1.1 General This document specifies methods for determining the sound power level of a noise source from sound pressure levels measured on a surface enveloping the noise source (machinery or equipment) in an environment that approximates to an acoustic free field near one or more reflecting planes. The sound power level produced by the noise source, in frequency bands or with A-weighting applied, is calculated using those measurements. NOTE Differently shaped measurement surfaces can yield differing estimates of the sound power level of a given noise source which are accounted for in the uncertainty associated with this test method. An appropriately drafted noise test code (see ISO 12001) gives detailed information on the selection of the surface. 1.2 Types of noise and noise sources The methods specified in this document are suitable for all types of noise (steady, non-steady, and fluctuating) as defined in ISO 12001, except for short duration, impulsive events. This document is applicable to all types and sizes of noise source (e.g. stationary or slowly moving component or sub-assembly), provided that the conditions for the measurements can be met. NOTE It is possible that the conditions for measurements given in this document are impracticable for very tall or very long sources such as chimneys, ducts, conveyors and multi-source industrial plants. A noise test code for the determination of noise emission of specific sources can provide alternative methods in such cases. 1.3 Test environment The test environments that are applicable for measurements made in accordance with this document can be located indoors or outdoors, with one or more sound-reflecting planes present on or near which the noise source under test is mounted. The ideal environment is a completely open space with no bounding or reflecting surfaces other than the reflecting plane(s), such as that provided by a qualified hemi-anechoic chamber, but procedures are given for applying corrections (within limits that are specified) in the case of environments that are less than ideal. Annex A or ISO 26101-2 specifies methods for determining the adequacy of the test environment and for determination of corrections to be applied to account for the effect of the test environment. 1.4 Measurement uncertainty Information is given on the uncertainty of the sound power levels determined in accordance with this document, for measurements made in limited bands of frequency and with frequency A-weighting applied. Annex I specifies procedures for testing laboratories that can be used to reduce measurement uncertainty. The uncertainty conforms to ISO 12001, accuracy grade 2 (engineering grade). General information on measurement uncertainty is provided in this document and additional information can be found in ISO 5114-1[8].

  • Standard
    61 pages
    English language
    sale 15% off
  • Standard
    63 pages
    French language
    sale 15% off

This document defines the procedures for noise control of primarily open plants and the requirements on equipment suppliers for reporting and testing of noise. It is applicable to the following: — specification of procedures for noise control during engineering of a new plant and modification/extension of existing plants (construction and commissioning noise procedures are outside the scope of this document); — definition of responsibilities of parties involved, viz. “end-user”, “engineering contractor” and “equipment supplier”; — description of general procedures to arrive at noise requirements for individual equipment, based on overall noise requirements for the plant. Input to purchase specifications is presented in REF Annex_sec_A \r \h Annex A. A schematic flowchart, reviewing the noise control process, is presented in REF Annex_sec_B \r \h Annex B 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000C00000041006E006E00650078005F007300650063005F0042000000 and a summary of action items is presented in REF Annex_sec_C \r \h Annex C 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000C00000041006E006E00650078005F007300650063005F0043000000 . An example of an equipment noise data sheet is presented in REF Annex_sec_E \r \h Annex E 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000C00000041006E006E00650078005F007300650063005F0045000000 .

  • Standard
    29 pages
    English language
    sale 15% off

This document specifies measurement methods and conditions to obtain reproducible and comparable exterior noise emission levels and spectra for all kinds of vehicles operating on rails or other types of fixed track, hereinafter conventionally called “unit”. This document is applicable to type testing of units. It provides measurement procedures for vehicle exterior noise (in general, a vehicle type test is carried out using only a selected subset of these tests): — when the vehicle is moving at constant speed; — when the vehicle is accelerating or decelerating; — when the vehicle is stationary in different operating conditions. It does not include all the instructions to characterize the noise emission of the infrastructure related sources (bridges, crossings, switching, impact noise, curving noise, etc.). This document does not apply to — the noise emission of track maintenance units while working, — environmental impact assessment (collection of data to be used in a prediction method for environmental assessment), — noise immission assessment, — guided buses, and — warning signal noise. The results can be used, for example — to characterize the exterior noise emitted by units, — to compare the noise emission of various units on a particular track section, and — to collect basic source data for units. NOTE Additional guidance is provided in Annex E for measurements in the specific case of urban rail vehicles.

  • Standard
    90 pages
    English language
    sale 15% off
  • Standard
    93 pages
    French language
    sale 15% off
  • Standard
    93 pages
    French language
    sale 15% off

This document specifies computational methods for determining the acoustical source level of projectile sound and its one-third octave band spectrum, expressed as the sound exposure level for nominal mid-band frequencies from 12,5 Hz to 10 kHz. It also specifies a method on how to use this source level to calculate the sound exposure level at a receiver position. Results obtained with this document can be used as a basis for assessment of projectile sound from shooting ranges. Additionally, the data can be used to determine sound emission or immission from different types of ammunition and weapons. The prediction methods are applicable to outdoor conditions and straight projectile trajectories. Two computational methods are given to determine the acoustical source level: one for streamlined projectile shapes and one for non-streamlined shapes, such as pellets.

  • Standard
    41 pages
    English language
    sale 15% off
  • Standard
    43 pages
    French language
    sale 15% off

This document specifies a computational method (in line with ISO 17201-4) for estimating the acoustic source data of muzzle blast and explosions on the basis of non-acoustic data for firearms with calibres less than 20 mm and explosions less than 50 g TNT equivalent. This document addresses those cases where no source measurements exist. This document can also be used as an interpolation method between measurements of muzzle blast. Source data are given in terms of spectral angular source energy covering the frequency range from 12,5 Hz to 10 kHz and can be used as data input for sound propagation calculation. This document does not apply to the prediction of sound levels for the assessment of hearing damage; nor can it be used to predict sound pressure levels or sound exposure levels at distances where linear acoustics do not apply.

