two HVDC stations connected to a common DC circuit. The DC circuit can be of radial or meshed topology or a combination thereof. In this document, the term "HVDC grids" is used. While this document focuses on requirements specific for HVDC grids, some requirements are considered applicable to all HVDC systems in general, i.e., including point-to-point HVDC systems. Existing IEC (e.g. IEC TR 63363-1 [1]), Cigre or other relevant documents have been used for reference as far as possible. Corresponding to electric power transmission applications, this document is applicable to high voltage systems, i.e. those having typically nominal DC voltages higher than 50 kV with respect to earth are considered in this document. NOTE While the physical principles of DC networks are basically voltage independent, the technical options for designing equipment get much wider with lower DC voltage levels, e.g. in the case of converters or switchgear. This document covers technical aspects of: • coordination of HVDC grid and AC systems, • HVDC grid characteristics, • HVDC grid control, • HVDC grid protection, • AC/DC converter stations, • HVDC grid installations, including DC switching stations and HVDC transmission lines, • studies and associated models, • testing. Beyond the scope of this document, the following content is proposed for future work: • DC/DC converter stations.
- Technical specification136 pagesEnglish languagesale 10% offe-Library read for1 day
From this edition, the CLC TS 50654-2 is the adoption (identical) of the IEC TS 63291-2 (not covered by a parallel procedure). This document defines aspects on planning, specification, and execution of multi-vendor HVDC grid systems also referred to as HVDC grids. The terms "HVDC grid systems" or "HVDC grids" are used in this document to describe HVDC systems for power transmission having more than two HVDC stations connected to a common DC circuit. The DC circuit can be of radial or meshed topology or a combination thereof. In this document, the term "HVDC grids" is used. While this document focuses on requirements specific for HVDC grids, some requirements are considered applicable to all HVDC systems in general, i.e., including point-to-point HVDC systems. Existing IEC (e.g., IEC TR 63363-1 [1]), Cigre or other relevant documents have been used for reference as far as possible. Corresponding to electric power transmission applications, this document is applicable to high voltage systems, i.e., those having typically nominal DC voltages higher than 50 kV with respect to earth are considered in this document. NOTE While the physical principles of DC networks are basically voltage independent, the technical options for designing equipment get much wider with lower DC voltage levels, e.g. in the case of converters or switchgear. This document covers technical aspects of: • coordination of HVDC grid and AC systems, • HVDC grid characteristics, • HVDC grid control, • HVDC grid protection, • AC/DC converter stations, • HVDC grid installations, including DC switching stations and HVDC transmission lines, • studies and associated models, • testing. Beyond the scope of this document, the following content is proposed for future work: • DC/DC converter stations.
- Technical specification93 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63380-2:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager. This document maps the generic use case functions defined in IEC 63380-1 to specific data model. This edition of this document defines specifically SPINE Resources and ECHONET Lite Resources mapped from the high-level use case functions defined in IEC 63380-1.
- Standard202 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-41:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages.
These devices are intended to be connected to DC power circuits and equipment rated up to 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents.
The test requirements provided by this document are based on the assumption that the SPD is connected to a DC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses).
This document can apply for railway applications, when related product standards do not exist for that area or for certain applications.
Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply.
NOTE 1 More information on risk assessment is provided in IEC Guide 116.
SPDs for PV applications are not covered by this document.
NOTE 2 Such SPDs for PV applications are covered by IEC 61643-31.
NOTE 3 Other exclusions based on national regulations are possible.
This International Standard is to be used in conjunction with IEC 61643-01.
- Standard33 pagesEnglish languagesale 10% offe-Library read for1 day
IEC TS 63042-103:2025, which is a Technical Specification, specifies the basic security and stability requirements for UHV AC transmission systems in planning and design, the security and stability criteria, and security and stability analysis method for the UHV AC transmission systems.
This document is applicable to power grids of UHV AC systems and their associated equipment and connected systems.
- Technical specification26 pagesEnglish languagesale 15% off
- Amendment8 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-41:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages. These devices are intended to be connected to DC power circuits and equipment rated up to 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents. The test requirements provided by this document are based on the assumption that the SPD is connected to a DC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses). This document can apply for railway applications, when related product standards do not exist for that area or for certain applications. Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply. NOTE 1 More information on risk assessment is provided in IEC Guide 116. SPDs for PV applications are not covered by this document. NOTE 2 Such SPDs for PV applications are covered by IEC 61643-31. NOTE 3 Other exclusions based on national regulations are possible. This International Standard is to be used in conjunction with IEC 61643-01.
