High voltage direct current (HVDC) grid systems and connected converter stations - Guideline and parameter lists for functional specifications - Part 2: Parameter lists

From this edition, the CLC TS 50654-2 is the adoption (identical) of the IEC TS 63291-2 (not covered by a parallel procedure). This document defines aspects on planning, specification, and execution of multi-vendor HVDC grid systems also referred to as HVDC grids. The terms "HVDC grid systems" or "HVDC grids" are used in this document to describe HVDC systems for power transmission having more than two HVDC stations connected to a common DC circuit. The DC circuit can be of radial or meshed topology or a combination thereof. In this document, the term "HVDC grids" is used. While this document focuses on requirements specific for HVDC grids, some requirements are considered applicable to all HVDC systems in general, i.e., including point-to-point HVDC systems. Existing IEC (e.g., IEC TR 63363-1 [1]), Cigre or other relevant documents have been used for reference as far as possible. Corresponding to electric power transmission applications, this document is applicable to high voltage systems, i.e., those having typically nominal DC voltages higher than 50 kV with respect to earth are considered in this document. NOTE While the physical principles of DC networks are basically voltage independent, the technical options for designing equipment get much wider with lower DC voltage levels, e.g. in the case of converters or switchgear. This document covers technical aspects of: • coordination of HVDC grid and AC systems, • HVDC grid characteristics, • HVDC grid control, • HVDC grid protection, • AC/DC converter stations, • HVDC grid installations, including DC switching stations and HVDC transmission lines, • studies and associated models, • testing. Beyond the scope of this document, the following content is proposed for future work: • DC/DC converter stations.

Hochspannungsgleichstrom-Netzsysteme und angeschlossene Stromrichterstationen - Leitfaden und Parameter-Listen für funktionale Spezifikationen - Teil 2: Parameter-Listen

Réseaux en courant continu à haute tension (CCHT) et postes de conversion connectés - Lignes directrices et listes de paramètres pour les spécifications fonctionnelles - Partie 2: Listes de paramètres

Sistemi visokonapetostnega enosmernega omrežja in priključene pretvorniške postaje - Smernice in seznam parametrov za funkcijsko specifikacijo - 2. del: Seznam parametrov

Ta dokument določa vidike načrtovanja, specifikacije in izvedbe sistemov visokonapetostnega enosmernega omrežja (HVDC) različnih ponudnikov, imenovanih tudi omrežja HVDC. Izraza »sistemi visokonapetostnega enosmernega omrežja« in »omrežja HVDC« se v tem dokumentu uporabljata za opis sistemov HVDC za prenos energije z več kot dvema postajama HVDC, ki sta priključeni v skupni enosmerni tokokrog. Enosmerni tokokrog lahko vključuje radialno ali mrežno topologijo oziroma kombinacijo obeh. V tem dokumentu se uporablja izraz »omrežja HVDC«.
Čeprav se ta dokument osredotoča na zahteve, ki so značilne za omrežja HVDC, nekatere zahteve veljajo za vse sisteme HVDC na splošno, vključno s sistemi HVDC od točke do točke. Kot referenca so bili v največji možni meri uporabljeni obstoječi standardi IEC (npr. IEC TR 63363-1 [1]), dokumenti Cigre oziroma drugi ustrezni dokumenti.
Skladno z aplikacijami prenosa električne energije so v tem dokumentu obravnavani visokonapetostni sistemi z nazivnimi enosmernimi napetostmi, ki so enake ali višje od 50 kV glede na zemljo.
OPOMBA: Čeprav so po fizikalnih načelih omrežja enosmernega toka načeloma neodvisna od napetosti, so tehnične možnosti oblikovanja opreme večje pri nizkih ravneh enosmernih napetosti, npr. pri pretvornikih ali stikalnih napravah.
Ta dokument zajema tehnične vidike:
• uskladitve omrežja HVDC in izmenično-tokovnih sistemov;
• značilnosti omrežja HVDC;
• krmiljenja omrežja HVDC;
• zaščite omrežja HVDC;,
• pretvorniških postaj AC/DC;
• namestitve omrežja HVDC, vključno s postajami za preklop enosmerne napetosti in daljnovodi HVDC;
• študij in povezanih modelov;
• preskušanja.
Naslednja vsebina ne spada na področje uporabe tega dokumenta in je predvidena za nadaljnje delo:
• pretvorniške postaje DC/DC.

General Information

Status
Published
Publication Date
11-Sep-2025
Current Stage
6060 - Document made available - Publishing
Start Date
12-Sep-2025
Due Date
17-Aug-2026
Completion Date
12-Sep-2025

Relations

Overview

CLC IEC/TS 63291-2:2025 - "High voltage direct current (HVDC) grid systems and connected converter stations - Guideline and parameter lists for functional specifications - Part 2: Parameter lists" is a Technical Specification that provides structured parameter lists and functional specification elements for planning, specifying and executing multi‑vendor HVDC grid systems (also called HVDC grids). Part 2 complements the guideline in CLC IEC/TS 63291-1 and is the CENELEC/CENELEC adoption of IEC/TS 63291-2. It targets high‑voltage DC transmission applications (nominal DC voltages typically above 50 kV, with IEC/TC 115 focus on voltages above 100 kV) and covers radial and meshed DC circuit topologies.