  • Standard
    21 pages
    English language
    sale 15% off
  • Standard
    22 pages
    French language
    sale 15% off

This document specifies a method for measuring workers’ exposure to noise in a working environment and calculating the noise exposure level. This document deals with A-weighted levels but is applicable also to C-weighted levels. Three different strategies for measurement are specified. The method is applicable for detailed noise exposure studies or epidemiological studies of hearing damage or other adverse effects. The measuring process requires observation and analysis of the noise exposure conditions so that the quality of the measurements can be controlled. This document provides methods for estimating the uncertainty of the results. This document is not intended for assessment of masking of oral communication or assessment of infrasound, ultrasound and non-auditory effects of noise. It does not apply to the measurement of the noise exposure of the ear when hearing protectors are worn. Results of the measurements performed in accordance with this document can provide useful information when defining priorities for noise control measures.

  • Standard
    53 pages
    English language
    sale 15% off
  • Standard
    54 pages
    French language
    sale 15% off

This document specifies a test method for measuring in situ the sound absorption coefficient of road surfaces for the one-third octave band frequencies ranging from 250 Hz to 1 600 Hz under normal incidence conditions. If necessary for practical applications the diameter of the tube can be reduced to 80 mm. This will increase the upper boundary of the frequency range to 2 000 Hz one-third octave band (see REF Section_sec_5.4 \r \h 5.4 08D0C9EA79F9BACE118C8200AA004BA90B020000000800000010000000530065006300740069006F006E005F007300650063005F0035002E0034000000 ) but reduces the area under test. The test method is intended for the following applications: — determination of the sound absorption coefficient (and, if of interest, also the complex acoustical impedance) of semi-dense to dense road surfaces; — determination of the sound absorption properties of test tracks according to ISO 10844[ REF Reference_ref_4 \r \h 2 08D0C9EA79F9BACE118C8200AA004BA90B0200000008000000100000005200650066006500720065006E00630065005F007200650066005F0034000000 ] or other similar standards and test surfaces defined in national and international type approval regulations for road vehicles and their tyres; — verification of the compliance of the sound absorption coefficient of a road surface with design-specifications or other requirements.

  • Standard
    25 pages
    English language
    sale 15% off

This document provides requirements and supporting information on analysis of data collected in situ through methods as specified in ISO/TS 12913-2.

  • Technical specification
    24 pages
    English language
    sale 15% off

This document provides a definition, a conceptual framework and a categorisation framework for non-acoustic factors (sometimes also referred to as “contextual factors”). It identifies and lists attributes relevant to the measurements, reporting and assessment of self-reported health outcomes attributable to noise and soundscape studies, as well as for the planning, design and management of soundscape and noise interventions.

  • Technical specification
    6 pages
    English language
    sale 15% off

This document specifies a procedure for determining the magnitude of pavement surface megatexture by measuring the surface profile and calculating a megatexture descriptor from this profile. The technique is designed to give meaningful and accurate measurements and descriptions of pavement megatexture for various purposes, such as for the prediction of the acoustic quality of the pavement or the assessment of the rolling resistance. Since there is an overlap between megatexture and the surrounding ranges, megatexture descriptors unavoidably have a certain correlation with corresponding measures in those ranges. This document specifies measurements and procedures which are in relevant parts compatible with those in ISO 13473-1[4], ISO 8608[6] and EN 13036-5[7].

  • Standard
    39 pages
    English language
    sale 15% off
  • Standard
    41 pages
    French language
    sale 15% off
  • Standard
    41 pages
    French language
    sale 15% off

This document is derived from ISO 362-1[2] and specifies an engineering method for measuring the sound emitted by M and N category road vehicles at standstill and low speed operating conditions. The specifications reproduce the level of sound which is generated by the principal vehicle sound sources consistent with stationary and low speed vehicle operating conditions relevant for pedestrian safety. The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. The test method requires an acoustic environment which is only obtained in an extensive open space. Such conditions usually exist during the following: — measurements of vehicles for regulatory certification; — measurements at the manufacturing stage; — measurements at official testing stations. The results obtained by this method give an objective measure of the sound emitted under the specified conditions of test. It is necessary to consider the fact that the subjective appraisal of the annoyance, perceptibility, and/or detectability of different motor vehicles or classes of motor vehicles due to their sound emission are not simply related to the indications of a sound measurement system. As annoyance, perceptibility and/or detectability are strongly related to personal human perception, physiological human condition, culture, and environmental conditions, there are large variations and therefore these terms are not useful as parameters to describe a specific vehicle condition. Spot checks of vehicles chosen at random rarely occur in an ideal acoustic environment. If measurements are carried out on the road in an acoustic environment which does not fulfil the requirements stated in this document, the results obtained might deviate appreciably from the results obtained using the specified conditions. In addition, this document provides an engineering method to measure the performance of external sound generation systems intended for the purpose of providing acoustic information to pedestrians on a vehicle’s operating condition. This information is reported as objective criteria related to the external sound generation system’s sound pressure level, frequency content, and changes in sound pressure level and frequency content as a function of vehicle speed. This document adds a metric related to the human perception of tonal loudness, the psychoacoustic tonality. The psychoacoustic tonality can be used to estimate audible frequency shifts of the sounds by identifying the most audible component in each auditory frequency band (critical band), as well as to determine if the band(s) so identified meet audibility criteria. Annex A and Annex C contains background information relevant in the development of this document.

  • Standard
    54 pages
    English language
    sale 15% off

This document gives guidance on the determination of measurement uncertainties of sound power levels determined according to ISO 3741, ISO 3743-1, ISO 3743-2, ISO 3744, ISO 3745, ISO 3746, ISO 3747 or according to a noise test code based on one of these measurement standards.