- Standard33 pagesEnglish languagesale 10% offe-Library read for1 day
General
1.1 RO.1 General
(ncpt) This standard EN 50341-2-24 (Part 2-24) gives the requirements for design and construction of overhead electrical lines with nominal voltages exceeding A.C. 1 kV operating at 50 Hz frequency.
This Part 2-24 applies to new overhead electrical lines, as well as in the following cases:
- the extension of existing overhead electrical lines;
- the deviation of some portions of the existing overhead electrical lines in accordance with the provisions of technical regulations in force issued by the National Energy Regulatory Authority (see article 39 of ANRE Order 25/2016);
- new supports to be used for the replacement and/or relocation of existing supports.
This Part 2-24 is not applicable for the existing overhead electrical lines unless specifically required by Project Specification. The overhead electrical lines, that are in different stages of design or construction, can be completed in conformity with the standards in force at the beginning of project.
For the application of this standard for specific requirements relating to modernization, increasing safety and transport capacity of existing overhead electrical lines, reference shall be specified in the Project Specification. At the same time, the correlation between relevant regulations and associated standards shall be established in the Project Specifications.
The extension of existing electrical lines is considered as new overhead electrical lines, except the junction points that shall be detailed in the Project Specifications.
1.2 Field of application
1.2 RO.1 Overhead electrical lines having uninsulated, pre-insulated and insulated conductors
(ncpt) This Part 2-24 is applicable for the design and construction of overhead electrical lines with uninsulated, pre-insulated and insulated conductors where the internal and external clearances can be smaller than those specified in Part 1 (SR EN 50341-1:2013).
- Standard94 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61109:2025 applies to composite insulators for overhead lines consisting of a load-bearing cylindrical insulating solid core consisting of fibres - usually glass - in a resin-based matrix, a housing (surrounding the insulating core) made of polymeric material and metal end fittings permanently attached to the insulating core. Composite insulators covered by this document are intended for use as suspension/tension line insulators, but these insulators could occasionally be subjected to compression or bending, for example when used as interphase-spacers. Guidance on such loads is outlined in Annex C.
The object of this document is to:
- define the terms used,
- specify test methods,
- specify acceptance criteria.
This third edition cancels and replaces the second edition published in 2008. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
- extension of this document to apply both to AC and DC systems;
- modifications of Clause 3, Terms, definitions and abbreviations;
- removal of Clause 7, Hybrid insulators, from this document;
- modifications of tests procedures recently included in IEC 62217 (hydrophobicity transfer test, stress corrosion, water diffusion test on the core with housing);
- modifications on environmental conditions;
- modifications on classification of tests and include the relevance of the interfaces;
- clarification and modification of the parameters determining the need to repeat design and type tests;
- revision of Table 1;
- revision of electrical type tests;
- revision of re-testing procedure of sample test;
- addition of a new Annex D on electric field control for AC;
- addition of a new Annex E on typical sketch for composite insulators assembly;
- addition of a new Annex F on mechanical evaluation of the adhesion between core and housing;
- addition of a new Annex G on applicability of design- and type tests for DC applications.
- Standard56 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment8 pagesEnglish languagesale 10% offe-Library read for1 day
IEC TR 63575:2025 provides general guidelines on the performance of power electronic reactive power shunt compensators in high voltage alternating current systems. It includes terms, definitions, symbols and abbreviated terms, introduction, applications and performance.
- Technical report32 pagesEnglish languagesale 15% off
IEC 63380-2:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager. This document maps the generic use case functions defined in IEC 63380-1 to specific data model. This edition of this document defines specifically SPINE Resources and ECHONET Lite Resources mapped from the high-level use case functions defined in IEC 63380-1.
- Standard198 pagesEnglish languagesale 15% off
- Standard210 pagesFrench languagesale 15% off
- Standard408 pagesEnglish and French languagesale 15% off
IEC TR 62786-102:2025 provides principles and technical needs for the interconnection of the compressed air energy storage (CAES) system to the distribution network. It is suitable for the planning, design, operation and testing of CAES system interconnection to distribution networks. It includes the additional needs for the CAES system, such as connection scheme, grid-connected process and needs, response characteristics of active power to frequency, response characteristics of active power to current, response characteristics of active power to injecting mass flow, response characteristics of active power to pressure, selection of the point of connection (POC), electromagnetic compatibility (EMC) and power quality, communication and automation, monitoring and protection, immunity to disturbances, grid-connected testing needs, etc. This document will report response of active power to frequency, response of active power to current, response of active power to injecting mass flow, response of active power to pressure, response of reactive power to voltage, and grid-connected testing for distributed CAES system, as a supplement for IEC TS 62786-1:2023. This document reports the interface needs for connecting CAES system to distribution network operating at a nominal frequency of 50 Hz or 60 Hz.