Key topics and requirements

This Technical Specification organizes parameters and expected functional requirements across domain areas including:

  • Coordination of HVDC grid and AC systems
    • Power flow optimisation, converter operational functions, and AC/DC interaction points.
  • HVDC grid characteristics
    • Topology (radial, meshed), availability/reliability attributes, DC voltages and insulation coordination, short‑circuit characteristics and steady‑state distortions.
  • HVDC grid control
    • Controller hierarchy, DC node voltage control, coordinated HVDC grid control, closed‑loop and open‑loop functions and information propagation.
  • HVDC grid protection
    • Protection zones, DC fault separation, converter and grid protection requirements and protection communications.
  • AC/DC converter stations
    • Station types, main circuit design aspects, control interfaces, operational modes, robustness, availability and testing.
  • Installations, studies and testing
    • Parameter lists for DC switching stations, transmission lines, modelling for studies, and test requirements.

The document provides standardized parameter names and lists to be used in functional specifications to ensure clarity in multi‑vendor projects, interoperability, and consistent validation/testing.

Applications and users

This specification is practical for:

  • Transmission system operators (TSOs) and distribution utilities planning HVDC grids
  • Project owners and planners preparing functional specifications for multi‑vendor procurement
  • HVDC converter and equipment manufacturers preparing compliance documentation
  • System integrators and engineering firms executing studies (power flow, short‑circuit, restoration)
  • Protection and control engineers defining protection zones, control hierarchies and test plans
  • Test laboratories and certification bodies validating HVDC installations

Using the standardized parameter lists accelerates procurement, reduces integration risk, and supports reproducible testing and commissioning.

Related standards

  • CLC IEC/TS 63291-1:2025 - Part 1: Guideline
  • IEC 62747 - Terminology for voltage‑sourced converters (VSC) for HVDC systems
  • IEC TR 63363-1 and other IEC/CIGRE references cited in the TS
  • Relevant AC and switchgear standards such as IEC 62271‑100

Keywords: HVDC grids, HVDC grid systems, converter stations, parameter lists, functional specifications, HVDC control, HVDC protection, multi‑vendor HVDC.

Technical specification
TS CLC IEC/TS 63291-2:2025
English language
93 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Frequently Asked Questions

CLC IEC/TS 63291-2:2025 is a technical specification published by CLC. Its full title is "High voltage direct current (HVDC) grid systems and connected converter stations - Guideline and parameter lists for functional specifications - Part 2: Parameter lists". This standard covers: From this edition, the CLC TS 50654-2 is the adoption (identical) of the IEC TS 63291-2 (not covered by a parallel procedure). This document defines aspects on planning, specification, and execution of multi-vendor HVDC grid systems also referred to as HVDC grids. The terms "HVDC grid systems" or "HVDC grids" are used in this document to describe HVDC systems for power transmission having more than two HVDC stations connected to a common DC circuit. The DC circuit can be of radial or meshed topology or a combination thereof. In this document, the term "HVDC grids" is used. While this document focuses on requirements specific for HVDC grids, some requirements are considered applicable to all HVDC systems in general, i.e., including point-to-point HVDC systems. Existing IEC (e.g., IEC TR 63363-1 [1]), Cigre or other relevant documents have been used for reference as far as possible. Corresponding to electric power transmission applications, this document is applicable to high voltage systems, i.e., those having typically nominal DC voltages higher than 50 kV with respect to earth are considered in this document. NOTE While the physical principles of DC networks are basically voltage independent, the technical options for designing equipment get much wider with lower DC voltage levels, e.g. in the case of converters or switchgear. This document covers technical aspects of: • coordination of HVDC grid and AC systems, • HVDC grid characteristics, • HVDC grid control, • HVDC grid protection, • AC/DC converter stations, • HVDC grid installations, including DC switching stations and HVDC transmission lines, • studies and associated models, • testing. Beyond the scope of this document, the following content is proposed for future work: • DC/DC converter stations.

From this edition, the CLC TS 50654-2 is the adoption (identical) of the IEC TS 63291-2 (not covered by a parallel procedure). This document defines aspects on planning, specification, and execution of multi-vendor HVDC grid systems also referred to as HVDC grids. The terms "HVDC grid systems" or "HVDC grids" are used in this document to describe HVDC systems for power transmission having more than two HVDC stations connected to a common DC circuit. The DC circuit can be of radial or meshed topology or a combination thereof. In this document, the term "HVDC grids" is used. While this document focuses on requirements specific for HVDC grids, some requirements are considered applicable to all HVDC systems in general, i.e., including point-to-point HVDC systems. Existing IEC (e.g., IEC TR 63363-1 [1]), Cigre or other relevant documents have been used for reference as far as possible. Corresponding to electric power transmission applications, this document is applicable to high voltage systems, i.e., those having typically nominal DC voltages higher than 50 kV with respect to earth are considered in this document. NOTE While the physical principles of DC networks are basically voltage independent, the technical options for designing equipment get much wider with lower DC voltage levels, e.g. in the case of converters or switchgear. This document covers technical aspects of: • coordination of HVDC grid and AC systems, • HVDC grid characteristics, • HVDC grid control, • HVDC grid protection, • AC/DC converter stations, • HVDC grid installations, including DC switching stations and HVDC transmission lines, • studies and associated models, • testing. Beyond the scope of this document, the following content is proposed for future work: • DC/DC converter stations.