  • Standard
    27 pages
    English language
    sale 15% off
  • Standard
    29 pages
    French language
    sale 15% off

This document specifies methods for qualifying an environment that approximates to an acoustic free field near one or more reflecting planes. The goal of the qualification is to determine the environmental correction K2 , which is used to correct for reflected sound when determining the sound power level or sound energy level of a noise source from sound pressure levels measured on a surface enveloping the noise source (machinery or equipment) in such an environment. In practice, the K2 value determined will be a function of both the reflected sound from the test environment and the shape and size of the measurement surface used for the K2 determination. For the purposes of this document and the documents that refer to it, the differences between K2 values determined with different measurement surfaces are assumed to be included in the stated measurement uncertainty for the test method.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    17 pages
    French language
    sale 15% off

This document describes the methods that are available to perform a spectral analysis of a pavement surface profile. It specifies a method for performing spatial frequency analysis (or texture wavelength analysis) of two-dimensional surface profiles that describe the pavement texture amplitude as a function of the distance along a straight or curved trajectory over the pavement. It also details an alternative (non-preferred) method to obtain these spectra: a) constant-percentage bandwidth obtained by digital filtering (normative method); b) constant narrow bandwidth frequency analysis by means of discrete Fourier transform (DFT), followed by a transformation of the narrow-band spectrum to an octave- or one-third-octave-band spectrum (informative). The result of the frequency analysis will be a spatial frequency (or texture wavelength) spectrum in constant-percentage bandwidth bands of octave or one-third-octave bandwidth. The objective of this document is to standardize the spectral characterization of pavement surface profiles. This objective is pursued by providing a detailed description of the analysis methods and related requirements for those who are involved in pavement characterization but are not familiar with general principles of frequency analysis of random signals. These methods and requirements are generally applicable to all types of random signals; however, they are elaborated in this document for their use in pavement surface profile analysis. NOTE The spectral analysis as specified in this document cannot express all characteristics of the surface profile under study. In particular, the effects of asymmetry of the profile, e.g. the difference of certain functional qualities for “positive” and “negative” profiles cannot be expressed by the power spectral density, as it disregards any asymmetry of the signal (see Annex B).

  • Standard
    35 pages
    English language
    sale 15% off
  • Standard
    37 pages
    French language
    sale 15% off

This document specifies methods for measuring the airborne noise emitted by small air-moving devices (AMDs), such as those used for cooling electronic, electrical, and mechanical equipment where the sound power level of the AMD is of interest. Examples of these AMDs include propeller fans, tube-axial fans, vane-axial fans, centrifugal fans, motorized impellers, and their variations. This document describes the test apparatus and methods for determining the airborne noise emitted by small AMDs as a function of the volume flow rate and the fan static pressure developed by the AMD on the test apparatus. It is intended for use by AMD manufacturers, by manufacturers who use AMDs for cooling electronic equipment and similar applications, and by testing laboratories. It provides a method for AMD manufacturers, equipment manufacturers and testing laboratories to obtain comparable results. Results of measurements made in accordance with this document are expected to be used for engineering information and performance verification, and the methods can be cited in purchase specifications and contracts between buyers and sellers. The ultimate purpose of the measurements is to provide data to assist the designers of electronic, electrical or mechanical equipment which contains one or more AMDs. Based on experimental data, a method is given for calculating the maximum volume flow rate of the scaled plenum up to which this document is applicable.

  • Standard
    39 pages
    English language
    sale 15% off

This document specifies an engineering method for calculating the attenuation of sound during propagation outdoors in order to predict the levels of environmental noise at a distance from a variety of sources. The method predicts the equivalent continuous A-weighted sound pressure level (as described in ISO 1996-series) under meteorological conditions favourable to propagation from sources of known sound emission. These conditions are for downwind propagation or, equivalently, propagation under a well-developed moderate ground‑based temperature inversion, such as commonly occurs in clear, calm nights. Inversion conditions over extended water surfaces are not covered and may result in higher sound pressure levels than predicted from this document (see e.g. References [11] and [12]). The method also predicts a long-term average A‑weighted sound pressure level as specified in ISO 1996-1 and ISO 1996-2. The long-term average A‑weighted sound pressure level encompasses levels for a wide variety of meteorological conditions. Guidance has been provided to derive a meteorological correction based on the angular wind distribution relevant for the reference or long-term time interval as specified in ISO 1996-1:2016, 3.2.1 and 3.2.2. Examples for reference time intervals are day, night, or the hour of the night with the largest value of the sound pressure level. Long-term time intervals over which the sound of a series of reference time intervals is averaged or assessed representing a significant fraction of a year (e.g. 3 months, 6 months or 1 year). The method specified in this document consists specifically of octave band algorithms (with nominal mid-band frequencies from 63 Hz to 8 kHz) for calculating the attenuation of sound which originates from a point sound source, or an assembly of point sources. The source (or sources) may be moving or stationary. Specific terms are provided in the algorithms for the following physical effects: — geometrical divergence; — atmospheric absorption; — ground effect; — reflection from surfaces; — screening by obstacles. Additional information concerning propagation through foliage, industrial sites and housing is given in Annex A. The directivity of chimney-stacks to support the sound predictions for industrial sites has been included with Annex B. An example how the far-distance meteorological correction C0 can be determined from the local wind-climatology is given in Annex C. Experiences of the last decades how to predict the sound pressure levels caused by wind turbines is summarized in Annex D. The method is applicable in practice to a great variety of noise sources and environments. It is applicable, directly, or indirectly, to most situations concerning road or rail traffic, industrial noise sources, construction activities, and many other ground-based noise sources. It does not apply to sound from aircraft in flight, or to blast waves from mining, military, or similar operations. To apply the method of this document, several parameters need to be known with respect to the geometry of the source and of the environment, the ground surface characteristics, and the source strength in terms of octave band sound power levels for directions relevant to the propagation. If only A‑weighted sound power levels of the sources are known, the attenuation terms for 500 Hz may be used to estimate the resulting attenuation. The accuracy of the method and the limitations to its use in practice are described in Clause 9.

