IEC 61203:2025 This document provides procedures and supervision for the use and maintenance of synthetic esters in transformers and other electrical equipment. This document includes recommendations on tests and evaluation procedures and outlines methods for reconditioning and reclaiming the liquid, when necessary

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61203:2025 This document provides procedures and supervision for the use and maintenance of synthetic esters in transformers and other electrical equipment. This document includes recommendations on tests and evaluation procedures and outlines methods for reconditioning and reclaiming the liquid, when necessary

  • Standard
    75 pages
    English and French language
    sale 15% off

IEC 60156:2025 specifies the method for determining the dielectric breakdown voltage of insulating liquids at power frequency. The test procedure is performed in a specified apparatus, where the oil sample is subjected to an increasing AC electrical field until breakdown occurs. The method applies to all types of insulating liquids of nominal viscosity up to 350 mm2/s at 40 °C. It is appropriate both for acceptance testing on unused liquids at the time of their delivery and for establishing the condition of samples taken in monitoring and maintenance of equipment.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61039:2025 establishes the detailed classification of the N family (insulating liquids) that belongs to class L (lubricants, industrial oils and related products) in accordance with ISO 8681 and ISO 6743-99, affecting product categories that include products derived from petroleum processing, synthetic chemical products and synthetic and natural esters.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61039:2025 establishes the detailed classification of the N family (insulating liquids) that belongs to class L (lubricants, industrial oils and related products) in accordance with ISO 8681 and ISO 6743-99, affecting product categories that include products derived from petroleum processing, synthetic chemical products and synthetic and natural esters.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63360:2025 This document specifies the quality of gases alternative to SF6 (subsequently referred to as gases) for use in electrical power equipment.
Detection techniques, applicable to the analysis of gases prior to their introduction into the electrical power equipment, are also described in this document.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60156:2025 specifies the method for determining the dielectric breakdown voltage of insulating liquids at power frequency. The test procedure is performed in a specified apparatus, where the oil sample is subjected to an increasing AC electrical field until breakdown occurs. The method applies to all types of insulating liquids of nominal viscosity up to 350 mm2/s at 40 °C. It is appropriate both for acceptance testing on unused liquids at the time of their delivery and for establishing the condition of samples taken in monitoring and maintenance of equipment.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63360:2025 This document specifies the quality of gases alternative to SF6 (subsequently referred to as gases) for use in electrical power equipment. Detection techniques, applicable to the analysis of gases prior to their introduction into the electrical power equipment, are also described in this document.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61039:2025 establishes the detailed classification of the N family (insulating liquids) that belongs to class L (lubricants, industrial oils and related products) in accordance with ISO 8681 and ISO 6743-99, affecting product categories that include products derived from petroleum processing, synthetic chemical products and synthetic and natural esters.

  • Standard
    24 pages
    English and French language
    sale 15% off

IEC 60156:2025 specifies the method for determining the dielectric breakdown voltage of insulating liquids at power frequency. The test procedure is performed in a specified apparatus, where the oil sample is subjected to an increasing AC electrical field until breakdown occurs. The method applies to all types of insulating liquids of nominal viscosity up to 350 mm2/s at 40 °C. It is appropriate both for acceptance testing on unused liquids at the time of their delivery and for establishing the condition of samples taken in monitoring and maintenance of equipment.

  • Standard
    52 pages
    English language
    sale 15% off

IEC 63360:2025 This document specifies the quality of gases alternative to SF6 (subsequently referred to as gases) for use in electrical power equipment.
Detection techniques, applicable to the analysis of gases prior to their introduction into the electrical power equipment, are also described in this document.

  • Standard
    57 pages
    English and French language
    sale 15% off

IEC 60422:2024 provides monitoring guidance and procedures that are required for the use and maintenance of mineral insulating oils and other hydrocarbon-based liquids in transformers and other electrical equipment, including strategic spares and tanks for holding spare parts and components.
This document is applicable to mineral insulating oils, originally supplied conforming to IEC 60296, in transformers, switchgear and other electrical apparatus where oil sampling is reasonably practicable, and where the normal operating conditions specified in the equipment specifications apply.
This document is also intended to assist the power equipment operator to evaluate the condition of the oil and maintain it in a serviceable condition. It also provides a common basis for the preparation of more specific and complete local codes of practice.
The document includes recommendations on tests and evaluation procedures, and outlines methods for reconditioning and reclaiming oil, and the decontamination of oil contaminated with PCBs.
NOTE The condition monitoring of electrical equipment, for example by analysis of dissolved gases, furanic compounds or other means, is outside the scope of this document.