CLC IEC/TS 63291-2:2025 is classified under the following ICS (International Classification for Standards) categories: 29.200 - Rectifiers. Convertors. Stabilized power supply; 29.240.01 - Power transmission and distribution networks in general. The ICS classification helps identify the subject area and facilitates finding related standards.

CLC IEC/TS 63291-2:2025 has the following relationships with other standards: It is inter standard links to CLC/TS 50654-2:2020. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase CLC IEC/TS 63291-2:2025 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CLC standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-november-2025
Sistemi visokonapetostnega enosmernega omrežja in priključene pretvorniške
postaje - Smernice in seznam parametrov za funkcijsko specifikacijo - 2. del:
Seznam parametrov
High voltage direct current (HVDC) grid systems and connected converter stations -
Guideline and parameter lists for functional specifications - Part 2: Parameter lists
Hochspannungsgleichstrom-Netzsysteme und angeschlossene Umrichterstationen -
Leitfaden und Parameterlisten für funktionale Spezifikationen - Teil 2: Parameter-Listen
Réseaux en courant continu à haute tension (CCHT) et postes de conversion connectés
- Lignes directrices et listes de paramètres pour les spécifications fonctionnelles - Partie
2: Listes de paramètres
Ta slovenski standard je istoveten z: CLC IEC/TS 63291-2:2025
ICS:
29.200 Usmerniki. Pretvorniki. Rectifiers. Convertors.
Stabilizirano električno Stabilized power supply
napajanje
29.240.01 Omrežja za prenos in Power transmission and
distribucijo električne energije distribution networks in
na splošno general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

TECHNICAL SPECIFICATION CLC IEC/TS 63291-2

SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION September 2025
ICS 29.240.01; 29.200 Supersedes CLC/TS 50654-2:2020
English Version
High voltage direct current (HVDC) grid systems and connected
converter stations - Guideline and parameter lists for functional
specifications - Part 2: Parameter lists
(IEC/TS 63291-2:2023)
Réseaux en courant continu à haute tension (CCHT) et Hochspannungsgleichstrom-Netzsysteme und
postes de conversion connectés - Lignes directrices et angeschlossene Stromrichterstationen - Leitfaden und
listes de paramètres pour les spécifications fonctionnelles - Parameter-Listen für funktionale Spezifikationen - Teil 2:
Partie 2: Listes de paramètres Parameter-Listen
(IEC/TS 63291-2:2023) (IEC/TS 63291-2:2023)
This Technical Specification was approved by CENELEC on 2025-08-26.

CENELEC members are required to announce the existence of this TS in the same way as for an EN and to make the TS available promptly
at national level in an appropriate form. It is permissible to keep conflicting national standards in force.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2025 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. CLC IEC/TS 63291-2:2025 E

European foreword
This document (CLC IEC/TS 63291-2:2025) consists of the text of document IEC/TS 63291-2:2023,
prepared by IEC/TC 115 "High Voltage Direct Current (HVDC) transmission for DC voltages above
100 kV".
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
This document is read in conjunction with CLC IEC/TS 63291-1:2025.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Technical Specification IEC/TS 63291-2:2023 was approved by CENELEC
as a European Technical Specification without any modification.
In the official version, for Bibliography, the following notes have to be added for the standard indicated:
IEC 60633:2019 NOTE Approved as EN IEC 60633:2019 (not modified)
IEC 61660-1:1997 NOTE Approved as EN 61660-1:1997 (not modified)
IEC 61000-4-7 NOTE Approved as EN 61000-4-7
IEC 61975:2010 NOTE Approved as EN 61975:2010 (not modified)
IEC 61975:2010/A1:2016 NOTE Approved as EN 61975:2010/A1:2017 (not modified)
IEC 60909 (series) NOTE Approved as EN 60909 (series)
IEC 62271-100 NOTE Approved as EN IEC 62271-100
IEC 62271-102 NOTE Approved as EN IEC 62271-102
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod),
the relevant EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cencenelec.eu.
Publication Year Title EN/HD Year
IEC 62747 2014 Terminology for voltage-sourced converters EN 62747 2014
(VSC) for high-voltage direct current (HVDC)
systems
+ A1 2019 + A1 2019
IEC/TS 63291-1 2023 High voltage direct current (HVDC) grid CLC IEC/TS 63291-1 2025
systems and connected converter stations -
Guideline and parameter lists for functional
specifications - Part 1: Guideline

IEC TS 63291-2 ®
Edition 1.0 2023-09
TECHNICAL
SPECIFICATION
colour
inside
High voltage direct current (HVDC) grid systems and connected converter

stations – Guideline and parameter lists for functional specifications –

Part 2: Parameter lists
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
ICS 29.200; 29.240.01 ISBN 978-2-8322-7572-6