  • Standard
    46 pages
    English language
    sale 15% off

This document defines the acoustic performance of four classes (Classes A, B, C and D) of pipe insulation. It also defines a standardized test method for measuring the acoustic performance of any type of material system construction, thereby allowing existing and new insulation constructions to be rated against the four classes. Furthermore, this document presents some typical types of construction that would be expected to meet these acoustic performance classes. This document is applicable to the acoustic insulation of cylindrical steel pipes and to their piping components. It is valid for pipes up to 1 m in diameter and a minimum wall thickness of 4,2 mm for diameters below 300 mm, and 6,3 mm for diameters from 300 mm and above. It is not applicable to the acoustic insulation of rectangular ducting and vessels or machinery. This document covers both design and installation aspects of acoustic insulation and provides guidance to assist noise control engineers in determining the required class and extent of insulation needed for a particular application. It gives typical examples of construction methods, but the examples are for information only and not meant to be prescriptive. This document emphasises the aspects of acoustic insulation that are different from those of thermal insulation, serving to guide both the installer and the noise control engineer. Details of thermal insulation are beyond the scope of this document.

  • Standard
    42 pages
    English language
    sale 15% off
  • Standard
    43 pages
    French language
    sale 15% off

This document specifies an engineering method for measuring the interior sound of road vehicles of categories M and N under typical driving conditions. It does not apply to agricultural tractors and field machinery. It specifies the conditions for obtaining reproducible and comparable measurements of sound pressure levels inside a vehicle. These measurements are used to obtain a representative average sound level during a typical driving cycle to enable assessment of adverse effects on human health. The results can be used for — standardized assessment of interior sound for comparisons (e.g. benchmark, consumer information programs), — verification tests, to decide whether or not the sound inside the vehicle is in accordance with specifications, — regulatory purposes, for example for evaluation of sound in relation to labour or for general health standards, and — monitoring tests, in order to check that the sound inside the vehicles has not changed since delivery, or between individual units of a consignment of vehicles. This document does evaluate the exposure to interior sound of vehicles in a way as it is commonly used for scientific effects on human health. It does not assess maximum interior sound of a vehicle under extreme driving situations, as today’s measured maximum sound pressure levels inside vehicles are far away from the risk to create instantaneous hearing damages.

  • Standard
    32 pages
    English language
    sale 15% off

This document specifies a method of comparing traffic noise on different road surfaces for various compositions of road traffic for the purpose of evaluating different road surface types. Sound levels representing either light or heavy vehicles at selected speeds are assigned to a certain road surface. The method is applicable to traffic travelling at constant speed, i.e. free-flowing conditions at posted speeds of 50 km/h and upwards. For conditions where traffic is not free flowing, such as at junctions and where the traffic is congested, the method is not applicable. A standard method for comparing the noise characteristics of road surfaces gives road and environment authorities a tool for establishing common practices or limits regarding the use of road surfaces meeting certain noise criteria. However, it is not within the scope of ISO 11819 (all parts) to suggest such criteria. The statistical pass-by (SPB) method is suitable for use for the following main purposes: — to classify road surfaces according to their influence on traffic noise (surface classification); — to assist in verifying conformity of production of road surfaces; — to evaluate acoustic performance of road surfaces throughout operation relative to new condition; — to evaluate the influence of different road surfaces on traffic noise at sites irrespective of condition and service time; — to evaluate acoustic performance of a road surface relative to a reference surface. Due to practical restrictions, the method cannot be applied at all possible locations. However, the backing board method can allow some locations to be tested that were not previously acceptable. Clause 5 gives a general description of the SPB method.

  • Standard
    48 pages
    English language
    sale 15% off
  • Standard
    50 pages
    French language
    sale 15% off

This document describes a method for the objective determination of the audibility of tones in environmental noise. This document is intended to augment the usual method for evaluation on the basis of aural impression, in particular, in cases in which there is no agreement on the degree of the audibility of tones. The method described can be used if the frequency of the tone being evaluated is equal to, or greater than, 50 Hz. In other cases, if the tone frequency is below 50 Hz, or if other types of noise (such as screeching) are captured, then this method cannot replace subjective evaluation. NOTE The procedure has not been validated below 50 Hz. The method presented herein can be used in continuous measurement stations that work automatically.

  • Technical specification
    33 pages
    English language
    sale 15% off

This document specifies an engineering method for measuring the noise emitted by road vehicles of categories M and N under typical urban traffic conditions. It excludes vehicles of category L1 and L2, which are covered by ISO 9645, and vehicles of category L3, L4, and L5, which are covered by ISO 362‑2. The specifications are intended to reproduce the level of noise generated by the principal noise sources during normal driving in urban traffic (see Annex A). The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. The test method requires an acoustical environment that is obtained only in an extensive open space. Such conditions are usually provided for — type approval measurements of a vehicle, — measurements at the manufacturing stage, and — measurements at official testing stations. NOTE 1 The results obtained by this method give an objective measure of the noise emitted under the specified conditions of test. It is necessary to consider the fact that the subjective appraisal of the noise annoyance of different classes of motor vehicles is not simply related to the indications of a sound measurement system. As annoyance is strongly related to personal human perception, physiological human conditions, culture, and environmental conditions, there is a large variation and it is, therefore, not useful as a parameter to describe a specific vehicle condition. NOTE 2 Spot checks of vehicles chosen at random are rarely made in an ideal acoustical environment. If measurements are carried out on the road in an acoustical environment that does not fulfil the requirements stated in this document, the results obtained can deviate appreciably from the results obtained using the specified conditions.