  • Standard
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62770:2024 describes specifications and test methods for unused natural esters in transformers and similar liquid-immersed electrical equipment in which a liquid is required as an insulating and heat transfer medium. The exposure of natural ester to air leads to deterioration of the insulating liquid. Use of natural esters is therefore restricted to sealed units, or with the conservator tank protected from the contact with atmosphere by a membrane or other suitable system.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62770:2024 describes specifications and test methods for unused natural esters in transformers and similar liquid-immersed electrical equipment in which a liquid is required as an insulating and heat transfer medium. The exposure of natural ester to air leads to deterioration of the insulating liquid. Use of natural esters is therefore restricted to sealed units, or with the conservator tank protected from the contact with atmosphere by a membrane or other suitable system.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62770:2024 describes specifications and test methods for unused natural esters in transformers and similar liquid-immersed electrical equipment in which a liquid is required as an insulating and heat transfer medium. The exposure of natural ester to air leads to deterioration of the insulating liquid. Use of natural esters is therefore restricted to sealed units, or with the conservator tank protected from the contact with atmosphere by a membrane or other suitable system.

  • Standard
    33 pages
    English language
    sale 15% off

IEC 60422:2024 provides monitoring guidance and procedures that are required for the use and maintenance of mineral insulating oils and other hydrocarbon-based liquids in transformers and other electrical equipment, including strategic spares and tanks for holding spare parts and components. This document is applicable to mineral insulating oils, originally supplied conforming to IEC 60296, in transformers, switchgear and other electrical apparatus where oil sampling is reasonably practicable, and where the normal operating conditions specified in the equipment specifications apply. This document is also intended to assist the power equipment operator to evaluate the condition of the oil and maintain it in a serviceable condition. It also provides a common basis for the preparation of more specific and complete local codes of practice. The document includes recommendations on tests and evaluation procedures, and outlines methods for reconditioning and reclaiming oil, and the decontamination of oil contaminated with PCBs. NOTE The condition monitoring of electrical equipment, for example by analysis of dissolved gases, furanic compounds or other means, is outside the scope of this document.

  • Standard
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60422:2024 provides monitoring guidance and procedures that are required for the use and maintenance of mineral insulating oils and other hydrocarbon-based liquids in transformers and other electrical equipment, including strategic spares and tanks for holding spare parts and components.
This document is applicable to mineral insulating oils, originally supplied conforming to IEC 60296, in transformers, switchgear and other electrical apparatus where oil sampling is reasonably practicable, and where the normal operating conditions specified in the equipment specifications apply.
This document is also intended to assist the power equipment operator to evaluate the condition of the oil and maintain it in a serviceable condition. It also provides a common basis for the preparation of more specific and complete local codes of practice.
The document includes recommendations on tests and evaluation procedures, and outlines methods for reconditioning and reclaiming oil, and the decontamination of oil contaminated with PCBs.
NOTE The condition monitoring of electrical equipment, for example by analysis of dissolved gases, furanic compounds or other means, is outside the scope of this document.

  • Standard
    140 pages
    English and French language
    sale 15% off

IEC 63177:2024 specifies the test method for the compatibility of construction materials with electrical insulating liquids for use in electrical equipment, such as liquid-immersed transformers and tap-changers, liquid-impregnated capacitors, and liquid-cooled rotating machines used in electrical vehicles and oil pumps. This document is applicable to mineral insulating liquids, natural esters, silicone insulating liquids, synthetic organic esters, modified esters, capacitor fluids based on synthetic aromatic hydrocarbons and e-transmission fluids used in electrical vehicles and oil pumps. The compatibility tests are not sufficient for a full qualification of construction materials for a given application without additional tests requested by the appropriate IEC Technical Committee or equipment manufacturers.