– 2 – IEC TS 63291-2:2023 © IEC 2023
CONTENTS
FOREWORD . 9
INTRODUCTION . 11
1 Scope . 12
2 Normative references . 12
3 Terms, definitions and abbreviated terms . 13
3.1 Terms and definitions . 13
3.2 Abbreviated terms . 17
4 Coordination of HVDC grid and AC systems . 18
4.1 About HVDC grids . 18
4.2 HVDC grid structure . 18
4.3 Purpose of the HVDC grid and power network diagram . 18
4.4 AC/DC power flow optimisation . 19
4.5 Converter operational functions . 21
4.5.1 Basic operation functions – Converter normal operation state . 21
4.5.2 Basic operation functions – Converter abnormal operation state . 22
4.5.3 Ancillary services . 24
5 HVDC grid characteristics . 28
5.1 HVDC circuit topologies . 28
5.1.1 Availability and reliability . 28
5.1.2 Basic characteristics and nomenclature . 28
5.1.3 Attributes of HVDC grids or HVDC grid subsystems . 29
5.1.4 Attributes of an HVDC station . 29
5.2 Connection modes . 30
5.3 Grid operating states . 30
5.3.1 General . 30
5.3.2 Normal state . 30
5.3.3 Alert state . 30
5.3.4 Emergency state . 30
5.3.5 Blackout state . 30
5.3.6 Restoration . 30
5.4 DC voltages . 31
5.4.1 General . 31
5.4.2 Nominal DC system voltage . 32
5.4.3 Steady-state DC pole voltage . 32
5.4.4 Temporary DC pole voltage . 32
5.4.5 DC neutral bus voltage . 33
5.5 Insulation coordination . 35
5.6 Short-circuit characteristics . 35
5.6.1 Calculation of short-circuit currents in HVDC grids . 35
5.6.2 Short-circuit current design requirements . 37
5.7 Steady-state voltage and current distortions . 37
5.7.1 Emissions and impacts . 37
5.7.2 Rights and obligations of a connectee . 39
5.7.3 Similarities between HVDC grids and AC networks . 39
5.7.4 Voltage and current distortion limits . 39
5.7.5 Allocation of limits to individual connectees . 39

IEC TS 63291-2:2023 © IEC 2023 – 3 –
5.7.6 Frequency-dependent DC system impedance . 39
5.8 DC system restoration. 39
5.8.1 General . 39
5.8.2 Post-DC fault recovery . 40
5.8.3 Restoration from blackout . 40
6 HVDC grid control . 40
6.1 Closed-loop control functions . 40
6.1.1 General . 40
6.1.2 Core control functions . 40
6.1.3 Coordinating control functions . 40
6.2 Controller hierarchy . 40
6.2.1 General . 40
6.2.2 Internal converter control . 40
6.2.3 DC node voltage control . 40
6.2.4 Coordinated HVDC grid control . 41
6.2.5 AC/DC grid control . 44
6.3 Propagation of information . 44
6.4 Open-loop controls. 48
6.4.1 Coordination of connection modes between HVDC stations and their
PoC-DC . 48
6.4.2 Operating sequences for HVDC grid installations . 48
6.4.3 Post-DC fault recovery . 49
7 HVDC grid protection . 49
7.1 General . 49
7.2 DC fault separation . 49
7.3 Protection system related installations and equipment . 50
7.3.1 AC/DC converter station . 50
7.3.2 HVDC grid topology and equipment . 50
7.4 HVDC grid protection zones . 50
7.4.1 General . 50
7.4.2 Permanent stop P . 53
7.4.3 Permanent stop PQ . 54
7.4.4 Temporary stop P . 54
7.4.5 Temporary stop PQ . 54
7.4.6 Continued operation . 54
7.4.7 Example of a protection zone matrix . 54
7.5 DC protection . 55
7.5.1 General . 55
7.5.2 DC converter protections . 55
7.5.3 HVDC grid protections . 55
7.5.4 HVDC grid protection communication . 55
8 AC/DC converter stations . 55
8.1 Purpose . 55
8.2 AC/DC converter station types . 55
8.3 Overall requirements . 55
8.3.1 Robustness of AC/DC converter stations . 55
8.3.2 Availability and reliability . 56
8.3.3 Active power reversal . 56

– 4 – IEC TS 63291-2:2023 © IEC 2023
8.4 Main circuit design . 56
8.4.1 General characteristics . 56
8.4.2 DC side . 57
8.4.3 AC side. 62
8.5 HVDC grid control and protection interface . 62
8.6 Controls . 63
8.6.1 General . 63
8.6.2 Automated vs manual operation . 63
8.6.3 Control modes and support of coordination . 63
8.6.4 Limitation strategies . 64
8.6.5 Operating sequences for AC/DC converter station . 65
8.6.6 Dynamic behaviour . 65
8.7 Protection . 66
8.7.1 General . 66
8.7.2 Configuration requirements . 66
8.7.3 Function requirements . 66
8.7.4 Fault separation strategy for faults inside the AC/DC converter station . 66
8.7.5 Coordination of the DC protection with the HVDC grid . 66
8.7.6 Example for coordination of the DC protection with the HVDC grid . 66
9 HVDC grid installations . 66
9.1 General . 66
9.2 DC switching station . 66
9.2.1 Purpose . 66
9.2.2 Overall requirements . 67
9.2.3 Main circuit design . 67
9.2.4 HVDC grid control and protection interface . 74
9.2.5 Controls . 75
9.2.6 Protection . 78
9.3 HVDC transmission lines. 79
9.3.1 Purpose . 79
9.3.2 Overall requirements . 79
9.3.3 Main circuit design . 80
9.3.4 HVDC grid control and protection interface . 82
9.3.5 Controls . 83
9.3.6 Protection . 83
9.4 DC/DC converter stations . 83
10 Studies and associated models . 84
10.1 General . 84
10.2 Description of studies . 84
10.2.1 General . 84
10.2.2 HVDC grid planning studies . 84
10.2.3 HVDC grid design studies . 84
10.2.4 HVDC grid extension studies . 84
10.2.5 Studies for HVDC grid installation refurbishments and other
modifications . 84
10.3 Models and interfaces . 84
10.3.1 General . 84
10.3.2 Model interfaces and integration compatibility . 85
10.3.3 Model capability . 85