  • Standard
    75 pages
    English language
    sale 15% off

This document specifies an engineering method for measuring the noise emitted by road vehicles of categories M and N by using a semi anechoic chamber with a dynamometer installed. The specifications are intended to achieve an acoustical correlation between testing the exterior noise of road vehicles in a semi anechoic chamber and outdoor testing as described in ISO 362-1. This document provides all necessary specifications and procedures for indoor testing to obtain results which are comparable to typical run-to-run variations of measurements in today’s type approval tests. This document provides a method designed to meet the requirements of simplicity as far as they are consistent with the reproducibility of results under the operating conditions of the vehicle. NOTE 1 The results obtained by this method give an objective measure of the noise emitted under the specified conditions of test. It is necessary to consider the fact that the subjective appraisal of the noise annoyance of different classes of motor vehicles is not simply related to the indications of a sound measuring system. As annoyance is strongly related to personal human perception, physiological human conditions, culture, and environmental conditions, there is a large variation and annoyance is therefore not useful as a parameter to describe a specific vehicle condition. NOTE 2 If measurements are carried out in rooms which do not fulfil the requirements stated in this document, the results obtained can deviate from the results using the specified conditions.

  • Standard
    66 pages
    English language
    sale 15% off

This document specifies correction procedures for the effect of temperature on vehicle noise emission, as influenced by the tyre/road noise contribution. Temperatures considered are road and ambient air temperatures. The noise emission for which this document is applicable is measured by means of ISO 11819-1, or similar methods such as the American methods SIP and CTIM specified in References [3][4]. It is also applicable to other pass-by measurements conducted without acceleration, such as when testing tyres and vehicles on test tracks with ISO 10844[1] reference surfaces; however, given that tyre/road noise is dominant. Measurement results obtained at a certain temperature, which may vary over a wide range, are normalized to a designated reference temperature (20 °C) using a correction procedure specified in this document.

  • Technical specification
    18 pages
    English language
    sale 15% off

This method objectively categorises sources by determination of the prominence of impulsive sound, with the aim of correlating to community response. This method for measuring the prominence of impulsive sounds is intended for sources not identified as gunfire or high-energy impulsive sound. It typically produces adjustments in the range 0,0 dB to 9,0 dB. These adjustments are intended to be used to categorise the sources as either regular impulsive or highly impulsive sound sources and apply the penalty indicated in ISO 1996-1. However, the adjustments may be applied directly, as is done in NT ACOU 112[2], and BS 4142[3]. ISO 1996-2 provides additional guidance for performing these measurements. The method is intended for use on sources with impulsive characteristics that are not already categorised in ISO 1996-1. A non-exhaustive list of examples includes compressed air release, scrap handling, goods delivery, fork lifts with rattling forks, skateboard ramps, industrial shearing, gas discharges, percussive tools in demolition, powered riveting, etc. The method is not intended for use on sounds from firearms. Although the measurements of prominence may give relevant results, research has shown the response to these sources is influenced by factors outside of the scope of this document. In addition, the method is not intended to use for high-energy impulsive sound sources as specified in ISO 1996-1. NOTE This method is not intended for occupational hearing loss, which is outside the scope of this document. See Annex A for recommended additional research.

  • Technical specification
    10 pages
    English language
    sale 15% off

This document describes a test method for measuring in situ the sound absorption coefficient of road surfaces as a function of frequency in the range from 250 Hz to 4 kHz. Normal incidence is assumed. However, the test method can be applied at oblique incidence although with some limitations (see Annex F). The test method is intended for the following applications: — determination of the sound absorption properties of road surfaces in actual use; — comparison of sound absorption design specifications of road surfaces with actual performance data of the surface after completion of the construction work. The complex reflection factor can also be determined by this method.

  • Standard
    29 pages
    English language
    sale 15% off
  • Standard
    31 pages
    French language
    sale 15% off

This document specifies the essential characteristics of a test track surface intended to be used for measuring rolling sound emission of vehicles and their tyres. The surface design given in this document — produces consistent levels of tyre or road sound emission under a wide range of operating conditions including those appropriate to vehicle sound testing, — minimizes inter-site variation, — limits absorption of the vehicle sound sources, and — is consistent with road-building practice.

  • Standard
    24 pages
    English language
    sale 15% off

This document describes methods for checking laser profilometer performance with respect to the capability of such equipment in measuring pavement texture. The objective of this document is to make available an internationally accepted procedure by which performance of various laser-based equipment for pavement texture measurements can be evaluated. The document includes guidelines and recommendations intended to assist users of laser profilometers in verification of their equipment. This document is not intended as the basis for qualifying or approving laser profilometers. The procedure aims at providing tools for verifying that such systems perform satisfactory in all respects important for the correct measurements of texture, as well as to detect when and in what way the performance is unsatisfactory. This document also provides some general information about the limitations and trade-offs of laser profilometer systems. Modern profilometers in use for measurements on pavements are almost entirely of the contactless type (such as laser point or line triangulation) designed for two- or three-dimensional measurements, and this document is intended for evaluating the performance of this type of profilometers. However, some other contactless types of profilometer can use applicable parts of ISO 13473. This document has been prepared as a result of a need identified to correct for unacceptable differences in results measured by various equipment, even if the operators of these claim that they meet the applicable part of ISO 13473. It is not intended for other applications than pavement texture measurement. To be able to exclude errors influenced by programming mistakes or wrong interpretation of ISO 13473‑1 a reference program code, digital profiles and calculated reference MPD-values can be reached via Annex A. This document is a complement to other parts of ISO 13473 in which some specifications are given but methods to check them are not included.

