13.080.99 - Other standards related to soil quality
ICS 13.080.99 Details
Other standards related to soil quality
Weitere Bodenuntersuchungsaspekte
Autres normes relatives a la qualité du sol
Drugi standardi v zvezi s kakovostjo tal
General Information
Frequently Asked Questions
ICS 13.080.99 is a classification code in the International Classification for Standards (ICS) system. It covers "Other standards related to soil quality". The ICS is a hierarchical classification system used to organize international, regional, and national standards, facilitating the search and identification of standards across different fields.
There are 113 standards classified under ICS 13.080.99 (Other standards related to soil quality). These standards are published by international and regional standardization bodies including ISO, IEC, CEN, CENELEC, and ETSI.
The International Classification for Standards (ICS) is a hierarchical classification system maintained by ISO to organize standards and related documents. It uses a three-level structure with field (2 digits), group (3 digits), and sub-group (2 digits) codes. The ICS helps users find standards by subject area and enables statistical analysis of standards development activities.
e-Library Subscription
Create subscription and get permanent access to documents within 13.080.99 - Other standards related to soil quality
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
This document specifies the identification of radionuclides and the measurement of their activity in soil using in situ gamma spectrometry with portable systems equipped with germanium or scintillation detectors.
This document is suitable to rapidly assess the activity of artificial and natural radionuclides deposited on or present in soil layers of large areas of a site under investigation.
This document can be used in connection with radionuclide measurements of soil samples in the laboratory (see ISO 18589-3) in the following cases:
— routine surveillance of the impact of radioactivity released from nuclear installations or of the evolution of radioactivity in the region;
— investigations of accident and incident situations;
— planning and surveillance of remedial action;
— decommissioning of installations or the clearance of materials.
It can also be used for the identification of airborne artificial radionuclides, when assessing the exposure levels inside buildings or during waste disposal operations.
Following a nuclear accident, in situ gamma spectrometry is a powerful method for rapid evaluation of the gamma activity deposited onto the soil surface as well as the surficial contamination of flat objects.
NOTE The method described in this document is not suitable when the spatial distribution of the radionuclides in the environment is not precisely known (influence quantities, unknown distribution in soil) or in situations with very high photon flux. However, the use of small volume detectors with suitable electronics allows measurements to be performed under high photon flux.
- Draft60 pagesEnglish languagee-Library read for1 day
This document specifies the identification of radionuclides and the measurement of their activity in soil using in situ gamma spectrometry with portable systems equipped with germanium or scintillation detectors. This document is suitable to rapidly assess the activity of artificial and natural radionuclides deposited on or present in soil layers of large areas of a site under investigation. This document can be used in connection with radionuclide measurements of soil samples in the laboratory (see ISO 18589-3) in the following cases: - routine surveillance of the impact of radioactivity released from nuclear installations or of the evolution of radioactivity in the region; - investigations of accident and incident situations; - planning and surveillance of remedial action; - decommissioning of installations or the clearance of materials. It can also be used for the identification of airborne artificial radionuclides, when assessing the exposure levels inside buildings or during waste disposal operations. Following a nuclear accident, in situ gamma spectrometry is a powerful method for rapid evaluation of the gamma activity deposited onto the soil surface as well as the surficial contamination of flat objects. NOTE The method described in this document is not suitable when the spatial distribution of the radionuclides in the environment is not precisely known (influence quantities, unknown distribution in soil) or in situations with very high photon flux. However, the use of small volume detectors with suitable electronics allows measurements to be performed under high photon flux.
- Standard54 pagesEnglish languagesale 15% off
- Standard55 pagesFrench languagesale 15% off
This document describes a method for the determination of the oxidizable organic matter content of a soil, which is mainly composed of fresh organic matter and fulvic and humic acids, by back titration with potassium permanganate.
The result obtained with this technical specification is not comparable with those obtained by EN 17685-1:2023 (loss on ignition).
- Technical specification12 pagesEnglish languagee-Library read for1 day
This document specifies the crucial steps of a quantitative real-time polymerase chain reaction (qPCR) method to quantify the abundance of specific mRNA molecules extracted from Daphnia magna.
The method allows the identification of molecular responses to exposures for potentially toxic substances through the analysis of the abundance of specific mRNA molecules. In this document, the central genes involved in reproductive and toxic responses are included.
NOTE The selection of genes can be adapted to specific exposure conditions, for example, exposure to known toxic substances, by adding genes known to respond to a specific insult.
The present method allows for rapid, robust and sensitive detection of molecular responses and can be used to analyse the toxic effects of water leachates from soil and waste. The method gives information of the concentration of a substance or test-liquid at which toxic effects begin to occur prior to observations of reproductive or toxic effects at higher levels of organization, which reduces the need for the use of safety factors in toxicity assessment.
The method is useful in several types of risk assessment. In this document, the genes studied are appropriate for the assessment of the risks when recycling materials and for the classification of waste, but the method can be adapted to other types of risk assessment by including other genes.
- Technical specification25 pagesEnglish languagee-Library read for1 day
This document describes a method for the determination of the oxidizable organic matter content of a soil, which is mainly composed of fresh organic matter and fulvic and humic acids, by back titration with potassium permanganate.
The result obtained with this technical specification is not comparable with those obtained by EN 17685-1:2023 (loss on ignition).
- Technical specification12 pagesEnglish languagee-Library read for1 day
This document specifies the crucial steps of a quantitative real-time polymerase chain reaction (qPCR) method to quantify the abundance of specific mRNA molecules extracted from Daphnia magna.
The method allows the identification of molecular responses to exposures for potentially toxic substances through the analysis of the abundance of specific mRNA molecules. In this document, the central genes involved in reproductive and toxic responses are included.
NOTE The selection of genes can be adapted to specific exposure conditions, for example, exposure to known toxic substances, by adding genes known to respond to a specific insult.
The present method allows for rapid, robust and sensitive detection of molecular responses and can be used to analyse the toxic effects of water leachates from soil and waste. The method gives information of the concentration of a substance or test-liquid at which toxic effects begin to occur prior to observations of reproductive or toxic effects at higher levels of organization, which reduces the need for the use of safety factors in toxicity assessment.
The method is useful in several types of risk assessment. In this document, the genes studied are appropriate for the assessment of the risks when recycling materials and for the classification of waste, but the method can be adapted to other types of risk assessment by including other genes.
- Technical specification25 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
4.1 Intended Use:
4.1.1 This guide may be used by various parties involved in sediment corrective action programs, including regulatory agencies, project sponsors, environmental consultants, toxicologists, risk assessors, site remediation professionals, environmental contractors, and other stakeholders.
4.2 Importance of the CSM:
4.2.1 The CSM should be continuously updated and refined to describe the physical properties, chemical composition and occurrence, biologic features, and environmental conditions of the sediment corrective action project (Guide E1689).
4.3 Reference Material:
4.3.1 This guide should be used in conjunction with other ASTM guides listed in 2.1 (especially Guides E3344 and E3382); this guide should also be used in conjunction with the material in the References at the end of this guide (including 1). Utilizing these reference materials will direct the user in developing representative background concentrations for a sediment site.
4.4 Flexible Site-Specific Implementation:
4.4.1 This guide provides a systematic, but flexible, framework to accommodate variations in approaches by regulatory agencies and by the user based on project objectives, site complexity, unique site features, regulatory requirements, newly developed guidance, newly published scientific research, changes in regulatory criteria, advances in scientific knowledge and technical capability, and unforeseen circumstances.
4.5 Regulatory Frameworks:
4.5.1 This guide is intended to be applicable to a broad range of local, state, tribal, federal, or international jurisdictions, each with its own unique regulatory framework. As such, this guide does not provide a detailed discussion of the requirements or guidance associated with any of these regulatory frameworks, nor is it intended to supplant applicable regulations and guidance. The user of this guide will need to be aware of the regulatory requirements and guidance in the jurisdiction where the work...