  • Standard
    38 pages
    English and French language
    sale 15% off

IEC 60567:2023 deals with the techniques for sampling free gases from gas-collecting relays from power transformers. Three methods of sampling free gases are described. The techniques for sampling oil from oil-filled equipment such as power and instrument transformers, reactors, bushings, oil-filled cables and oil-filled tank-type capacitors are no longer covered by this document, but are instead described in IEC 60475:2022, 4.2. Before analysing the gases dissolved in oil, they are first extracted from the oil. Three basic methods are described, one using extraction by vacuum (Toepler and partial degassing), another by displacement of the dissolved gases by bubbling the carrier gas through the oil sample (stripping) and the last one by partition of gases between the oil sample and a small volume of the carrier gas (headspace). The gases are analysed quantitatively after extraction by gas chromatography; a method of analysis is described. Free gases from gas-collecting relays are analysed without preliminary treatment.

  • Standard
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60567:2023 deals with the techniques for sampling free gases from gas-collecting relays from power transformers. Three methods of sampling free gases are described. The techniques for sampling oil from oil-filled equipment such as power and instrument transformers, reactors, bushings, oil-filled cables and oil-filled tank-type capacitors are no longer covered by this document, but are instead described in IEC 60475:2022, 4.2. Before analysing the gases dissolved in oil, they are first extracted from the oil. Three basic methods are described, one using extraction by vacuum (Toepler and partial degassing), another by displacement of the dissolved gases by bubbling the carrier gas through the oil sample (stripping) and the last one by partition of gases between the oil sample and a small volume of the carrier gas (headspace). The gases are analysed quantitatively after extraction by gas chromatography; a method of analysis is described. Free gases from gas-collecting relays are analysed without preliminary treatment.

  • Standard
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60567:2023 deals with the techniques for sampling free gases from gas-collecting relays from power transformers. Three methods of sampling free gases are described. The techniques for sampling oil from oil-filled equipment such as power and instrument transformers, reactors, bushings, oil-filled cables and oil-filled tank-type capacitors are no longer covered by this document, but are instead described in IEC 60475:2022, 4.2. Before analysing the gases dissolved in oil, they are first extracted from the oil. Three basic methods are described, one using extraction by vacuum (Toepler and partial degassing), another by displacement of the dissolved gases by bubbling the carrier gas through the oil sample (stripping) and the last one by partition of gases between the oil sample and a small volume of the carrier gas (headspace). The gases are analysed quantitatively after extraction by gas chromatography; a method of analysis is described. Free gases from gas-collecting relays are analysed without preliminary treatment.

  • Standard
    128 pages
    English language
    sale 15% off
  • Standard
    128 pages
    English and French language
    sale 15% off

This International Standard covers specifications and test methods for unused synthetic aromatic hydrocarbons intended for use as insulating liquid in electrical equipment.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This International Standard covers specifications and test methods for unused synthetic aromatic hydrocarbons intended for use as insulating liquid in electrical equipment.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60867:2022 covers specifications and test methods for unused synthetic aromatic hydrocarbons intended for use as insulating liquid in cables and capacitors.

  • Standard
    41 pages
    English and French language
    sale 15% off

This document describes how the concentrations of dissolved gases or free gases can be interpreted to diagnose the condition of oil-filled electrical equipment in service and suggest future action.
This document is applicable to electrical equipment filled with mineral insulating oil and insulated with cellulosic paper or pressboard-based solid insulation. Information about specific types of equipment such as transformers (power, instrument, industrial, railways, distribution), reactors, bushings, switchgear and oil-filled cables is given only as an indication in the application notes.
This document can be applied, but only with caution, to other liquid-solid insulating systems.
In any case, the indications obtained are given only as guidance with resulting action undertaken only with proper engineering judgment.