  • Technical specification
    14 pages
    English language
    sale 15% off

This document specifies the measurement method and conditions to obtain reproducible noise levels on-board all kinds of vehicles operating on rails or other types of fixed track, hereinafter conventionally called “unit”, except for track maintenance vehicles in working modes. This document is applicable to type testing. It does not include all the instructions to carry out monitoring testing or evaluation of noise exposure of passengers or drivers over a whole journey. This document is not applicable to guided buses. It provides measurement procedures for vehicle interior noise (in general, a vehicle type test is carried out using only a selected subset of these tests): — when the vehicle is moving at constant speed; — when the vehicle is stationary; — when the vehicle is accelerating or decelerating; — in the driver's cab when an external warning horn is sounding (specifically required for European Union regulation application) It does not provide measurement procedures for: — audibility or intelligibility of any audible signals; — assessment of warning devices other than warning horns. The assessment of noise exposure of train crew due to operational conditions is not in the scope of this document. The results can be used, for example: — to characterise the noise inside these units; — to compare the internal noise of various units on a particular track section; — to collect basic source data for units. The test procedures specified in this document are of engineering grade (grade 2), the preferred grade for noise declaration purposes as defined in ISO 12001. If test conditions are relaxed, for example as they are for monitoring of in-service trains, then the results are no longer of engineering grade. The procedures specified for accelerating and decelerating tests are of survey grade (grade 3).

  • Standard
    41 pages
    English language
    sale 15% off
  • Standard
    45 pages
    French language
    sale 15% off

This document specifies a method to predict the dynamic forces generated by an active component on a receiving structure from measurement on a test bench. It sets out the requirements applicable to test benches and setup measurement conditions of dynamic forces: a criterion of validity of transfer functions measurements can be established for example. The objective is to evaluate noise and vibrations generated by active components mounted on receiving structures, including the possibility to optimise vibration isolators. It can be applied to different systems connected to a building, such as a compressor or a power generator, or to systems connected to a vehicle body, such as an engine powertrain or an electrical actuator, for example.

  • Standard
    58 pages
    English language
    sale 15% off

This document specifies methods for recording the time history of the sound pressure produced either by shooting with calibres of less than 20 mm, or by detonation of explosive charges of less than 50 g TNT equivalent, within the shooting range at locations of interest, regarding the exposure to sound of the shooter, or any other person within the shooting range. The time history of the sound pressure can be the basis for further analyses of this type of sound at the locations of interest.

  • Standard
    21 pages
    English language
    sale 15% off
  • Standard
    23 pages
    French language
    sale 15% off
  • Standard
    23 pages
    French language
    sale 15% off

This document provides specifications for socio-acoustic surveys and social surveys which include questions on noise effects (referred to hereafter as “social surveys”). It includes questions to be asked, response scales, key aspects of conducting the survey, and reporting the results. It is recognized that specific requirements and protocols of some social studies may not permit the use of some or all of the present specifications. This document in no way lessens the merit, value or validity of such research studies. The scope of this document is restricted to surveys conducted to obtain information about noise annoyance “at home”. Surveys conducted to obtain information about noise annoyance in other situations, such as recreational areas, work environments and inside vehicles, are not included. This document concerns only the questions on noise annoyance used in a social survey and the most important additional specifications needed to accomplish a high level of comparability with other studies. Other elements which are required to provide high-quality social surveys, but which are not specific for social surveys on noise (such as sampling methods), can be found in textbooks (see References [1] and [2]). Conformity with the recommendations of this document does not guarantee the collection of accurate, precise or reliable information about the prevalence of noise-induced annoyance and/or its relationship to noise exposure. Other aspects of study design, as well as uncertainties of estimation and measurement of noise exposure, can influence the interpretability of survey findings to a great extent.

  • Technical specification
    18 pages
    English language
    sale 15% off

This document specifies methodology for qualifying acoustic spaces as anechoic and hemi-anechoic spaces meeting the requirements of a free sound field. This document specifies discrete-frequency and broad-band test methods for quantifying the performance of anechoic and hemi-anechoic spaces, defines the qualification procedure for an omni-directional sound source suitable for free-field qualification, gives details of how to present the results and describes uncertainties of measurement. This document has been developed for qualifying anechoic and hemi-anechoic spaces for a variety of acoustical measurement purposes. It is expected that, over time, various standards and test codes will refer to this document in order to qualify an anechoic or hemi-anechoic space for a particular measurement. Annex D provides guidelines for the specification of test parameters and qualification criteria for referencing documents. In the absence of specific requirements or criteria, Annex A provides qualification criteria and measurement requirements to qualify anechoic and hemi-anechoic spaces for general purpose acoustical measurements. This document describes the divergence loss method for measuring the free sound field performance of an acoustic environment.

  • Standard
    22 pages
    English language
    sale 15% off
  • Standard
    23 pages
    French language
    sale 15% off

This document provides technical guidance to achieve acoustic quality of open office spaces to support dialogue and formal commitment between the various stakeholders involved in the planning, design, construction or layout of open-plan workspaces: end customers, project owners, prescribers, consultants, etc. It is applicable to all open-plan offices in which the following activities are performed: — Space type 1: activity not known yet – vacant floor plate; — Space type 2: activity mainly focusing on outside of the room communication (by telephone/audio/video); — Space type 3: activity mainly based on collaboration between people at the nearest workstations; — Space type 4: activity based on a small amount of collaborative work; — Space type 5: activity that can involve receiving public; — Space type 6: combining activities within the same space. More specifically, this document applies to refitting projects of existing business sites (renovation and/or change or add activities) and layout projects for new spaces and spaces delivered unfurnished. It covers both the activities and the operations of the following stakeholders: — end customers: diagnosis, survey, expression of needs in keeping with their knowledge in the area of acoustics; — project owners: drafting contract specifications; — project management companies (architects, acousticians, ergonomists, economists and consulting engineers): indicating the performance of acoustic solutions and the layout principles used to achieve the result expressed in the specifications; — building traders: reaching a clear and verifiable target with respect to the choices of materials and implementation; — Building developer: promoting indoor environmental quality, including acoustic comfort, in estate operations in order to use it as a competitive element; — specialists in occupational health, safety and quality; — expert assessments and consultancy.