IEC TS 63291-2:2023 © IEC 2023 – 5 –
10.3.4 Model format . 85
10.3.5 Model maintenance and portability . 86
10.3.6 Model aggregation . 86
10.3.7 Model testing and validation . 86
11 Testing . 87
11.1 General . 87
11.2 Off-site testing . 88
11.2.1 General . 88
11.2.2 Factory system tests . 88
11.3 On-site testing . 88
Bibliography . 89

Figure 1 – Definition of the point of connection-AC and the point of connection-DC at
an AC/DC converter station . 14
Figure 2 – Rigid bipolar HVDC system . 16
Figure 3 – Generic AC over- and undervoltage ride through profile of an AC/DC
converter station: Different values can be specified for symmetrical and asymmetrical
faults . 24
Figure 4 – Temporary DC pole to earth voltage profiles at a PoC-DC . 31
Figure 5 – Generic neutral bus voltage profile at a PoC-DC . 34
Figure 6 – Standard approximation function . 37
Figure 7 – Typical DC node voltage control modes (illustration in DC voltage/power
plane) . 41
Figure 8 – Generation of final converter schedules including converter control modes
and its parameters . 45
Figure 9 – Propagation of switching commands to individual HVDC stations . 46
Figure 10 – Operating sequences as transitions between operating states . 48
Figure 11 – Example voltage and current traces in the event of "permanent stop" . 51
Figure 12 – Example voltage and current traces in the event of "temporary stop P" . 52
Figure 13 – Example voltage and current traces in the event of "continued operation" . 53

Table 1 – Nomenclature of HVDC circuit topologies . 19
Table 2 – Active and reactive power characteristics for a given AC system voltage
operating range of an AC/DC converter station . 19
Table 3 – Parameters of an HVDC transmission line . 21
Table 4 – Parameter list for AC system frequency following a frequency / power droop
operation of an AC/DC converter station . 21
Table 5 – Parameter list for DC voltage / DC power droop operation of an AC/DC
converter station . 22
Table 6 – Parameters describing the operation conditions of the AC network at an
AC/DC converter station prior to and after a fault . 22
Table 7 – Time requirements for power restoration in the event of temporary faults . 23
Table 8 – AC undervoltage ride through requirements for an AC/DC converter station . 23
Table 9 – AC overvoltage ride through requirements for an AC/DC converter station . 24
Table 10 – Coordination of power associated with primary frequency control . 25
Table 11 – FCR parameters for an AC/DC converter station, parameters for active
power frequency response in FSM . 26

– 6 – IEC TS 63291-2:2023 © IEC 2023
Table 12 – Voltage range capability parameters for an AC/DC converter station . 27
Table 13 – Reactive power capability parameters for an AC/DC converter station . 27
Table 14 – Parameters describing electromechanical oscillations . 27
Table 15 – Parameters describing post-fault active power recovery at an AC/DC
converter station . 28
Table 16 – Characteristics of the HVDC grid . 28
Table 17 – DC circuit earthing parameters . 29
Table 18 – Parameters for each return path . 30
Table 19 – Nominal DC system voltage at a PoC-DC . 32
Table 20 – DC pole voltage range parameters at a PoC-DC of an HVDC station –
Steady-state . 32
Table 21 – DC pole voltage range parameters at a PoC-DC of an HVDC station –
Temporary undervoltages . 32
Table 22 – DC pole voltage range parameters at a PoC-DC of an HVDC station –
Temporary overvoltages . 33
Table 23 – DC neutral bus voltage range parameters . 34
Table 24 – Insulation levels at a PoC-DC . 35
Table 25 – Maximum converter current of an HVDC station into the HVDC grid . 35
Table 26 – Component data – Earthing branch . 36
Table 27 – Component data – Standalone DC capacitors and DC filters of an HVDC
station . 36
Table 28 – Component data – DC line reactors of an HVDC station . 36
a
Table 29 – Component data – DC lines (OHL, cable including electrode lines) . 36
Table 30 – Short-circuit current parameters at a PoC-DC . 37
Table 31 – Equivalent impedances for calculating voltage and current distortions at a
PoC-DC . 38
Table 32 – Pre-existing DC voltage and current distortions at a PoC-DC. 38
Table 33 – Planning levels and permissible DC voltage and current distortions at a
PoC-DC . 38
Table 34 – Coupling factors for calculating voltage distortions at a remote bus caused
by emissions at a PoC-DC . 39
Table 35 – Specification of DC system impedance . 39
Table 36 – DC node voltage control parameters . 41
Table 37 – System state variables and equipment status signals (interface list) . 42
Table 38 – General interface (signal list) for autonomous adaption control rules . 42
Table 39 – General interface (signal list) for defining an observation . 43
Table 40 – General interface (signal list) for defining countermeasures of rules . 43
Table 41 – Interface parameters required from the HVDC grid control layer . 44
Table 42 – General interface (signal list) for orders from TSOs . 44
Table 43 – General interface (signal list) defining a "converter schedule" . 45
Table 44 – General interface (signal list) defining "switching commands" . 46
Table 45 – General signal interface (physical quantities) of the "station information" . 47
Table 46 – General signal interface (control parameters) of the "station information" . 48
Table 47 – Unified description of operating sequences . 49
Table 48 – Parameters for recovery sequences after DC line faults . 49