SCOPE
1.1 This guide describes data visualization, statistical, forensic chemistry and geochemical methodologies (including case studies) used in the evaluation of candidate background data sets; this evaluation leads to the development of representative background data sets for the sediment site. Statistical methodologies can then be applied to the representative background data sets to develop background threshold values (BTVs) that are measures of the upper limit of representative sediment background concentrations for the sediment site. In addition, representative background data sets and sediment site data sets can be compared using two-sample statistical tests to determine if there are statistically significant differences (at a specified confidence level) between the two data sets (such as, the median or mean values of the two data sets are significantly different).
1.1.1 This guide is intended to inform, complement, and support, but not supersede the guidelines established by local, state, tribal, federal, or international agencies.
1.2 Technically defensible representative sediment background concentrations are critical for several purposes (1).2 These include sediment site delineation, establishing remedial goals and cleanup levels, remedy selection, assessment of risks posed by representative background concentrations, and establishing appropriate post-remedial monitoring plans.
1.3 The overarching framework for the development of representative sediment background concentrations at sediment sites is presented in Guide E3382. Guide E3240 provides a general discussion of how conceptual site model (CSM) development fits into the risk-based corrective action framework for contaminated sediment sites, while Guide E3382 provides a detailed discussion of the elements of a sediment site CSM that need to be considered when developing representative sediment background concentrations. Guide E3344 describes how to se...
- Guide42 pagesEnglish languagesale 15% off
- Guide42 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The resistivity of the surrounding soil environment is a factor in the corrosion of underground structures. High resistivity soils are generally not as corrosive as low resistivity soils. The resistivity of the soil is one of many factors that influence the service life of a buried structure. Soil resistivity may affect the material selection and the location of a structure.5
5.2 Soil resistivity is of particular importance and interest in the corrosion process because it is basic in the analysis of corrosion problems and the design of corrective measures.
5.3 The test method is focused to provide an accurate, expeditious measurement of soil resistivity to assist in the determination of a soil’s corrosive nature. Test Method G57 emphasizes an in situ measurement commonly utilized in the design of a buried structures’ corrosion control (cathodic protection systems’ ground bed design, and so forth), but also includes information and procedures on a four-pin soil box method. The two-electrode soil box method is an accurate and more expeditious method than the four-pin soil box and often complements the four-pin, in situ soil resistivity method.
5.4 The saturated soil resistivity determined by this test method does not necessarily indicate the minimum soil resistivity.
SCOPE
1.1 This test method covers the equipment and procedures for the measurement of soil resistivity, for soil samples removed from the ground, for use in the assessment and control of corrosion of buried structures.
1.2 Procedures allow for this test method to be used in the field or in the laboratory.
1.3 The test method procedures are for the resistivity measurement of soil samples in the saturated condition and in the as-received condition.
1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Soil resistivity values are reported in ohm-centimeter.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
This document specifies a method for the determination of the loss on ignition (wLOI) of fine, intermediate, composite and coarse soils, organic soils and anthropogenic materials (according to
EN 16907 2) after ignition under air at 550°C.
NOTE The loss of mass suffered by these materials at 550 °C is usually due to the release of volatile compounds, water (absorbed, crystalized or structural) and gases from decomposition of organic matter and inorganic substances such as sulfur, sulfides or hydroxides (e.g. H2O, CO2, SO2).
A method is given in Annex B in order to estimate the organic matter content (COM) from the value of wLOI for clayey soils.
- Standard12 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
4.1 Intended Use:
4.1.1 This guide may be used by various parties involved in sediment corrective action programs, including regulatory agencies, project sponsors, environmental consultants, toxicologists, risk assessors, site remediation professionals, environmental contractors, and other stakeholders.
4.2 Updates to CSM:
4.2.1 The CSM should be updated as needed and refined to describe the physical properties, chemical composition and occurrence, biological features, and environmental conditions of the sediment corrective action project (Guide E1689).
4.3 Reference Material:
4.3.1 This guide should be used in conjunction with other ASTM guides listed in 2.1 (especially Guides E3163, E3164, E3240, E3242, and E3344), as well as the material in the References section (including (1)).
4.4 Flexible Site-Specific Implementation:
4.4.1 This guide provides a systematic but flexible framework to accommodate variations in approaches by regulatory agencies and by the user based on project objectives, site complexity, unique site features, regulatory requirements, newly developed guidance, newly published scientific research, changes in regulatory criteria, advances in scientific knowledge and technical capability, and unforeseen circumstances.
4.5 Regulatory Frameworks:
4.5.1 This guide is intended to be applicable to a broad range of local, state, tribal, federal, or international jurisdictions, each with its own unique regulatory framework. As such, this guide does not provide a detailed discussion of the requirements or guidance associated with any of these regulatory frameworks, nor is it intended to supplant applicable regulations and guidance. The user of this guide will need to be aware of the regulatory requirements and guidance in the jurisdiction where the work is being performed.
4.6 Systematic Project Planning and Scoping Process:
4.6.1 When applying this guide, the user should undertake a systematic project planning and sco...
SCOPE
1.1 This guide provides an overarching framework for the development of representative sediment background concentrations at contaminated sediment sites. It is intended to inform, complement, and support but not supersede the guidelines established by local, state, tribal, federal, or international agencies.
1.2 Technically defensible representative sediment background concentrations are critical for several purposes (Guide E3242) (1)2. These include sediment site delineation, establishing remedial goals, remedy selection, assessment of risks posed by representative background concentrations, and establishing appropriate post-remedial monitoring plans.
1.3 As part of the overall framework presented in this guide, Guide E3240 provides a general discussion of how Conceptual Site Model (CSM) development fits into the risk-based corrective action framework for contaminated sediment sites. However, not all elements of a sediment CSM need to be considered when developing representative sediment background concentrations; those that do are discussed in detail in Section 7 of this guide.
1.3.1 As additional data are collected and analyzed, the CSM should be updated as needed.
1.3.2 This guide is related to several other guides. Guide E3344 describes how to select an appropriate background reference area(s). Guide E3164 covers the sampling methodologies used in the field to obtain sediment samples (whether from the sediment site or background reference area[s]), and Guide E3163 discusses appropriate laboratory methodologies to use for the chemical analysis of potential contaminants of concern (PCOCs) in sediment samples. Guide E3242 describes how to evaluate candidate background data to obtain representative background data sets (including statistical, geochemical, and forensic considerations) and then how to use them to calculate representative sediment background concentrations. Relevant content contained in Guides ...
- Guide16 pagesEnglish languagesale 15% off
This document specifies a method for the determination of the loss on ignition (wLOI) of fine, intermediate, composite and coarse soils, organic soils and anthropogenic materials (according to
EN 16907 2) after ignition under air at 550°C.
NOTE The loss of mass suffered by these materials at 550 °C is usually due to the release of volatile compounds, water (absorbed, crystalized or structural) and gases from decomposition of organic matter and inorganic substances such as sulfur, sulfides or hydroxides (e.g. H2O, CO2, SO2).
A method is given in Annex B in order to estimate the organic matter content (COM) from the value of wLOI for clayey soils.
- Standard12 pagesEnglish languagee-Library read for1 day
This document is one of a family of International Standards providing guidance on soils and soil materials in relation to certain functions and uses including conservation of biodiversity. It applies in conjunction with these other standards. It provides guidance on the selection of experimental methods for the assessment of the ecotoxic potential of soils and soil materials (e.g. excavated and remediated soils, refills, embankments) with respect to their intended use and possible adverse effects on aquatic and soil dwelling organisms.
NOTE This is a reflection of the maintenance of the habitat and retention function of the soil. In fact, the methods listed in this document are suitable for usage in a TRIAD approach, i.e. for an ecological assessment of potentially contaminated soils (see ISO 19204).
This document does not cover tests for bioaccumulation.