  • Standard
    39 pages
    English language
    sale 15% off
  • Standard
    41 pages
    French language
    sale 15% off

This document specifies two tyres intended to serve as reference tyres when using the close-proximity (CPX) method specified in ISO 11819-2. The CPX method is a method for evaluating different road surfaces with respect to their influence on traffic noise, under conditions when tyre/road noise dominates. This method ideally requires the use of standardized tyres, which have noise characteristics that are broadly representative of the effect of road surfaces on the noise emission of passenger car and heavy vehicle tyres. However, such tyres are not specified in ISO 11819-2. This document serves to specify these standardized tyres.

  • Technical specification
    18 pages
    English language
    sale 15% off
  • Technical specification
    20 pages
    French language
    sale 15% off

This document specifies the conditions for obtaining reproducible and comparable measurement results of the airborne sound emitted by vessels of all kinds, on inland waterways and in ports and harbours, except powered recreational craft as specified in the ISO 14509 series. This document is applicable to sea-going vessels, harbour vessels, dredgers, and all watercraft, including non-displacement craft, used or capable of being used as a means of transport on water. There are no limitations to the application of this document with regard to speed, length and height of vessels, as long as the ship is determined to act like a point source at the reference distance of 25 m. All noise data obtained in accordance with this document are referred to a reference distance of 25 m.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    13 pages
    French language
    sale 15% off

This document facilitates a standardized interpretation and a verifiably consistent software implementation of the sound propagation part of the calculation method CNOSSOS-EU:2015 according to ISO 17534-1. Other parts of CNOSSOS-EU:2015, such as the source models or the calculation method for aircraft noise, are beyond the scope of this document. This document provides an agreed interpretation of ambiguous aspects of the sound propagation part of CNOSSOS-EU:2015, a set of illustrative test cases along with reference solutions, and an example of a template form for the declaration of conformity for software manufacturers.

  • Technical report
    124 pages
    English language
    sale 15% off

This document deals with the technical aspects of noise control in workplaces. The various technical measures are stated, the related acoustical quantities described, the magnitude of noise reduction discussed, and the verification methods outlined. This document deals only with audible sound.

  • Standard
    31 pages
    English language
    sale 15% off
  • Standard
    32 pages
    French language
    sale 15% off

This document outlines strategies to be used in dealing with noise problems in existing and planned workplaces by describing basic concepts in noise control (noise reduction, noise emission, noise immission and noise exposure). It is applicable to all types of workplaces and all types of sources of sound which are met in workplaces, including human activities. It includes those important strategies to adopt when buying a new machine or equipment. This document deals only with audible sound.

  • Standard
    29 pages
    English language
    sale 15% off
  • Standard
    30 pages
    French language
    sale 15% off

This document establishes general rules for the acoustic testing of air-terminal devices, air-terminal units, dampers and valves used in air diffusion and air distribution systems in order to determine sound power levels as defined in ISO 3741.

  • Standard
    14 pages
    English language
    sale 15% off
  • Standard
    14 pages
    French language
    sale 15% off

This document specifies a laboratory substitution method to determine the insertion loss without flow of ducted, mainly absorbent, circular and rectangular silencers, as well as other duct elements for use in ventilating and air-conditioning systems. NOTE Laboratory measurement procedures for ducted silencers with superimposed flow are described in ISO 7235[5]. This document is applicable to silencers where the design velocity does not exceed 15 m/s. As the method does not include self-generated flow noise, this document is not suitable for tests on silencers where this type of noise is of great importance for the evaluation of the silencer performance. As most silencers, particularly in offices and dwelling, have design velocities below 15 m/s, this document can often be a cost-efficient alternative to ISO 7235[5]. The insertion loss determined according to this document in a laboratory is not necessarily the same as the insertion loss obtained in an installation in the field. Different sound and flow fields in the duct yield different results. In this document, the sound field is dominated by plane wave modes. Due to the use of regular test ducts, the results can include some flanking transmission via structural vibrations in the duct walls that sets an upper limit to the insertion loss that can be determined. This document is intended to be used for circular silencers with diameters of 80 mm to 2 000 mm or for rectangular silencers with cross-sectional areas within the same range.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    9 pages
    French language
    sale 15% off

This document provides requirements and supporting information on analysis of data collected in-situ through methods as specified in ISO/TS 12913-2.

  • Technical specification
    22 pages
    English language
    sale 15% off

This document specifies a method where a vibrating component (a source of structure-borne sound or vibration) is attached to a passive structure (or receiver) and is the cause of vibration in, or structure-borne sound radiation from, the assembly. Examples are pumps installed in ships, servo motors in vehicles or machines and plant in buildings. Almost any vibrating component can be considered as a source in this context. Due to the need to measure vibration at all contact degrees of freedom (DOFs) (connections between the source and receiver), this document can only be applied to assemblies for which such measurement is possible. This document is applicable only to assemblies whose frequency response functions (FRFs) are linear and time invariant. The source can be installed into a real assembly or attached to a specially designed test stand (as described in 5.2). The standard method has been validated for stationary signals such that the results can be presented in the frequency domain. However, the method is not restricted to stationary signals: with appropriate data processing, it is also applicable to time-varying signals such as transients and shocks (provided linearity and time invariance of the FRFs are preserved). This document provides a method for measurement and presentation of blocked forces, together with guidelines for minimizing uncertainty. It provides a method evaluating the quality of the results through an on-board validation procedure but does not comment on the acceptability or otherwise of the results.