- Technical report39 pagesEnglish languagesale 15% off
IEC 63380-3:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager.
This document specifies the application of relevant transport protocols; in this case, SPINE (smart premises interoperable neutral-message exchange), SHIP (smart home IP), and ECHONET Lite. Other communication protocols can be defined in future editions
- Standard180 pagesEnglish languagesale 15% off
- Standard197 pagesFrench languagesale 15% off
- Standard377 pagesEnglish and French languagesale 15% off
IEC 61643-11:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages.
These devices are intended to be connected to AC power circuits and equipment rated up to 1 000 V RMS, the preferred frequencies taken into account in this document are 50/60 Hz. Other frequencies are not excluded. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents.
The test requirements provided by this document are based on the assumption that the SPD is connected to an AC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source or to a different frequency, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses).
This document can apply for railway applications, when related product standards do not exist for that area or for certain applications.
Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply.
NOTE 1 More information on risk assessment is provided in IEC Guide 116.
NOTE 2 Other exclusions based on national regulations are possible.
This edition includes the following significant technical changes with respect to the previous edition:
a) Specific requirements for SPDs for AC applications are now contained in this document, whereas the common requirements for all SPDs are now contained in IEC 61643-01;
b) Clarification on test application either to a complete SPD, to a "mode of protection", or to a complete "SPD assembly";
c) Additional measurement of voltage protection level on "combined modes of protection" between live conductors and PE;
d) Additional duty test for T1 and T2 SPDs with follow current to check variation of the follow current value at lower impulse currents;
e) Modified and amended short circuit current test requirements to better cover up to date internal SPD disconnector technologies;
f) Improved dielectric test requirements for the SPD's main circuits and added dielectric test requirements for "electrically separated circuits";
g) Additional clearance requirements for "electrically separated circuits".
The requirements of this document supplement, modify or replace certain of the general requirements contained in IEC 61643-01 and shall be read and applied together with the latest edition of IEC 61643-01, as indicated by the undated normative reference in Clause 2 of this document.
- Standard84 pagesEnglish and French languagesale 15% off
IEC 61557-9:2023 specifies the requirements for the insulation fault location system (IFLS) that localizes insulation faults in any part of the system in unearthed IT AC systems and unearthed IT AC systems with galvanically connected DC circuits having nominal voltages up to 1 000 V AC, as well as in unearthed IT DC systems with voltages up to 1 500 V DC, independent of the measuring principle. IEC 61557-9:2023 cancels and replaces the third edition published in 2014. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) new terms and definitions on maximum admissible locating AC and DC currents and voltages;
b) the requirements on locating current and locating voltage have been revised;
c) performance requirements have been added;
d) the test requirements for locating current and locating voltage have been revised;
e) the structure of this document has been adapted to that of IEC 61557-1:2019;
f) the limit values under Clause A.2 were adapted to fit the changed test methods in 6.2.3.
- Standard38 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63380-1:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager.
This document specifies use cases, the sequences of information exchange and generic data models.
- Standard157 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63380-1:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager. This document specifies use cases, the sequences of information exchange and generic data models.
- Standard157 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-41:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages.
These devices are intended to be connected to DC power circuits and equipment rated up to 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents.
The test requirements provided by this document are based on the assumption that the SPD is connected to a DC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses).
This document can apply for railway applications, when related product standards do not exist for that area or for certain applications.
Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply.
NOTE 1 More information on risk assessment is provided in IEC Guide 116.
SPDs for PV applications are not covered by this document.
NOTE 2 Such SPDs for PV applications are covered by IEC 61643-31.
NOTE 3 Other exclusions based on national regulations are possible.
This International Standard is to be used in conjunction with IEC 61643-01.
- Standard63 pagesEnglish and French languagesale 15% off
IEC 61643-01: 2024 contains the common requirements for all SPDs. This document is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages, hereafter referred to as Surge Protective Devices (SPDs). SPDs are intended to be connected to circuits or equipment rated up to 1 000 V AC (RMS) or 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. SPDs contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents. This document, together with IEC 61643-11:— (second edition), cancels and replaces the first edition of IEC 61643-11 published in 2011. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the first edition of IEC 61643-11:
a) Clarification on test application either to a complete SPD, to a "mode of protection", or to a complete "SPD assembly";
b) Additional measurement of voltage protection level on "combined modes of protection" between live conductors and PE (see new Annex F);
c) Additional duty test for T1 SPD and T2 SPD with follow current to check for increased follow current at lower impulse current amplitude (see 9.3.5.5);
d) Modified and amended short circuit current test requirements to better cover up-to-date internal SPD disconnector technologies (see 9.3.6.3);
e) Improved dielectric test requirements for the SPD’s main circuits and added dielectric test requirements for "electrically separated circuits" (see 9.3.7 and 9.3.8);
f) Additional clearance requirements for "electrically separated circuits" (see 9.4.4);
g) Additional information and details for SPDs for DC installations.