  • Standard
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to the sampling procedure used for insulating liquids in delivery containers and in electrical equipment such as power and instrument transformers, reactors, bushings, oil-filled cables, oil-filled tank-type capacitors, switchgear and load tap changers (LTCs).
This document applies to liquids the viscosity of which at the sampling temperature is less than 1 500 mm2/s (or cSt). It applies to mineral oils and non-mineral oils (such as synthetic esters, natural esters, vegetable oils or silicones).

  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This International Standard gives the requirements for polyimide films used for electrical purposes. Materials which conform to this specification meet established levels of performance. However, the selection of a material by a user for a specific application should be based on the actual requirements necessary for adequate performance in that application and not based on this specification alone. Safety warning: it is the responsibility of the user of the methods contained or referred to in this document to ensure that they are used in a safe manner.

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to the sampling procedure used for insulating liquids in delivery containers and in electrical equipment such as power and instrument transformers, reactors, bushings, oil-filled cables, oil-filled tank-type capacitors, switchgear and load tap changers (LTCs). This document applies to liquids the viscosity of which at the sampling temperature is less than 1 500 mm2/s (or cSt). It applies to mineral oils and non-mineral oils (such as synthetic esters, natural esters, vegetable oils or silicones).

  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes how the concentrations of dissolved gases or free gases can be interpreted to diagnose the condition of oil-filled electrical equipment in service and suggest future action. This document is applicable to electrical equipment filled with mineral insulating oil and insulated with cellulosic paper or pressboard-based solid insulation. Information about specific types of equipment such as transformers (power, instrument, industrial, railways, distribution), reactors, bushings, switchgear and oil-filled cables is given only as an indication in the application notes. This document can be applied, but only with caution, to other liquid-solid insulating systems. In any case, the indications obtained are given only as guidance with resulting action undertaken only with proper engineering judgment.

  • Standard
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60312:2019 defines requirements for the characterization of unused modified esters or blends of unused esters used as insulating liquids for electrotechnical applications. It does not cover liquids that contain any proportion of used liquids. The liquids covered by this document are intended mainly for transformer applications. Unused modified/synthetized esters are derived from a natural or synthetic base, or are blends of both. This document covers a variety of ester liquids not covered by other standards specific to natural esters (IEC 62770) or synthetic esters (IEC 61099). As it addresses various categories of liquids, this document also covers a wide range of values for certain performance characteristics. An important property is viscosity, which can affect the design and cooling performance of electrical equipment. A categorization is defined based on the kinematic viscosity of the different liquids. The category of low viscosity ester liquids is established.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60599:2022 describes how the concentrations of dissolved gases or free gases can be interpreted to diagnose the condition of oil-filled electrical equipment in service and suggest future action. This document is applicable to electrical equipment filled with mineral insulating oil and insulated with cellulosic paper or pressboard-based solid insulation. Information about specific types of equipment such as transformers (power, instrument, industrial, railways, distribution), reactors, bushings, switchgear and oil-filled cables is given only as an indication in the application notes. This document can be applied, but only with caution, to other liquid-solid insulating systems. In any case, the indications obtained are given only as guidance with resulting action undertaken only with proper engineering judgment.

  • Standard
    122 pages
    English language
    sale 15% off
  • Standard
    80 pages
    English and French language
    sale 15% off

IEC 60475:2022 is applicable to the sampling procedure used for insulating liquids in delivery containers and in electrical equipment such as power and instrument transformers, reactors, bushings, oil-filled cables, oil-filled tank-type capacitors, switchgear and load tap changers (LTCs). This document applies to liquids the viscosity of which at the sampling temperature is less than 1 500 mm2/s (or cSt). It applies to mineral oils and non-mineral oils (such as synthetic esters, natural esters, vegetable oils or silicones).