  • Standard
    39 pages
    English language
    sale 15% off
  • Standard
    41 pages
    French language
    sale 15% off

This document specifies a test procedure, environment and instrumentation for measuring the exterior sound pressure levels from road vehicles under stationary conditions, providing a continuous measure of the sound pressure level over a range of engine speeds. This document applies only to road vehicles of categories L, M, and N equipped with internal combustion engines. Vehicles where an internal combustion engine cannot operate when the vehicle is at stationary conditions are outside the scope of this document. The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. It is within the scope of this document to measure the stationary A-weighted sound pressure level during — type approval measurements of vehicle; — measurements at the manufacturing stage; — measurements at official testing stations; — measurements at roadside testing. This document specifices a test method to determine a reference sound level which is unique for the vehicle and therefore not suitable to compare against a general limit, as test condition, microphone condition location relative to the sound sources can vary significantly. The test conditions in proximity and at engine speeds significantly higher compared to real operation conditions in traffic are deliberately chosen to enable in-use tests at higher background conditions, which are typical for road-side checks. Technical background information is given in Annex A.

  • Standard
    18 pages
    English language
    sale 15% off
  • Standard
    18 pages
    French language
    sale 15% off

ISO 3740:2019 gives guidance for the use of a set of twelve basic International Standards (see Tables 1, 2 and 3) describing various methods for determining sound power levels from all types of machinery, equipment and products. It provides guidance on the selection of one or more of these standards, appropriate to any particular type of sound source, measurement environment and desired accuracy. The guidance given applies to airborne sound. It is for use in the preparation of noise test codes (see ISO 12001) and also in noise emission testing where no specific noise test code exists. Such standardized noise test codes can recommend the application of particular basic International Standard(s) and give detailed requirements on mounting and operating conditions for a particular family to which the machine under test belongs, in accordance with general principles given in the basic standards. ISO 3740:2019 is not intended to replace any of the details of, or add any additional requirements to, the individual test methods in the basic International Standards referenced. NOTE 1 Two quantities which complement each other can be used to describe the noise emission of machinery, equipment and products. One is the emission sound pressure level at a specified position and the other is the sound power level. The International Standards which describe the basic methods for determining emission sound pressure levels at work stations and at other specified positions are ISO 11200 to ISO 11205 (References [20] to [25]). NOTE 2 The sound energy level mentioned in ISO 3741 to ISO 3747 is not addressed in this document as it is not mentioned in any legal requirement. Its application is limited to very special cases of a single burst of sound energy or transient sound defined in ISO 12001.

  • Standard
    35 pages
    English language
    sale 15% off
  • Standard
    35 pages
    French language
    sale 15% off

This document describes a test method to determine the average depth of pavement surface macrotexture (see Clause 3) by measuring the profile of a surface and calculating the texture depth from this profile. The technique is designed to provide an average depth value of only the pavement macrotexture and is considered insensitive to pavement microtexture and unevenness characteristics. The objective of this document is to make available an internationally accepted procedure for determination of pavement surface texture depth which is an alternative to the traditionally used volumetric patch technique (generally using sand or glass beads), giving comparable texture depth values. To this end, this document describes filtering procedures that are designed to give the best possible representation of texture depths determined with the volumetric patch method[13]. Modern profilometers in use are almost entirely of the contactless type (e.g. laser, light slit or light sheet, to mention a few) and this document is primarily intended for this type. However, this does not exclude application of parts of it for other types of profilometers. This ISO 13473 series has been prepared as a result of a need identified when specifying a test surface for vehicle noise measurement (see ISO 10844:2014[6]). Macrotexture depth measurements according to this document are not generally adequate for specifying test conditions of vehicle or traffic noise measurements, but have limited applications as a supplement in conjunction with other ways of specifying a surfacing. This test method is suitable for determining the mean profile depth (MPD) of a pavement surface. This MPD can be transformed to a quantity which estimates the macrotexture depth according to the volumetric patch method. It is applicable to field tests as well as laboratory tests on pavement samples. When used in conjunction with other physical tests, the macrotexture depth values derived from this test method are applicable to estimation of pavement skid resistance characteristics (see e.g. Reference [15]), estimation of noise characteristics and assessment of the suitability of paving materials or pavement finishing techniques. The method, together with other measurements (where applicable), such as porosity or microtexture, can be used to assess the quality of pavements. This document is adapted for pavement texture measurement and is not intended for other applications. Pavement aggregate particle shape, size and distribution are surface texture features not addressed in this procedure. The method is not meant to provide a complete assessment of pavement surface texture characteristics. In particular, it is known that there are problems in interpreting the result if the method is applied to porous surfaces or to grooved surfaces (see Annex B). NOTE Other International Standards dealing with surface profiling methods include, for example, References [1], [2] and [3]. Although it is not clearly stated in these, they are mainly used for measuring surface finish (microtexture) of metal surfaces and are not intended to be applied to pavements.

  • Standard
    43 pages
    English language
    sale 15% off
  • Standard
    43 pages
    English language
    sale 15% off
  • Standard
    43 pages
    English language
    sale 15% off
  • Standard
    45 pages
    French language
    sale 15% off
  • Standard
    45 pages
    French language
    sale 15% off
  • Standard
    45 pages
    French language
    sale 15% off

This document is concerned with active noise reduction (ANR) earmuffs. It specifies the test methods for the determination of the active insertion loss and calculation procedures for deriving the total attenuation. For this aim, the values of sound attenuation in the passive mode also have to be known and are determined according to ISO 4869‑1. These methods are intended for steady noise exposures and are not applicable to noises containing impulsive components. The test methods account for the acoustical interaction between the wearer and the device using measurements of passive (REAT) and active microphone-in-real-ear (MIRE) measurements as specified in ISO 4869‑1 and ISO 11904‑1, respectively.

  • Standard
    11 pages
    English language
    sale 15% off
  • Standard
    11 pages
    French language
    sale 15% off