The ecological assessment of uncontaminated soils with a view to natural, agricultural or horticultural use is not within the scope of this document. Such soils can be of interest if they can serve as a reference for the assessment of soils from contaminated sites.
The interpretation of results gained by applying the proposed methods is not in the scope of this document.
- Standard58 pagesEnglish languagee-Library read for1 day
This document is one of a family of International Standards providing guidance on soils and soil materials in relation to certain functions and uses including conservation of biodiversity. It applies in conjunction with these other standards. It provides guidance on the selection of experimental methods for the assessment of the ecotoxic potential of soils and soil materials (e.g. excavated and remediated soils, refills, embankments) with respect to their intended use and possible adverse effects on aquatic and soil dwelling organisms.
NOTE This is a reflection of the maintenance of the habitat and retention function of the soil. In fact, the methods listed in this document are suitable for usage in a TRIAD approach, i.e. for an ecological assessment of potentially contaminated soils (see ISO 19204).
This document does not cover tests for bioaccumulation.
The ecological assessment of uncontaminated soils with a view to natural, agricultural or horticultural use is not within the scope of this document. Such soils can be of interest if they can serve as a reference for the assessment of soils from contaminated sites.
The interpretation of results gained by applying the proposed methods is not in the scope of this document.
- Standard58 pagesEnglish languagee-Library read for1 day
This document describes the reference method for the determination of the lime fixation point (LFP) in soil treatment for earthworks.
The test consists in measuring the lowest quantity of lime to be added in a soil suspension in water that will result in a pH value of the soil-lime mix suspension of 12,4, measured at 25 °C ± 1 °C.
This test method cannot be used to provide information about soil reactivity with lime, or other performance values (mechanical characteristics of soil-lime mixes) applicable for improvement or stabilization purposes. Those performance tests will be conducted in a laboratory from a specific study, the lime dosage to be applied being indicated from this method.
- Technical specification16 pagesEnglish languagee-Library read for1 day
This document describes the reference method for the determination of the Index of dust emission (IDE) in soil treatment for earthworks.
This test concerns more particularly:
- limes in conformity with EN 459-1, Building lime - Part 1: Definitions, specifications and conformity criteria;
- cements in conformity with EN 197-1, Cement - Part 1: Composition, specifications and conformity criteria for common cements;
- road binders in conformity with EN 13282-1, Hydraulic road binders - Part 1: Rapid hardening hydraulic road binders - Composition, specifications and conformity criteria;
- road binders in conformity with EN 13282-2, Hydraulic road binders - Part 2: Normal hardening hydraulic road binders - Composition, specifications and conformity criteria;
- fly ashes in conformity with EN 14227-4, Hydraulically bound mixtures - Specifications - Part 4: Fly ash for hydraulically bound mixtures;
- siliceous fly ashes in conformity with EN 450-1, Fly ash for concrete - Part 1: Definition, specifications and conformity criteria;
- ground-granulated blastfurnace slag in conformity with EN 15167-1, Ground granulated blast furnace slag for use in concrete, mortar and grout - Part 1: Definitions, specifications and conformity criteria.
- Technical specification14 pagesEnglish languagee-Library read for1 day
This document describes the reference method for the determination of the lime fixation point (LFP) in soil treatment for earthworks.
The test consists in measuring the lowest quantity of lime to be added in a soil suspension in water that will result in a pH value of the soil-lime mix suspension of 12,4, measured at 25 °C ± 1 °C.
This test method cannot be used to provide information about soil reactivity with lime, or other performance values (mechanical characteristics of soil-lime mixes) applicable for improvement or stabilization purposes. Those performance tests will be conducted in a laboratory from a specific study, the lime dosage to be applied being indicated from this method.
- Technical specification16 pagesEnglish languagee-Library read for1 day
This document describes the reference method for the determination of the Index of dust emission (IDE) in soil treatment for earthworks.
This test concerns more particularly:
- limes in conformity with EN 459-1, Building lime - Part 1: Definitions, specifications and conformity criteria;
- cements in conformity with EN 197-1, Cement - Part 1: Composition, specifications and conformity criteria for common cements;
- road binders in conformity with EN 13282-1, Hydraulic road binders - Part 1: Rapid hardening hydraulic road binders - Composition, specifications and conformity criteria;
- road binders in conformity with EN 13282-2, Hydraulic road binders - Part 2: Normal hardening hydraulic road binders - Composition, specifications and conformity criteria;
- fly ashes in conformity with EN 14227-4, Hydraulically bound mixtures - Specifications - Part 4: Fly ash for hydraulically bound mixtures;
- siliceous fly ashes in conformity with EN 450-1, Fly ash for concrete - Part 1: Definition, specifications and conformity criteria;
- ground-granulated blastfurnace slag in conformity with EN 15167-1, Ground granulated blast furnace slag for use in concrete, mortar and grout - Part 1: Definitions, specifications and conformity criteria.
- Technical specification14 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
4.1 Direct observation of the subsurface by the collection of soil and rock samples is an essential part of investigation for geotechnical and environmental purposes. This guide provides information on the major types of soil and rock sampling devices to assist in selection of devices that are suitable for known site geologic conditions, and provide samples that meet project objectives. This guide should not be used as a substitute for consulting with professional experience in sampling soil or rock in similar formations before determining the best method and type of sampling.
4.2 This guide should be used in conjunction with Guide D6286 on drilling methods and sampling equipment, and diamond drilling Guide D2113. Drilling and sampler specific practices and guides listed throughout this guide are used as part of developing a detailed site investigation and sampling plan. The sampling plan should start with development of a site conceptual model and phased investigations to locate sampling sites (D420, D6286). The selection of sampling equipment and sampling devices goes hand-in-hand. In some cases, soil sample requirements may influence choice of drilling method, or conversely, types of available sampling equipment may influence choice of sampling devices.
4.3 Samples should be handled in accordance with Practice D4220/D4220M, for preserving and transporting soil samples, Practice D5079 for preserving and transporting rock core samples for geotechnical purposes. For environmental work sample handling procedures should be in accordance with Practice D6640 for collection and handling of soils obtained in core barrel samplers for environmental investigations, Practice D3694 for preparation of sample containers and for preservation of organic constituents, and Practice D5088 for decontamination of field equipment used at waste sites.
Note 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the...
SCOPE
1.1 This guide covers guidance for the selection of soil and rock sampling devices used for the purpose of characterizing in situ physical and hydraulic properties, chemical characteristics, subsurface lithology, stratigraphy and structure, and hydrogeologic units in geotechnical and environmental investigations.
1.2 This guide should be used in conjunction with referenced ASTM Guides D420 and D5730, and individual practices for sampling devices referenced in 2.1. Soil and rock samplers are most often used in drilled/pushed boreholes using various drilling methods/technologies in Guide D6286 and it addresses ability to use these samplers.
1.3 Refer to Practice D6640 and Guide D4547 for handling of samples for environmental investigations. Practices D4220/D4220M and D5079 are used for preserving and transporting soil and rock samples.
1.4 This guide does not address selection of sampling devices for hand-held soil sampling equipment (Guide D4700) and soil sample collection with solid-stem augering devices (Practice D1452/D1452M), or collection of grab samples or hand-carved block samples (D7015/D7015M) from accessible excavations. Refer to X1.2 for additional guidance on use of soil and rock sampling devices for both environmental and geotechnical applications.
1.5 This guide does not address devices for collecting cores from submerged sediments or other sampling devices for solid wastes. Refer to Guides D4823 and D6232 for these materials.
1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.7 This guide offers an organized collection of information or series of options and does not recommend a specific course of action. This document canno...
- Guide28 pagesEnglish languagesale 15% off
- Guide28 pagesEnglish languagesale 15% off
This document specifies the general requirements to carry out radionuclides tests, including sampling of soil including rock from bedrock and ore as well as of construction materials and products, pottery, etc. using NORM or those from technological processes involving Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) e.g. the mining and processing of mineral sands or phosphate fertilizer production and use.