  • Standard
    90 pages
    English language
    sale 15% off
  • Standard
    60 pages
    English and French language
    sale 15% off

This document provides criteria for the re-use of sulphur hexafluoride (SF6) and its mixtures after recovery and reclaiming from electrical equipment (e.g. for maintenance, at the end-oflife). Sulphur hexafluoride (SF6), nitrogen (N2) and carbon tetrafluoride (CF4), are gases commonly used for electrical equipment. Taking into account environmental concerns, particular attention is paid to re-use criteria for SF6 and its mixtures with N2 and CF4 for its use in electrical equipment. Procedures for recovering and reclaiming used SF6 and its mixtures are outside the scope of this document and are described in IEC 62271-4. This document provides several annexes on the description of the different methods of analysis, on by-products, on the procedure for evaluating the potential health effects from byproducts, on cryogenic reclaiming of SF6, and on reclaiming recommendations. Storage, transportation and disposal of SF6 and its mixtures are outside the scope of this document and are covered by IEC 62271-4. Procedures to determine SF6 leakages are described in IEC 60068-2-17 [4]1. For the purposes of this document, the complementary gases used in SF6 mixtures will be limited to N2 or CF4.

  • Standard
    51 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Specifies a procedure for the determination of the kinematic viscosity of mineral insulating oils, both transparent and opaque, at very low temperatures, after a cold soaking period of at least 20 h, by measuring the time for a volume of liquid to flow under gravity throught a calibrated glass capillary viscometer.  Applies at all temperatures to both Newtonian and non-Newtonian liquids having viscosities of up to 20 000 mm2/s.

  • Standard
    48 pages
    English and French language
    sale 15% off

IEC 62961:2018 establishes the measurement of the interfacial tension between insulating liquid and water by means of the Du Noüy ring method close to equilibrium conditions. In order to obtain a value that provides a realistic expression of the real interfacial tension, a measurement after a surface age of approximately 180 s is recorded.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC TR 63025:2021(E) specifies two test methods for methanol and ethanol determination in insulating liquids.
Methanol (MeOH) and ethanol (EtOH) are two light alcohols generated during the degradation process of cellulosic materials. They are soluble in insulating liquids so they can be regarded as ageing tracers whose concentrations in oil reflect the degradation of insulating cellulosic materials in liquid-impregnated transformers.

  • Technical report
    26 pages
    English language
    sale 15% off

IEC 60376:2018 defines the quality for technical grade sulphur hexafluoride (SF6) and complementary gases such as nitrogen (N2) and carbon tetra-fluoride (CF4), for use in electrical equipment. Detection techniques, covering both laboratory and in-situ portable instrumentation, applicable to the analysis of SF6, N2 and CF4 gases prior to the introduction of these gases into the electrical equipment are also described in this document. This document provides some information on sulphur hexafluoride in Annex A and on the environmental effects of SF6 in Annex B. Information about SF6 by-products and the procedure for evaluating the potential effects of SF6 by-products on human health are covered by IEC 60480, their handling and disposal being carried out according to international and local regulations with regard to the impact on the environment. Handling of SF6 and its mixtures is covered by IEC 62271-4. Procedures to determine SF6 leakages are described in IEC 60068-2-17. For the purposes of this document, the complementary gases used in SF6 mixtures will be limited to N2 or CF4. This third edition cancels and replaces the second edition published in 2005. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) the requirements for the use of SF6 in electrical equipment have been confirmed; b) a specification for complementary gases to be used in SF6 mixtures with N2 and CF4 has been included; c) the introduction and scope have been merged; d) a new repartition of the annexes of IEC 60376, IEC 60480 and IEC 62271-4 has been included.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61125:2018 describes a test method for evaluating the oxidation stability of insulating liquids in the delivered state under accelerated conditions regardless of whether or not antioxidant additives are present. The duration of the test can be different depending on the insulating liquid type and is defined in the corresponding standards (e.g. in IEC 60296, IEC 61099, IEC 62770). The method can be used for measuring the induction period, the test being continued until the volatile acidity significantly exceeds 0,10 mg KOH/g in the case of mineral oils. This value can be significantly higher in the case of ester liquids. Additional test methods such as those described in IEC TR 62036 based on differential scanning calorimetry can also be used as screening tests, but are out of the scope of this document. This second edition cancels and replaces the first edition published in 1992 and Amendment 1: 2004. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) the title has been modified to include insulating liquids different from mineral insulating oils (hydrocarbon); b) the method applies for insulating liquids in the delivered state; c) former Method C is now the main normative method; d) precision data of the main normative method has been updated concerning the dissipation factor; e) former Method A has been deleted; f) former Method B has been transferred to Annex B; g) a new method evaluating the thermo-oxidative behaviour of esters is included in Annex C.