IEC TS 63291-2:2023 © IEC 2023 – 7 –
Table 49 – Example of an HVDC grid protection zone matrix . 50
Table 50 – DC protection parameter list . 50
Table 51 – DC converter protection parameter list . 55
Table 52 – Converter station topology . 56
Table 53 – Energy dissipation/absorption capability at a PoC . 57
Table 54 – DC connection modes of the AC/DC converter station . 58
Table 55 – DC circuit re-configuration time requirements . 58
Table 56 – Repetition of DC fault events and recovery attempts . 59
Table 57 – DC circuit energisation . 60
Table 58 – Connecting the AC/DC converter station . 60
Table 59 – Disconnecting the AC/DC converter station . 60
Table 60 – DC circuit de-energisation . 61
Table 61 – Parameters for the automatic control interface of the AC/DC converter
station according to standard protocols . 63
Table 62 – Parameters for the automatic control interface of the AC/DC converter

station according to proprietary protocols. 63
Table 63 – Parameters for the available control modes of the AC/DC converter station . 64
Table 64 – Limitation strategies . 65
Table 65 – Operating states and transitions for the AC/DC converter station . 65
Table 66 – Protection coordination of the AC/DC converter station and the HVDC grid
(for main and backup concept including the separation concept and the FSD) . 66
Table 67 – DC switching station topology . 67
Table 68 – Temporary energy dissipation/absorption capability of the DC switching
station . 68
Table 69 – Power flow controlling capability of a DC SU . 68
Table 70 – DC connection modes of a DC SU for PoC-DCx . 69
Table 71 – DC circuit re-configuration time requirements . 69
Table 72 – Repetition of DC fault events and recovery attempts . 71
Table 73 – DC circuit energisation . 72
Table 75 – Disconnecting the DC switching station . 72
Table 76 – DC circuit de-energisation . 73
Table 77 – Parameters for the automatic control interface of the DC switching station
according to standard protocols . 75
Table 78 – Parameters for the automatic control interface of the DC switching station
according to proprietary protocols . 75
Table 79 – Parameters for the available control modes of the DC switching station . 76
Table 80 – Limitation strategies . 77
Table 81 – Operating states and transitions for a SU of the DC switching station . 78
Table 82 – Protection coordination of the DC switching station and the HVDC grid (for
main and backup concept including the separation concept and the FSD) . 79
Table 83 – DC line power transmission parameters for the transmission line including

all different HVDC transmission line sections, if any. 80
Table 84 – Frequency range for specification of DC system impedance . 82
Table 85 – Parameters defining the model generalities . 84

– 8 – IEC TS 63291-2:2023 © IEC 2023
Table 86 – Parameters to characterize the model capability . 85
Table 87 – Parameters to define the model format . 85
Table 88 – Parameters defining the model aggregation . 86
Table 89 – Parameters defining the model validation . 86
Table 90 – Parameters for testing . 87
Table 91 – Minimum set of parameters to be defined for all test scenarios . 87

IEC TS 63291-2:2023 © IEC 2023 – 9 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
HIGH VOLTAGE DIRECT CURRENT (HVDC) GRID SYSTEMS AND
CONNECTED CONVERTER STATIONS – GUIDELINE AND PARAMETER
LISTS FOR FUNCTIONAL SPECIFICATIONS –

Part 2: Parameter lists
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent
rights. IEC shall not be held responsible for identifying any or all such patent rights.
IEC TS 63291-2 has been prepared by IEC technical committee TC 115: High Voltage Direct
Current (HVDC) transmission for DC voltages above 100 kV. It is a Technical Specification.
The text of this Technical Specification is based on the following documents:
Draft Report on voting
115/320/DTS 115/329/RVDTS
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this Technical Specification is English.
This Technical Specification is to be used in conjunction with IEC TS 63291-1:2023.