For simplification, the term "soil" used in this document covers the set of elements mentioned above.
This document is addressed to people responsible for determining the radioactivity present in soils for the purpose of radiation protection. This concerns soils from gardens and farmland, urban or industrial sites, as well as soil not affected by human activities.
This document is applicable to all laboratories regardless of the number of personnel or the extent of the scope of testing activities. When a laboratory does not undertake one or more of the activities covered by this document, such as planning, sampling or testing, the requirements of those clauses do not apply.
This document is to be used in conjunction with other parts of ISO 18589 that outline the setting up of programmes and sampling techniques, methods of general processing of samples in the laboratory and also methods for measuring the radioactivity in soil. Its purpose is the following:
— define the main terms relating to soils, sampling, radioactivity and its measurement;
— describe the origins of the radioactivity in soils;
— define the main objectives of the study of radioactivity in soil samples;
— present the principles of studies of soil radioactivity;
— identify the analytical and procedural requirements when measuring radioactivity in soil.
This document is applicable if radionuclide measurements for the purpose of radiation protection are to be made in the following cases:
— initial characterization of radioactivity in the environment;
— routine surveillance of the impact of nuclear installations or of the evolution of the general territory;
— investigations of accident and incident situations;
— planning and surveillance of remedial action;
— decommissioning of installations or clearance of materials.
- Standard23 pagesEnglish languagee-Library read for1 day
This document describes the principles for the measurement of the activity of 90Sr in equilibrium with 90Y and 89Sr, pure beta emitting radionuclides, in soil samples. Different chemical separation methods are presented to produce strontium and yttrium sources, the activity of which is determined using proportional counters (PC) or liquid scintillation counters (LSC). 90Sr can be obtained from the test samples when the equilibrium between 90Sr and 90Y is reached or through direct 90Y measurement. The selection of the measuring method depends on the origin of the contamination, the characteristics of the soil to be analysed, the required accuracy of measurement and the resources of the available laboratories.
These methods are used for soil monitoring following discharges, whether past or present, accidental or routine, liquid or gaseous. It also covers the monitoring of contamination caused by global nuclear fallout.
In case of recent fallout immediately following a nuclear accident, the contribution of 89Sr to the total amount of strontium activity will not be negligible. This standard provides the measurement method to determine the activity of 90Sr in presence of 89Sr.
The test methods described in this document can also be used to measure the radionuclides in sludge, sediment, construction material and products by following proper sampling procedure.
Using samples sizes of 20 g and counting times of 1 000 min, detection limits of (0,1 to 0,5) Bq·kg-1 can be achievable for 90Sr using conventional and commercially available proportional counter or liquid scintillation counter when the presence of 89Sr can be neglected. If 89Sr is present in the test sample, detection limits of (1 to 2) Bq·kg-1 can be obtained for both 90Sr and 89Sr using the same sample size, counting time and proportional counter or liquid scintillation counter as in the previous situation.
- Standard42 pagesEnglish languagee-Library read for1 day
This document provides a method that allows an estimation of gross radioactivity of alpha- and beta-emitters present in soil samples. It applies, essentially, to systematic inspections based on comparative measurements or to preliminary site studies to guide the testing staff both in the choice of soil samples for measurement as a priority and in the specific analysis methods for implementation.
The gross α or β radioactivity is generally different from the sum of the effective radioactivities of the radionuclides present since, by convention, the same alpha counting efficiency is assigned for all the alpha emissions and the same beta counting efficiency is assigned for all the beta emissions.
Soil includes rock from bedrock and ore as well as construction materials and products, potery, etc. using naturally occurring radioactive materials (NORM) or those from technological processes involving Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM), e.g. the mining and processing of mineral sands or phosphate fertilizer production and use.
The test methods described in this document can also be used to assess gross radioactivity of alpha- and beta-emitters in sludge, sediment, construction material and products following proper sampling procedure[2][3][4][5][7][8].
For simplification, the term "soil" used in this document covers the set of elements mentioned above.
- Standard21 pagesEnglish languagee-Library read for1 day
This document describes a method for measuring 238Pu and 239 + 240 isotopes in soil by alpha spectrometry samples using chemical separation techniques.
The method can be used for any type of environmental study or monitoring. These techniques can also be used for measurements of very low levels of activity, one or two orders of magnitude less than the level of natural alpha-emitting radionuclides.
The test methods described in this document can also be used to measure the radionuclides in sludge, sediment, construction material and products following proper sampling procedure[2][3][4][5][7][8].
The mass of the test portion required depends on the assumed activity of the sample and the desired detection limit. In practice, it can range from 0,1 g to 100 g of the test sample.
- Standard32 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
4.1 An inclinometer is a deformation monitoring system, which uses a grooved pipe or casing with internal longitudinal grooves aligned with the anticipated direction of movement, installed in either a soil/rock mass or a geotechnical structural element. The inclinometer casing can be surveyed with a single traversing probe or with an array of in-place inclinometer (IPI) gauges connected to a data logger. The measurement and calculation of deformation normal to the axis of the inclinometer casing is done by passing a probe along the length of this pipe or placement of a sensor array, guided by the internal grooves. The probe or sensor array measures the inclination of the pipe, usually in two orthogonal directions 90° apart (X- and Y-direction) with respect to the axis of the casing (Z-direction, usually the line of gravity). Measurements are converted to distances using trigonometric functions. Successive surveys compared with an initial survey give differences in position and indicate deformation normal to the axis of the inclinometer casing. In most cases the inclinometer casing is installed in a near-vertical hole, and the measurements indicate subsurface horizontal deformation. In some cases, the inclinometer casing is installed horizontally, and the measurements indicate vertical deformation.
4.2 Inclinometers are also called slope inclinometers or slope indicators. Typical applications include measuring the rate and direction of landslide movement and locating the zone of shearing, monitoring the magnitude and rate of horizontal movements for embankments and excavations, monitoring the settlement and lateral spread beneath tanks and embankments, and monitoring the deflection of bulkheads, piles or structural walls.
Note 1: The precision of this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of...
SCOPE
1.1 This standard covers the use of inclinometers to monitor the internal movement of ground, or lateral movement of subsurface structures. The standard covers types of instruments, installation procedures, operating procedures, and maintenance requirements. The standard also provides formulae for data reduction.
1.2 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this standard.
1.2.1 The procedures used to specify how data are collected, recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.
1.3 Units—The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.
1.4 This standard offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this standard may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s man...
- Standard11 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The distribution coefficient, Kd, is an experimentally determined ratio quantifying the distribution of a chemical species between a given fluid and solid material sample under certain conditions, including the attainment of constant aqueous concentrations of the species of interest. The Kd concept is used in mass transport modeling, for example, to assess the degree to which the movement of a species will be delayed by interactions with the local geomedium as the solution migrates through the geosphere under a given set of underground geochemical conditions (pH, temperature, ionic strength, etc.). The retardation factor (Rf) is the ratio of the velocity of the groundwater divided by the velocity of the contaminant, which can be expressed as:
where:
ρb = bulk density of the porous medium (mass/length3), and ηe = effective porosity of the medium (unitless) expressed as a decimal.
4.2 Because of the sensitivity of Kd to site specific conditions and materials, the use of literature derived Kd values is strongly discouraged. For applications other than transport modeling, batch Kd measurements also may be used, for example, for parametric studies of the effects of changing chemical conditions and of mechanisms related to the interactions of fluids with solid material.