  • Standard
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62975:2021 provides procedures and guidelines that are intended for the use and maintenance of natural ester liquid in sealed transformers and other electrical equipment.
This document is applicable to natural esters, originally supplied conforming to IEC 62770 and other applicable standards (e.g. ASTM D6871) in transformers, switchgear and electrical apparatus where liquid sampling is practical and where the normal operating conditions specified in the equipment specifications apply.
At present, there is a limited amount of information available for electrical equipment other than transformers.
This document is also intended to assist the power equipment operator to evaluate the condition of the natural ester and maintain it in a serviceable condition. It also provides a common basis for the preparation of more specific and complete local codes of practice.
The document includes recommendations on tests and evaluation procedures and outlines methods for reconditioning and reclaiming the liquid, when necessary.

  • Standard
    73 pages
    English and French language
    sale 15% off

IEC 60296:2020 provides specifications and test methods for unused and recycled mineral insulating oils. It applies to mineral oil delivered according to the contractual agreement, intended for use in transformers, switchgear and similar electrical equipment in which oil is required for insulation and heat transfer. Both unused oil and recycled oil under the scope of this document have not been used in, nor been in contact with electrical equipment or other equipment not required for manufacture, storage or transport.
Unused oils are obtained by refining, modifying and/or blending of petroleum products and other hydrocarbons from virgin feedstock.
Recycled oils are produced from oils previously used as mineral insulating oils in electrical equipment that have been subjected to re-refining or reclaiming (regeneration) by processes employed offsite. Such oils will have originally been supplied in compliance with a recognized unused mineral insulating oil specification. This document does not differentiate between the methods used to recycle mineral insulating oil. Oils treated on-site (see IEC 60422) are not within the scope of this document.
Oils with and without additives are both within the scope of this document.
This document does not apply to mineral insulating oils used as impregnating medium in cables or capacitors.
This fifth edition cancels and replaces the fourth edition published in 2012. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
– This International Standard is applicable to specifications and test methods for unused and recycled mineral insulating oils in the delivered state.
– Within the transformer insulating oils, two groups, Type A and Type B, are defined, based on their performance.
– A new method for stray gassing under thermo-oxidative stress of mineral insulating oils, which has been tested in a joint round robin test (RRT) between CIGRE D1 and IEC technical committee 10, has been included.

  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60296:2020 provides specifications and test methods for unused and recycled mineral insulating oils. It applies to mineral oil delivered according to the contractual agreement, intended for use in transformers, switchgear and similar electrical equipment in which oil is required for insulation and heat transfer. Both unused oil and recycled oil under the scope of this document have not been used in, nor been in contact with electrical equipment or other equipment not required for manufacture, storage or transport. Unused oils are obtained by refining, modifying and/or blending of petroleum products and other hydrocarbons from virgin feedstock. Recycled oils are produced from oils previously used as mineral insulating oils in electrical equipment that have been subjected to re-refining or reclaiming (regeneration) by processes employed offsite. Such oils will have originally been supplied in compliance with a recognized unused mineral insulating oil specification. This document does not differentiate between the methods used to recycle mineral insulating oil. Oils treated on-site (see IEC 60422) are not within the scope of this document. Oils with and without additives are both within the scope of this document. This document does not apply to mineral insulating oils used as impregnating medium in cables or capacitors. This fifth edition cancels and replaces the fourth edition published in 2012. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: – This International Standard is applicable to specifications and test methods for unused and recycled mineral insulating oils in the delivered state. – Within the transformer insulating oils, two groups, Type A and Type B, are defined, based on their performance. – A new method for stray gassing under thermo-oxidative stress of mineral insulating oils, which has been tested in a joint round robin test (RRT) between CIGRE D1 and IEC technical committee 10, has been included.