– 10 – IEC TS 63291-2:2023 © IEC 2023
A list of all parts in the IEC 63291 series, published under the general title High voltage direct
current (HVDC) grid systems and connected converter stations – Guideline and parameter lists
for functional specifications, can be found on the IEC website.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

CLC IEC/TS 63291-2:2025は、高電圧直流(HVDC)グリッドシステムおよび接続されたコンバーターステーションに関する標準であり、機能仕様のためのガイドラインおよびパラメータリストを提供しています。本標準は、複数のベンダーによるHVDCグリッドシステムの計画、仕様、および実行に関する重要な側面を定義しており、HVDCグリッドに関連する要求事項を網羅しています。 本ドキュメントの強みは、HVDCグリッドの特異性に焦点を当てつつ、点対点のHVDCシステムにも適用可能な要求が含まれている点です。これにより、業界のさまざまなプレイヤーがこの標準を参照し、HVDCシステムの設計や実装において一貫性を持たせることが期待されます。また、HVDCグリッドの側面に関する詳細なパラメータリストも提供されており、これが実用的な設計と実装のための基盤を築く役割を果たしています。 さらに、標準は高電圧システム、特に通常の直流電圧が50 kVを超える電力伝送アプリケーションに適用されることを明示しています。これにより、HVDCグリッドに関連する技術的選択肢が広がり、より効果的な運用が可能となります。本ドキュメントに盛り込まれている技術的側面には、HVDCグリッドと交流システムの調整、HVDCグリッドの特性、制御、保護、及び検査が含まれています。 標準の適用範囲を超える今後の作業として、DC/DCコンバーターステーションに関する内容が提案されている点も注目に値します。このように、CLC IEC/TS 63291-2:2025は今後、HVDC関連技術の進展において重要な基盤として機能することが期待されます。全体として、本標準はHVDCグリッドの実装を支えるための信頼性の高いガイドラインを提供し、効率的な電力伝送システムの構築を促進するものであると言えます。

La norme CLC IEC/TS 63291-2:2025 traite des systèmes de réseau de courant continu à haute tension (HVDC) et des stations de conversion connectées, en fournissant des lignes directrices et des listes de paramètres pour des spécifications fonctionnelles. La portée de cette norme est cruciale, car elle aborde les enjeux liés à la planification, à la spécification et à l'exécution de systèmes de réseau HVDC multi-fournisseurs, également désignés sous le terme « réseaux HVDC ». L'un des principaux points forts de cette norme réside dans sa capacité à définir les exigences spécifiques aux réseaux HVDC tout en intégrant également des exigences applicables à tous les systèmes HVDC en général. Cela permet une flexibilité et une adaptabilité considérables dans l'élaboration de systèmes efficaces et intégrés pour le transport d'énergie. Les aspects traités incluent la coordination entre les réseaux HVDC et les systèmes AC, les caractéristiques des réseaux HVDC, ainsi que le contrôle et la protection de ces réseaux. De plus, la norme comprend des détails techniques sur les stations de conversion AC/DC, les installations de réseaux HVDC, y compris les stations de commutation DC et les lignes de transmission HVDC. L'utilisation de documents de référence existants, tels que les normes IEC et Cigre, renforce la pertinence de cette norme, garantissant qu'elle repose sur des bases solides et bien établies dans le domaine de la transmission d'énergie électrique. Il est également judicieux de noter que la norme se concentre sur les systèmes devant fonctionner à des tensions DC supérieures à 50 kV, ce qui souligne son importance pour les applications de haute tension. En intégrant une approche systémique, elle permet aux ingénieurs et concepteurs de mieux envisager les interconnections et l'intégration des différentes technologies impliquées dans les réseaux HVDC. Enfin, la normation CLC IEC/TS 63291-2:2025 se révèle d'autant plus pertinente qu'elle propose des contenus pour de futurs travaux, comme les stations de conversion DC/DC, ouvrant la voie à d'éventuelles évolutions et innovations dans le domaine des technologies HVDC.

The standard CLC IEC/TS 63291-2:2025 offers a comprehensive guide for the planning, specification, and execution of high voltage direct current (HVDC) grid systems and their associated converter stations. Its scope effectively addresses the complexities inherent in multi-vendor HVDC grid systems, which are defined as configurations having more than two HVDC stations interconnected via a common DC circuit. This broad applicability to different topologies-whether radial, meshed, or a combination-demonstrates the standard's relevance to emerging HVDC technologies. One of the key strengths of this standard lies in its focus on specific requirements for HVDC grids, setting a solid foundation for both operational efficiency and safety. By utilizing existing IEC documents and relevant technical resources, this guideline ensures that practitioners have access to a well-researched and validated framework for HVDC system design, coordination with AC systems, and overall grid integration. The inclusion of critical areas such as HVDC grid characteristics, control, protection, and installation further enhances its utility in the field of electric power transmission. Moreover, the standard acknowledges the importance of collaboration across multiple vendors, thereby promoting interoperability and consistency in HVDC grid systems. This consensus-driven approach reaffirms the commitment to best practices in the industry, making it a relevant and necessary tool for power engineers and stakeholders involved in high voltage systems. The discussions surrounding testing and modeling of HVDC grid systems, alongside the identification of future work on DC/DC converter stations, reflect the standard's forward-thinking nature. This proactive stance is essential for adapting to the evolving landscape of energy transmission, particularly as the demand for more efficient methodologies continues to grow. Overall, CLC IEC/TS 63291-2:2025 stands as a pivotal document in advancing the implementation and integration of HVDC grid systems.