SCOPE
1.1 This test method covers the determination of distribution coefficients, Kd, of chemical species to quantify uptake onto solid materials by a batch sorption technique. It is a laboratory method primarily intended to assess sorption of dissolved ionic species subject to migration through pores and interstices of site specific geomedia, or other solid material. It may also be applied to other materials such as manufactured adsorption media and construction materials. Application of the results to long-term field behavior is not addressed in this method. Kd for radionuclides in selected geomedia or other solid materials are commonly determined for the purpose of assessing potential migratory behavior of contaminants in the subsurface of contaminated sites and out of a waste form and in the surface of waste disposal facilities. This test method is also applicable to studies for parametric studies of the variables and mechanisms which contribute to the measured Kd.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard8 pagesEnglish languagesale 15% off
- Standard8 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This guide is for the use of disposable handheld soil core samplers in collecting and storing approximately 5 or 25 g soil samples for volatile organic analysis in a manner that reduces loss of contaminants due to volatilization or biodegradation. In general, an initial soil core sample is collected (see Guides D6169/D6169M and D6282/D6282M) and the disposable handheld soil core sampler is then used to collect the 5 or 25 g soil sample from the initial soil core sample. The disposable handheld soil core sampler can also serve as a sample storage chamber.
5.2 The physical integrity of the soil sample is maintained during sample collection, storage, and transfer in the laboratory for analysis or preservation.
5.3 During sample collection, storage, and transfer, there is very limited exposure of the sample to the atmosphere.
5.4 Laboratory subsampling is not required for samples collected following this guide. The sample is expelled directly from the coring body/storage chamber into the appropriate container for analysis, or preservation, at the analytical laboratory without disrupting the integrity of the sample. Subsampling from the disposable handheld soil core sampler should not be performed to obtain smaller sample sizes for analysis.
5.5 This guide specifies sample storage in the disposable handheld soil core sampler at 4 ± 2°C for up to 48 h.
5.6 This guide does not use methanol preservation or other chemical preservatives in the field. As a result, there are no problems associated with flammability hazards, shipping restrictions, or dilution of samples containing low volatile concentrations due to solvents being added to samples in the field.
5.7 The disposable handheld soil core samplers are single-use devices. They should not be cleaned or reused.
5.8 This disposable handheld soil core samplers cannot be used for collecting cemented material, consolidated material, or material having fragments wider than the mouth of the device or coa...
SCOPE
1.1 This guide is intended for application to soils that may contain volatile organic compounds.
1.2 This guide provides a general procedure and considerations associated with using a disposable handheld soil core sampler to collect and temporarily store a soil sample for volatile organic analysis.
1.3 In general, an initial soil sample is collected (see Guides D6169/D6169M and D6282/D6282M) and the disposable handheld soil core sampler is then used to collect the 5 or 25 g soil sample from the initial soil core sample. The disposable handheld soil core sampler can also serve as a sample storage chamber. It is recommended that this standard be used in conjunction with Guides D4547, D4687, D6169/D6169M, D6232, D6282/D6282M, D6418, and D6640, as appropriate, which provide information on the collection of the initial soil core sample.
1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.
1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.
1.6 This standard doe...
- Guide4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Specific strength is a measure of the ability of a fiber matrix product to withstand force applied by a tensile machine and is useful to understand in order to produce quality products. Specific strength is frequently related to the matrix density, fiber quality, fiber length and chemistry and can be used as a measurement for quality assurance or quality control, or both requirements.
5.2 This method may not be applicable to all hydraulically applied fiber matrix products due to variations in product chemistry.
Note 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 This standard provides a quantitative test method to determine the specific strength of hydraulically applied fiber matrix products using dry and wet preparation methods in a laboratory setting. This method is designed for use as an index test for product quality assurance or quality control, or both to comply with manufacturing requirements. This test method is not indicative of product performance in the field.
1.2 Units—The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.
1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.
1.3.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The 1998 edition of this standard was written solely for selection of drilling methods for environmental applications and specifically for installation of groundwater monitoring wells. The second revision was made to include geotechnical applications since many of the advantages, disadvantages, and limitations discussed extensively throughout this document also apply to geotechnical design use such as data collection (sampling and in-situ testing) for construction design and instrumentation. Besides installation of monitoring wells (D5092/D5092M, D6724/D6724M), Environmental investigations are also made for sampling, in-situ testing, and installation of aquifer testing boreholes (D4044/D4044M, D4050).
4.2 There are other guides for geotechnical investigations addressing drilling methods such as in Eurocode (1, 2)5, U.S. Federal Highway Administration, (3, 4), U.S. Army Corps of Engineers, (5), and U.S. Bureau of Reclamation (6, 7). An authoritative Handbook on Environmental Site Characterization and Ground-Water Monitoring was compiled by Nielsen (8) which addresses drilling methods in detail including the advent of Direct Push methods developed for environmental investigations. Two other major drilling guides have been written by the National Drilling Association (9) and from the Australia Drilling Industry Training Committee (10) and these guides are user for the drillers.
4.3 Table 1 lists sixteen classes of methods addressed in this guide. The selection of particular method(s) for drilling/push boring requires that specific characteristics of each site be considered. This guide is intended to make the user aware of some of the various drilling/push boring methods available and the applications, advantages, and disadvantages of each with respect to determining geotechnical and environmental exploration. (A) Actual achievable drilled depths will vary depending on the ambient geohydrologic conditions existing at the site and size of drilling/push boring e...
SCOPE
1.1 This guide provides descriptions of various methods for site characterization along with advantages and disadvantages associated with each method discussed. This guide is intended to aid in the selection of drilling method(s) for geotechnical and environmental soil and rock borings for sampling, testing, and installation of wells, or other instrumentation. It does not address drilling for foundation improvement, drinking water wells, or special horizontal drilling techniques for utilities.
1.2 This guide cannot address all possible subsurface conditions that may occur such as, geologic, topographic, climatic, or anthropogenic. Site evaluation for engineering, design, and construction purposes is addressed in Guide D420. Soil and rock sampling in drill holes is addressed in Guide D6169/D6169M. Pertinent guides and practices addressing specific drilling methods, equipment, and procedures are listed in Section 2. Guide D5730 provides information on most all aspects of environmental site characterization.
1.3 The values stated in either SI units or inch-pound units (given in brackets) are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.4 This guide does not purport to comprehensively address all methods and the issues associated with drilling for geotechnical and environmental purposes. Users should seek qualified professionals for decisions as to the proper equipment and methods that would be most successful for their site investigation. Other methods may be available for these methods and qualified professionals should have flexibility to exercise judgment as to possible alternatives not covered in this guide. The guide is current at the time of issue, but new alternative methods may become available prior ...
- Guide28 pagesEnglish languagesale 15% off
- Guide28 pagesEnglish languagesale 15% off
This document provides guidance on the type and extent of soil characterization necessary for the evaluation of human exposure to substances present in possibly leading to adverse effects. It does not provide guidance on: - the design or selection of numerical models that can be used to estimate exposure; - potential exposure to radioactivity, pathogens or asbestos in soil. Background information is provided on human health related to exposure to soil and the influence on exposure via different pathways. NOTE 1 For convenience "soil" in this document also includes "soil material" unless stated otherwise. NOTE 2 Overall exposure can be due to potentially harmful substances (PHSs) in soil, groundwater and air. Exposure to those in soil can be direct (e.g. through inhalation, ingestion, cutaneous contact), or indirect (through the consumption of plants or animals that have taken up substances of concern). NOTE 3 The evaluation of the possible impact on human health of potentially harmful substances is most commonly required when these are present as a result of human activity (e.g. on old industrial sites) but can sometimes be required when they are present naturally. NOTE 4 Soil characterization precedes the assessment of the compatibility between soil and its use (i.e. soil quality assessment). Tools such as a conceptual site model (CSM) and health risk assessment can be used to aid this assessment. NOTE 5 Soil characterization can be used to develop an overview of population exposure to soil. Other International Standards are available that can aid the characterization of other media (e.g. surface and groundwater), in terms of their possible adverse effects on humans.
- Standard36 pagesEnglish languagesale 15% off
- Standard40 pagesFrench languagesale 15% off
This document defines a common basis for description and classification for use by all parties involved in the design, planning and construction of the earthworks.