  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60296:2020 provides specifications and test methods for unused and recycled mineral insulating oils. It applies to mineral oil delivered according to the contractual agreement, intended for use in transformers, switchgear and similar electrical equipment in which oil is required for insulation and heat transfer. Both unused oil and recycled oil under the scope of this document have not been used in, nor been in contact with electrical equipment or other equipment not required for manufacture, storage or transport.
Unused oils are obtained by refining, modifying and/or blending of petroleum products and other hydrocarbons from virgin feedstock.
Recycled oils are produced from oils previously used as mineral insulating oils in electrical equipment that have been subjected to re-refining or reclaiming (regeneration) by processes employed offsite. Such oils will have originally been supplied in compliance with a recognized unused mineral insulating oil specification. This document does not differentiate between the methods used to recycle mineral insulating oil. Oils treated on-site (see IEC 60422) are not within the scope of this document.
Oils with and without additives are both within the scope of this document.
This document does not apply to mineral insulating oils used as impregnating medium in cables or capacitors.
This fifth edition cancels and replaces the fourth edition published in 2012. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
– This International Standard is applicable to specifications and test methods for unused and recycled mineral insulating oils in the delivered state.
– Within the transformer insulating oils, two groups, Type A and Type B, are defined, based on their performance.
– A new method for stray gassing under thermo-oxidative stress of mineral insulating oils, which has been tested in a joint round robin test (RRT) between CIGRE D1 and IEC technical committee 10, has been included.

  • Standard
    82 pages
    English and French language
    sale 15% off

IEC 60312:2019 defines requirements for the characterization of unused modified esters or blends of unused esters used as insulating liquids for electrotechnical applications. It does not cover liquids that contain any proportion of used liquids. The liquids covered by this document are intended mainly for transformer applications.
Unused modified/synthetized esters are derived from a natural or synthetic base, or are blends of both. This document covers a variety of ester liquids not covered by other standards specific to natural esters (IEC 62770) or synthetic esters (IEC 61099). As it addresses various categories of liquids, this document also covers a wide range of values for certain performance characteristics. An important property is viscosity, which can affect the design and cooling performance of electrical equipment. A categorization is defined based on the kinematic viscosity of the different liquids. The category of low viscosity ester liquids is established.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides criteria for the re-use of sulphur hexafluoride (SF6) and its mixtures after recovery and reclaiming from electrical equipment (e.g. for maintenance, at the end-oflife).
Sulphur hexafluoride (SF6), nitrogen (N2) and carbon tetrafluoride (CF4), are gases commonly used for electrical equipment. Taking into account environmental concerns, particular attention is paid to re-use criteria for SF6 and its mixtures with N2 and CF4 for its use in electrical equipment. Procedures for recovering and reclaiming used SF6 and its mixtures are outside the scope of this document and are described in IEC 62271-4.
This document provides several annexes on the description of the different methods of analysis, on by-products, on the procedure for evaluating the potential health effects from byproducts, on cryogenic reclaiming of SF6, and on reclaiming recommendations.
Storage, transportation and disposal of SF6 and its mixtures are outside the scope of this document and are covered by IEC 62271-4. Procedures to determine SF6 leakages are described in IEC 60068-2-17 [4]1.
For the purposes of this document, the complementary gases used in SF6 mixtures will be limited to N2 or CF4.

  • Standard
    51 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63012:2019 defines requirements for the characterization of unused modified esters or blends of unused esters used as insulating liquids for electrotechnical applications. It does not cover liquids that contain any proportion of used liquids. The liquids covered by this document are intended mainly for transformer applications.
Unused modified/synthetized esters are derived from a natural or synthetic base, or are blends of both. This document covers a variety of ester liquids not covered by other standards specific to natural esters (IEC 62770) or synthetic esters (IEC 61099). As it addresses various categories of liquids, this document also covers a wide range of values for certain performance characteristics. An important property is viscosity, which can affect the design and cooling performance of electrical equipment. A categorization is defined based on the kinematic viscosity of the different liquids. The category of low viscosity ester liquids is established.