- Standard119 pagesEnglish languagesale 10% offe-Library read for1 day
This document applies to conductor car that are used to access overhead line conductors, shield wires or shield wires with integrated communication systems to undertake work involving rectification of defects and/or installing components and fittings. This document covers also bicycle type access equipment where it is applicable.
- Standard31 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment11 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63380-1:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager.
This document specifies use cases, the sequences of information exchange and generic data models.
- Standard323 pagesEnglish and French languagesale 15% off
- Amendment11 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-01: 2024 contains the common requirements for all SPDs. This document is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages, hereafter referred to as Surge Protective Devices (SPDs). SPDs are intended to be connected to circuits or equipment rated up to 1 000 V AC (RMS) or 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. SPDs contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents. This document, together with IEC 61643-11:— (second edition), cancels and replaces the first edition of IEC 61643-11 published in 2011. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the first edition of IEC 61643-11: a) Clarification on test application either to a complete SPD, to a "mode of protection", or to a complete "SPD assembly"; b) Additional measurement of voltage protection level on "combined modes of protection" between live conductors and PE (see new Annex F); c) Additional duty test for T1 SPD and T2 SPD with follow current to check for increased follow current at lower impulse current amplitude (see 9.3.5.5); d) Modified and amended short circuit current test requirements to better cover up-to-date internal SPD disconnector technologies (see 9.3.6.3); e) Improved dielectric test requirements for the SPD’s main circuits and added dielectric test requirements for "electrically separated circuits" (see 9.3.7 and 9.3.8); f) Additional clearance requirements for "electrically separated circuits" (see 9.4.4); g) Additional information and details for SPDs for DC installations.
- Standard119 pagesEnglish languagesale 10% offe-Library read for1 day
IEC PAS 61980-6:2025 addresses communication and activities of magnetic field dynamic wireless power transfer (MF-D-WPT) systems. The power transfer takes place while the electric vehicle (EV) is in motion.
The requirements in this document are intended to be applied for MF-D-WPT systems according to IEC PAS 61980-5 and ISO 5474-6.
Supply device fulfilling the requirements in this document are intended to operate with EV devices fulfilling the requirements described in ISO 5474-6.
The aspects covered in this document include:
– operational and functional characteristics of the MF-D-WPT communication system and related activities
– operational and functional characteristics of the positioning system
The following aspects are under consideration for future documents:
– requirements for two- and three-wheel vehicles,
– requirements for bidirectional power transfer
- Technical specification76 pagesEnglish languagesale 15% off
IEC 63563-1:2025 introduces the Qi Specification, which applies to flat surface devices such as mobile phones and tablets that use up to 15 W of power
- Draft17 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63563-6:2025 defines the messaging between a Power Transmitter and a Power Receiver. The primary purpose of this messaging is to set up and control the power transfer. As a secondary purpose, it provides a transport mechanism for higher-level applications such as Authentication. The communications protocol comprises both the required order and timing relations of successive messages.
- Draft139 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63563-5:2025 defines the low-level (physical layer and the data link layer) formats of data bits, data bytes, and data packets. In addition, it provides requirements and guidelines for load modulation and frequency-shift keying.
- Draft23 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63563-8:2025 provides guidelines for detecting the presence of a Radio Frequency Identification (RFID) tag or Near Field Communication (NFC) card within the operating range of the Power Transmitter and preventing damage to the tag or card.
- Draft29 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63563-10:2025 defines MPP (Magnetic Power Profile), an extension to Qi v1.3 BPP (Baseline Power Profile). Manufacturers can use this specification to implement PTx and/or PRx that are interoperable.
- Draft164 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63563-7:2025 defines methods for ensuring that the power transfer proceeds without heating metal objects in the magnetic field of a Power Transmitter. Although the Power Transmitter may optionally use any of these methods, some of them require assistance by the Power Receiver.
- Draft49 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63563-9:2025 defines the architecture and application-level messaging for the Authentication of a Power Transmitter Product by a Power Receiver to ensure that the Power Transmitter Product is both Qi certified and the product of a registered manufacturer.
- Draft91 pagesEnglish languagesale 10% offe-Library read for1 day