This document specifies the processes and properties to be used in the description and classification of earthworks materials. It specifies soil and rock groups as a basis of material specifications for earth structure elements. This classification relates to the physical and chemical properties of the soil and rock materials.
NOTE 1 The approach to description of soil and rock set out in EN ISO 14688-1 and EN ISO 14689 respectively and the approach to classification of soil set out in EN ISO 14688-2 are applicable to earthworks, but the range and scope of classification for earthworks given here is more detailed and orientated to the specific demands of earthwork procedures and earth structure elements.
NOTE 2 Informative examples of existing national experience based classification systems and their use are presented in the annexes to EN 16907-1:2018.
- Standard43 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
5.1 A large number of erosion control product manufacturers produce a variety of RECPs and HECPs that are designed to be applied to any land surface to stabilize soils and prevent erosion. Many of these products are engineered to absorb moisture and remain in place even under extreme rainfall events and are composed of substances that could go into solution with runoff. Based on the characteristics of these products and their intended and actual use in the environment, the most likely scenario through which aquatic organisms would be exposed to these products or their soluble components is through storm water runoff. Further, because such runoff events typically last for minutes to hours rather than days, use of acute (48 h) toxicity testing methodology is appropriate to model expected environment exposures.
Note 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 This practice establishes the guidelines, requirements, and procedures for obtaining rainfall runoff of unvegetated rolled and hydraulic erosion control products (RECPs and HECPs) during bench-scale conditions from simulated rainfall to be sent out for acute ecotoxicity testing.
1.2 This practice obtains unvegetated erosion control product (ECP) runoff from rainsplash-induced erosion under bench-scale conditions using bench-scale collection procedures.
1.3 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.
1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.
1.4.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.
1.5 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Dev...
- Standard8 pagesEnglish languagesale 15% off
This document provides guidance on the range of tests that could be necessary to characterize soil and other soil materials intended to be re-used, with or without preliminary treatment (e.g. screening to remove over large material). It is intended to be of use in determining the suitability of soil materials for re-use (see 3.4.1), and the assessment of the environmental impacts that might arise from re-use. It takes into account the different requirements of topsoil, sub-soil and other soil materials such as sediments or treated soils. International Standard methods are listed that might be of use for characterization. Soil materials include natural soils and other materials (e.g. fill, made ground) excavated, stripped, or otherwise removed from their original in-ground or above-ground location (e.g. stockpile), dredged materials, manufactured soils, and soil treated to remove or destroy contaminants. For manufactured soils, which are often made using excavated materials together with other materials such as "green waste", the characteristics of the components and of the manufactured product might need to be determined. NOTE The terms "excavated soil" and "excavated soil materials" are used for brevity throughout the document to embrace the range of materials covered. An overriding principle governing the guidance provided in this document is that when there is to be no change in intended land use at the target site, imported soil materials cannot lead to a permanent reduction in performance of relevant soil functions. The guidance provided is intended to cover a range of possible end uses, including: — play areas for small children, including nursery schools, kindergartens, etc.; — schools; — gardens and other residential areas; — allotments; — horticulture; — agriculture; — forestry; — recreational areas, e.g. parks, sport fields; — restoration of damaged ecosystems; — mining and industrial sites; — construction sites; — road and rail constructions. It is not applicable to the placement of soil materials in an aqueous environment or to restore underground workings. It does not address geotechnical requirements when soil materials are to be used as construction material. NOTE The sensitive end uses listed above such as play areas for small children, schools, gardens, agriculture and recreational areas require particular care, particularly when excavated soils are derived from contaminated sites.
- Standard53 pagesEnglish languagesale 15% off
This document defines a common basis for description and classification for use by all parties involved in the design, planning and construction of the earthworks.
This document specifies the processes and properties to be used in the description and classification of earthworks materials. It specifies soil and rock groups as a basis of material specifications for earth structure elements. This classification relates to the physical and chemical properties of the soil and rock materials.
NOTE 1 The approach to description of soil and rock set out in EN ISO 14688-1 and EN ISO 14689 respectively and the approach to classification of soil set out in EN ISO 14688-2 are applicable to earthworks, but the range and scope of classification for earthworks given here is more detailed and orientated to the specific demands of earthwork procedures and earth structure elements.
NOTE 2 Informative examples of existing national experience based classification systems and their use are presented in the annexes to EN 16907-1:2018.
- Standard43 pagesEnglish languagee-Library read for1 day
This document is one of a family of International Standards providing guidance on soils and soil materials in relation to certain functions and uses including conservation of biodiversity. It applies in conjunction with these other standards. It provides guidance on the selection of experimental methods for the assessment of the ecotoxic potential of soils and soil materials (e.g. excavated and remediated soils, refills, embankments) with respect to their intended use and possible adverse effects on aquatic and soil dwelling organisms. NOTE This is a reflection of the maintenance of the habitat and retention function of the soil. In fact, the methods listed in this document are suitable for usage in a TRIAD approach, i.e. for an ecological assessment of potentially contaminated soils (see ISO 19204). This document does not cover tests for bioaccumulation. The ecological assessment of uncontaminated soils with a view to natural, agricultural or horticultural use is not within the scope of this document. Such soils can be of interest if they can serve as a reference for the assessment of soils from contaminated sites. The interpretation of results gained by applying the proposed methods is not in the scope of this document.
- Standard50 pagesEnglish languagesale 15% off
- Standard52 pagesFrench languagesale 15% off
SIGNIFICANCE AND USE
5.1 The soil-lime pH test is performed as a test to indicate the soil-lime proportion needed to maintain the elevated pH necessary for sustaining the reactions required to stabilize a soil. The test derives from Eades and Grim.4
5.2 Performance tests are normally conducted in a laboratory to verify the results of this test method.
5.3 This test method will not provide reliable information relative to the potential reactivity of a particular soil, nor will it provide information on the magnitude of increased strength to be realized upon treatment of this soil with the indicated percentage of lime.
5.4 This test method can be used to estimate the percentage of lime as hydrated lime or quicklime needed to produce a lime stabilized soil. Common candidate soils contain clay minerals and have a Plasticity Index ≥10.
5.5 Agricultural lime (crushed limestone) will not stabilize soil.
Note 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 This test method provides a means for estimating the soil-lime proportion requirement for stabilization of a soil. This test method is performed on soil passing the 425μm (No. 40) sieve. The optimum soil-lime proportion for soil stabilization is determined by tests of specific characteristics of stabilized soil such as unconfined compressive strength or plasticity index.
1.2 Some highly alkaline by-products (lime kiln dust, cement kiln dust, carbide lime, and so forth) have been successfully used to stabilize soil. This test method is not intended for these materials and any such product would need to be tested for specific characteristics as indicated in 1.1.
1.3 This test method is used to determine the percentage of lime that results in a soil-lime pH of approximately 12.4.
Note 1: Under ideal laboratory conditions of 25°C and sea level elevation, the pH of the lime-soil-water solution should be 12.4.
1.4 Lime is not an effective stabilizing agent for all soils. Some soil components such as sulfates, phosphates, organics, and iron can adversely affect soil-lime reactions and may produce erroneous results using this test method.
1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.
1.6.1 The procedures used to specify how data are collected/ recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis for engineering data.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8 This international standard was developed in accordance with internationally recognized principles on st...
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 This practice provides a procedure by which samples of GCL should be obtained for laboratory testing. The practice applies to materials obtained prior to installation (either at a job site or at a production facility) or exhumed material after installation.
4.2 Only GCL samples obtained in accordance with 5.1 of this practice will be considered representative of the actual manufactured GCL for quality assurance/quality control (QA/QC) purposes.
4.3 The quantity of GCL received by the laboratory should be sufficient for the preparation of several representative test specimens for the standardized physical, hydraulic, and mechanical tests to be performed on the GCLs.