  • Standard
    41 pages
    English and French language
    sale 15% off

IEC 60480:2019 provides criteria for the re-use of sulphur hexafluoride (SF6) and its mixtures after recovery and reclaiming from electrical equipment (e.g. for maintenance, at the end-of-life).
Sulphur hexafluoride (SF6), nitrogen (N2) and carbon tetrafluoride (CF4), are gases commonly used for electrical equipment. Taking into account environmental concerns, particular attention is paid to re-use criteria for SF6 and its mixtures with N2 and CF4 for its use in electrical equipment. Procedures for recovering and reclaiming used SF6 and its mixtures are outside the scope of this document and are described in IEC 62271-4.
This document provides several annexes on the description of the different methods of analysis, on by-products, on the procedure for evaluating the potential health effects from by-products, on cryogenic reclaiming of SF6, and on reclaiming recommendations.
Storage, transportation and disposal of SF6 and its mixtures are outside the scope of this document and are covered by IEC 62271-4. Procedures to determine SF6 leakages are described in IEC 60068-2-17.
For the purposes of this document, the complementary gases used in SF6 mixtures will be limited to N2 or CF4.
This third edition cancels and replaces the second edition, published in 2004. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
• specifications for the re-use of SF6 have been confirmed;
• specifications for the re-use of SF6 mixtures, namely SF6/N2 and SF6/CF4 mixtures are included;
• as a result of a new repartition of annexes in IEC 60376, IEC 60480 and IEC 62271-4, this new edition now contains the following five annexes:
– Annex A: Description of methods of analysis (on-site and laboratory);
– Annex B: By–products of SF6 and its mixtures;
– Annex C: Procedure for evaluating the potential effects on health from by products of SF6 and its mixtures;
– Annex D: Reclaiming recommendations.
– Annex E: Cryogenic reclaiming of SF6;

  • Standard
    97 pages
    English and French language
    sale 15% off

IEC 62961:2018 establishes the measurement of the interfacial tension between insulating liquid and water by means of the Du Noüy ring method close to equilibrium conditions. In order to obtain a value that provides a realistic expression of the real interfacial tension, a measurement after a surface age of approximately 180 s is recorded.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62961:2018 establishes the measurement of the interfacial tension between insulating liquid and water by means of the Du Noüy ring method close to equilibrium conditions. In order to obtain a value that provides a realistic expression of the real interfacial tension, a measurement after a surface age of approximately 180 s is recorded.

  • Standard
    41 pages
    English and French language
    sale 15% off

IEC 60376:2018 defines the quality for technical grade sulphur hexafluoride (SF6) and complementary gases such as nitrogen (N2) and carbon tetra-fluoride (CF4), for use in electrical equipment. Detection techniques, covering both laboratory and in-situ portable instrumentation, applicable to the analysis of SF6, N2 and CF4 gases prior to the introduction of these gases into the electrical equipment are also described in this document.
This document provides some information on sulphur hexafluoride in Annex A and on the environmental effects of SF6 in Annex B.
Information about SF6 by-products and the procedure for evaluating the potential effects of SF6 by-products on human health are covered by IEC 60480, their handling and disposal being carried out according to international and local regulations with regard to the impact on the environment. Handling of SF6 and its mixtures is covered by IEC 62271-4.
Procedures to determine SF6 leakages are described in IEC 60068-2-17.
For the purposes of this document, the complementary gases used in SF6 mixtures will be limited to N2 or CF4.
This third edition cancels and replaces the second edition published in 2005. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) the requirements for the use of SF6 in electrical equipment have been confirmed;
b) a specification for complementary gases to be used in SF6 mixtures with N2 and CF4 has been included;
c) the introduction and scope have been merged;
d) a new repartition of the annexes of IEC 60376, IEC 60480 and IEC 62271-4 has been included.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60836:2015 covers specifications and test methods for unused silicone liquids intended for use in transformers and other electrotechnical equipment. Besides the standard transformer applications there are other applications of silicone liquids, such like cable accessories, capacitors, electrical magnets etc. This edition includes the following major technical changes with regard to the second edition: a) classification of liquids according to IEC 61039 have been adapted with respect to the latest edition of IEC 61039:2008; b) classification of liquids according to IEC 61100:1992 have been removed as IEC 61100 has been withdrawn; c) minimum requirements for other silicone liquids for electrotechnical purposes have been added.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day