Die Norm CLC IEC/TS 63291-2:2025 bietet eine umfassende Anleitung für die funktionalen Spezifikationen von Hochspannungs-Gleichstrom (HVDC) Netzen und den verbundenen Umspannwerken. Der Umfang dieser Norm ist besonders relevant, da sie die Planung, Spezifikation und Ausführung von Mehranbieter-HVDC-Netzsystemen behandelt, die für die moderne Stromübertragung unerlässlich sind. Diese Systeme, oft als HVDC-Netze bezeichnet, sind durch die Verbindung von mehr als zwei HVDC-Stationen mit einem gemeinsamen Gleichstromkreis gekennzeichnet, was einen entscheidenden Fortschritt in der Energieübertragungstechnologie darstellt. Die Stärken dieser Norm liegen in ihrer detaillierten Behandlung technischer Aspekte, die für den Betrieb von HVDC-Netzen von entscheidender Bedeutung sind. Dazu gehören die Koordination von HVDC-Netzen mit Wechselstromsystemen, die Charakterisierung von HVDC-Netzen, die Steuerung und den Schutz dieser Netze sowie das Design der AC/DC-Umspannwerke. Dies gewährleistet eine umfassende Betrachtung der Herausforderungen und Möglichkeiten, die mit der Implementierung von HVDC-Systemen verbunden sind. Ein weiterer Pluspunkt ist, dass die Norm bereits bestehende Dokumente der IEC, wie den IEC TR 63363-1, sowie relevante Informationen von Cigre und anderen Quellen zitiert, um einen breiten Kontext für die Bestimmungen zu schaffen. Insbesondere die Behandlung von Systeme mit typischen Nenn-Gleichstromspannungen über 50 kV hebt die Bedeutung für anspruchsvolle Anwendungen im Bereich der Hochspannungsstromübertragung hervor. Darüber hinaus stellt die Norm grundlegende Parameterlisten bereit, die für die funktionalen Spezifikationen erforderlich sind. Diese Listen sind entscheidend, um Konsistenz und Kompatibilität zwischen verschiedenen Anbietern und Technologien zu fördern, was die Implementierung von HVDC-Netzen wesentlich erleichtert. Trotz des spezifischen Fokus auf HVDC-Netze erkennen die Vorgaben auch Kriterien an, die für alle HVDC-Systeme, einschließlich Punkt-zu-Punkt-Anwendungen, relevant sind. Zusammengefasst bietet die CLC IEC/TS 63291-2:2025 eine maßgebliche und praxisorientierte Grundlage für Fachleute, die sich mit der Entwicklung und dem Betrieb von HVDC-Netzen befassen. Ihre weitreichende Anwendbarkeit und die Berücksichtigung technischer Details machen sie zu einem unverzichtbaren Instrument für die Zukunft der Energieübertragung.

CLC IEC/TS 63291-2:2025 표준은 고전압 직류(HVDC) 그리드 시스템과 연결된 변환소에 대한 기능적 사양을 위한 지침 및 파라미터 목록을 제공하는 중요한 문서입니다. 이 표준은 HVDC 그리드 시스템의 계획, 사양 및 실행에 대한 다양한 측면을 정의하며, 특히 여러 공급업체가 참여하는 HVDC 시스템의 설계를 촉진하는 데 중점을 두고 있습니다. 이 문서에서 정의된 “HVDC 그리드 시스템”은 공통의 DC 회로에 두 개 이상의 HVDC 스테이션이 연결된 전력 전송을 위한 HVDC 시스템을 나타내며, 라디얼 또는 메시형 topologies를 포함한 다양한 형태를 포괄합니다. 본 표준은 기본적으로 HVDC 그리드에 특정 요구 사항을 강조하며, 포인트 투 포인트 HVDC 시스템을 포함한 일반적인 HVDC 시스템에도 적용할 수 있는 요구 사항도 규정하고 있습니다. 또한, 이 문서는 기존의 IEC 문서 및 기타 관련 문서를 참고하여 신뢰성을 높이고, 전력 전송 응용 프로그램에 적용 가능한 고전압 시스템(일반적으로 지구에 대해 50kV 이상의 정상 DC 전압을 가지는 시스템)을 다룹니다. 전기적 원리 측면에서 DC 네트워크는 전압의 영향을 받지 않지만, 설비 설계의 기술적 선택은 낮은 DC 전압 수준에서 더 다양해지는 특징이 있습니다. CLC IEC/TS 63291-2:2025는 HVDC 그리드와 AC 시스템 간의 조정, HVDC 그리드 특성, 제어 및 보호, AC/DC 변환소, HVDC 그리드 설치 및 관련 모델 및 시험을 포함한 기술적 측면을 포괄합니다. 이러한 기능적 사양은 HVDC 시스템의 안정성과 신뢰성을 제고하는 데 기여하며, 복잡한 전력 전송 인프라 환경에서 높은 수준의 효율성을 달성할 수 있도록 지원합니다. 표준의 향후 작업 제안으로는 DC/DC 변환소에 대한 내용을 포함하고 있어 향후 발전 가능성도 엿보입니다. CLC IEC/TS 63291-2:2025는 현대 HVDC 전력 전송 시스템의 설계 및 운영을 위한 필수 가이드라인으로, 전 세계적으로 HVDC 그리드 시스템의 중요성이 점점 더 커지는 가운데 그 의의가 더욱 부각되고 있습니다.