4.4 The procedures in this practice should be used by plant and field personnel for obtaining GCL samples for laboratory testing.
SCOPE
1.1 This practice covers procedures for sampling geosynthetic clay liners (GCLs) for the purpose of laboratory testing. These procedures are designed to ensure that representative samples are obtained and properly packaged for submittal to a testing laboratory.
1.2 The procedures in this practice may be applied to either samples of unhydrated GCLs obtained at the project site prior to installation (or at the production facility, prior to shipment to the project site) or samples exhumed from a project site after installation.
1.3 It is assumed that the number of samples to be obtained has already been determined in the project specification, standard test method, or by prior agreement between the purchaser and seller. This practice covers only the methods for obtaining a pre-arranged number of samples and does not describe methods for obtaining individual specimens from the sample.
1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Understanding the mechanical properties of frozen soils is of primary importance to frozen ground engineering. Data from strain rate controlled compression tests are necessary for the design of most foundation elements embedded in, or bearing on frozen ground. They make it possible to predict the time-dependent settlements of piles and shallow foundations under service loads, and to estimate their short and long-term bearing capacity. Such tests also provide quantitative parameters for the stability analysis of underground structures that are created for permanent or semi-permanent use.
5.2 It must be recognized that the structure of frozen soil in situ and its behavior under load may differ significantly from that of an artificially prepared specimen in the laboratory. This is mainly due to the fact that natural permafrost ground may contain ice in many different forms and sizes, in addition to the pore ice contained in a small laboratory specimen. These large ground-ice inclusions (such as ice lenses, a dominant horizontal, lens-shaped body of ice of any dimensions) will considerably affect the time-dependent behavior of full-scale engineering structures.
5.3 In order to obtain reliable results, high-quality intact representative permafrost samples are required for compression strength tests. The quality of the sample depends on the type of frozen soil sampled, the in situ thermal condition at the time of sampling, the sampling method, and the transportation and storage procedures prior to testing. The best testing program can be ruined by poor-quality samples. In addition, one must always keep in mind that the application of laboratory results to practical problems requires much caution and engineering judgment.
Note 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generall...
SCOPE
1.1 This test method covers the determination of the strength behavior of cylindrical specimens of frozen soil, subjected to uniaxial compression under controlled rates of strain. It specifies the apparatus, instrumentation, and procedures for determining the stress-strain-time, or strength versus strain rate relationships for frozen soils under deviatoric creep conditions.
1.2 Values stated in SI units are to be regarded as the standard.
1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.
1.3.1 For the purposes of comparing measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.
1.3.2 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of ...
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
This document gives guidelines for the principles and main methods for the determination of background values for inorganic and organic substances in soils at a local/regional scale. The site scale is excluded.
It gives guidelines for sampling and data processing strategies. It identifies methods for sampling and analysis.
This document does not apply to the determination of background values for groundwater and sediments.
- Standard33 pagesEnglish languagee-Library read for1 day
This document gives guidelines for the principles and main methods for the determination of background values for inorganic and organic substances in soils at a local/regional scale. The site scale is excluded.
It gives guidelines for sampling and data processing strategies. It identifies methods for sampling and analysis.
This document does not apply to the determination of background values for groundwater and sediments.
- Standard33 pagesEnglish languagee-Library read for1 day
This document gives guidelines for the principles and main methods for the determination of background values for inorganic and organic substances in soils at a local/regional scale. The site scale is excluded. It gives guidelines for sampling and data processing strategies. It identifies methods for sampling and analysis. This document does not apply to the determination of background values for groundwater and sediments.
- Standard26 pagesEnglish languagesale 15% off
- Standard28 pagesFrench languagesale 15% off
SIGNIFICANCE AND USE
3.1 Mechanical compactors are commonly used to replace the hand compactors required for Test Methods D698 and D1557 in cases where it is necessary to increase production.
3.2 The design of mechanical compactors is such that it is necessary to have a calibration process that goes beyond determining the mass and drop of the hammer.
Note 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria in Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 These practices for the calibration of mechanical soil compactors are for use in checking and adjusting mechanical devices used in laboratory compacting of soil and soil-aggregate in accordance with Test Methods D698, D1557, Practice D6026, and other methods of a similar nature that might specify these practices. Calibration for use with one practice does not qualify the equipment for use with another practice.
1.2 The weight of the mechanical rammer is adjusted as described in 5.4 and 6.5 in order to provide for the mechanical compactor to produce the same result as the manual compactor.
1.3 Two alternative procedures are provided as follows:
Section
Practice A
Calibration based on the compaction of a
selected soil sample
5
Practice B
Calibration based on the deformation of a
standard lead cylinder
6
1.4 If a mechanical compactor is calibrated in accordance with the requirements of either Practice A or Practice B, it is not necessary for the mechanical compactor to meet the requirements of the other practice.
1.5 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.
1.5.1 It is common practice in the engineering profession to concurrently use pounds to represent both a unit of mass (lbm) and a force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. This standard has been written using the gravitational system of units when dealing with the inch-pound system. In this system, the pound (lbf) represents a unit of force (weight). However, the use of balances or scales recording pounds of mass (lbm) or the recording of density in lbm/ft3 shall not be regarded as a nonconformance with this standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard6 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This practice shall only be used on soils having infiltration rates ranging from 2.5 mm/h (field hydraulic conductivity of 6.9 × 10-7 m/s) to 15000 mm/h (field hydraulic conductivity of 4.0 × 10-3 m/s).
5.2 This practice is useful for field measurement of the infiltration rate and calculation of field hydraulic conductivity of soils. It was initially developed for stormwater treatment applications, and has been used to design, verify the construction of, and perform annual testing on surface drainage applications such as rain gardens or storm water collection systems (1). Other suitable applications include evaluation of potential septic-tank disposal fields (ASTM D5879 and D5921), leaching and drainage efficiencies, irrigation requirements, erosion potential, forestry, agriculture, and water spreading and recharge, among other applications. This test is not intended for use in hydraulic barriers/seals such as landfill liners, nuclear waste repositories, or the core of a dam. This test is also not intended for use in soils that experience changes in volume during infiltration, such as collapsible or expansive soils.
5.3 Field hydraulic conductivity can only be calculated when the hydraulic boundary conditions are known, such as hydraulic gradient and the extent of lateral flow of water, or these can be reliably estimated.
Note 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
5.4 A mathematical analysis has been developed for this test that follows the Green-Ampt a...
SCOPE
1.1 This practice describes a procedure for field measurement of the infiltration rate of liquid (typically water) into soils using the modified Philip Dunne (MPD) infiltrometer. The data from the field measurement is then used to calculate the field hydraulic conductivity. Soils should be regarded as natural occurring fine or coarse-grained soils or processed materials or mixtures of natural soils and processed materials, or other porous materials, and which are basically insoluble and are in accordance with requirements of 5.1.
1.2 This practice may be conducted at the ground surface or at given depths in pits, on bare soil or with vegetation in place, depending on the conditions for which infiltration rates are desired. However, this practice cannot be conducted where the test surface is at or below the groundwater table, a perched water table, or the capillary fringe.
1.3 This practice is for soils within a range of infiltration rate range defined in 5.1, as long as an adequate seal can be made between the MPD Infiltrometer base and the soil being tested. In highly permeable soils, readings can be taken at shorter intervals, to ensure that enough data are collected to determine the infiltration rate.
1.4 The field measurement is a falling head test that can be performed relatively quickly (30 to 60 minutes) in silty sand or clayey sand soils suitable for stormwater infiltration practices. It is suitable for testing several locations across a site, to characterize the spatial variability of the infiltration rate throughout the site.
1.5 The field measurement can be used to measure the infiltration rate, which can be used to calculate the field hydraulic conductivity. The field hydraulic conductivity can be used as an index to compare the suitability of soils for use in the development of surface drainage applications (for example, rain gardens or stormwater fills).
1.6 Units—The values stated in SI unit...
- Standard13 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The RQD was first introduced in the mid 1960s to provide a simple and inexpensive general indication of rock mass quality to predict tunneling conditions and support requirements. The recording of RQD has since become virtually standard practice in drill core logging for a wide variety of geotechnical explorations.
5.2 The use of RQD values has been expanded to provide a basis for making preliminary design and constructability decisions involving excavation for foundations of structures, or tunnels, open pits, and many other applications. The RQD values also can serve to identify potential problems related to bearing capacity, settlement, erosion, or sliding in rock foundations. The RQD can provide an indication of rock quality in quarries for issues involving concrete aggregate, rockfill, or large riprap.
5.3 The RQD has been widely used as a warning indicator of low-quality rock zones that may need greater scrutiny or require additional borings or other investigational work. This includes rocks with certain time-dependent qualities that by determining the RQD again after 24 h, under well-controlled conditions, can assist in determining durability.
5.4 The RQD is a basic component of many rock mass classification systems, such as rock mass rating (RMR) and Q-System, for engineering purposes. See D5878 and 2,3.
5.5 When needed, drill holes in different directions can be used to determine the RQD in three dimensions.
5.6 The concept of RQD can be used on any rock outcrop or excavation surface using line surveys as well. However, this topic is not covered by this standard.
Note 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with...
SCOPE
1.1 This test method covers the determination of the rock quality designation (RQD) as a standard parameter in drill core logging of a core sample in addition to the commonly obtained core recovery value (Practice D2113); however there may be some variations between different disciplines, such as mining and civil projects.
1.2 This standard does not cover any RQD determinations made by other borehole methods (such as acoustic or optical televiewer) and which may not give the same data or results as on the actual core sample(s).
1.3 There are many drilling and lithologic variations that could affect the RQD results. This standard provides examples of many common and some unusual situations that the user of this standard needs to understand to use this standard and cannot expect it to be all inclusive for all drilling and logging scenarios. The intent is to provide a baseline of examples for the user to take ownership and watch for similar, additional or unique geological and procedural issues in their specific drilling programs.
1.4 This standard uses the original calculation methods by D.U. Deere to determine an RQD value and does not cover other calculation or analysis methods; such as Monte Carlo.
1.5 The RQD in this test method only denotes the percentage of intact and sound rock in a core interval, defined by the test program, and only of the rock mass in the direction of the drill hole axis, at a specific location. A core interval is typically a core run but can be a lithological unit or any other interval of core sample relevant to the project.
1.6 RQD was originally introduced for use with conventional drilling of N-size core with diameter of 54.7 mm (2.155 in.). However, this test method covers all types of core barrels and core sizes from BQ to PQ, which are normally acceptable for measuring determining RQD as long as proper drilling techniques are used that do not cause excess core breakage or po...
- Standard9 pagesEnglish languagesale 15% off
- Standard9 pagesEnglish languagesale 15% off
ISO 28901:2011 provides guidance on environment-friendly burial methods of animal carcasses to prevent epidemics, to curtail the spread of the disease, to destroy the causative agents, and to dispose of the carcasses. ISO 28901:2011 does not apply to the burial of animal carcasses resulting from natural death or by accident. Other methods of disposal are outside the scope of ISO 28901:2011.
- Standard29 pagesEnglish languagesale 15% off
ISO 15800:2003 gives guidelines on the kind and extent of soil characterization necessary for the evaluation of human exposure to substances that can cause adverse effects.
The possibilities of standardizing the calculations used for the assessment of human exposure are not included in ISO 15800:2003.
The information needed for evaluation of human exposure to contaminants leached from soil to surface and/or groundwater or transferred by runoff is not included in ISO 15800:2003. Aspects related to radioactivity and pathogens in soil and potential human exposure hereto are also not included in ISO 15800:2003.
- Standard28 pagesEnglish languagee-Library read for1 day
- Standard23 pagesEnglish languagesale 15% off
- Standard25 pagesFrench languagesale 15% off
ISO 15176:2002 provides guidance on the range of tests that may be necessary to characterize soil materials intended to be excavated and re-used with, or without, preliminary treatment. Soil materials include excavated soil, dredged materials, fill materials, manufactured soils and soil treated to remove or destroy contaminants.
It takes into account the different requirements of top-soil, sub-soil and other soil materials such as sediments or treated soils. International Standard methods are listed where available.
The test methods are intended to cover a range of possible end uses, such as play areas for small children, including nursery schools, kindergardens, etc.; schools; gardens and other residential areas; allotments; horticulture; agriculture; forestry; recreational areas, e.g. parks, sport fields; restoration of damaged ecosystems; construction sites.
It is intended to be of use in determining the suitability of soil materials for re-use, and the assessment of the environmental impacts that might arise from re-use.
ISO 15176:2002 is not applicable to the placement of soil materials in the water environment or to restore underground workings. It does not address geotechnical requirements when soil materials are to be used as construction material.
- Standard55 pagesEnglish languagee-Library read for1 day
- Standard50 pagesEnglish languagesale 15% off
- Standard52 pagesFrench languagesale 15% off
This Technical Report gives indication on sludge utilisation within reclamation programmes of disturbed land.
This Technical Report is applicable to sludges described in the scope of CEN/TC 308; for example:
¾ storm water handling;
¾ urban wastewater collecting systems;
¾ urban wastewater treatment plants;
¾ treating industrial wastewater similar to urban wastewater (as defined in Directive 91/271/EEC [18]);
¾ water supply treatment plants;
¾ water distribution systems;
¾ sludge derived materials;
¾ but excluding hazardous sludges from industry.
NOTE Because of the wide range of reclamation sites where sludge use as a soil ameliorate or source of plant nutrients is beneficial, and the different potential final uses of these sites, recommendations for application should be considered on a site-by-site basis. It is far beyond the scope of these guidelines to describe all the possible situations and the individual ways in which sludge could be used. The aim is to address, in a general qualitative way, the key issues which will determine in each particular case whether, how much and which type of sludge can be used.
Planning considerations (clause 5) are emphasised due to the fact that a general scheme can be adopted as a
- Technical report24 pagesEnglish languagee-Library read for1 day
This Technical Report gives indication on sludge utilisation within reclamation programmes of disturbed land.
This Technical Report is applicable to sludges described in the scope of CEN/TC 308; for example:
¾ storm water handling;
¾ urban wastewater collecting systems;
¾ urban wastewater treatment plants;
¾ treating industrial wastewater similar to urban wastewater (as defined in Directive 91/271/EEC [18]);
¾ water supply treatment plants;
¾ water distribution systems;
¾ sludge derived materials;
¾ but excluding hazardous sludges from industry.
NOTE Because of the wide range of reclamation sites where sludge use as a soil ameliorate or source of plant nutrients is beneficial, and the different potential final uses of these sites, recommendations for application should be considered on a site-by-site basis. It is far beyond the scope of these guidelines to describe all the possible situations and the individual ways in which sludge could be used. The aim is to address, in a general qualitative way, the key issues which will determine in each particular case whether, how much and which type of sludge can be used.
Planning considerations (clause 5) are emphasised due to the fact that a general scheme can be adopted as a
- Technical report24 pagesEnglish languagee-Library read for1 day
This document specifies the identification of radionuclides and the measurement of their activity in soil using in situ gamma spectrometry with portable systems equipped with germanium or scintillation detectors.
This document is suitable to rapidly assess the activity of artificial and natural radionuclides deposited on or present in soil layers of large areas of a site under investigation.
This document can be used in connection with radionuclide measurements of soil samples in the laboratory (see ISO 18589-3) in the following cases:
— routine surveillance of the impact of radioactivity released from nuclear installations or of the evolution of radioactivity in the region;
— investigations of accident and incident situations;
— planning and surveillance of remedial action;
— decommissioning of installations or the clearance of materials.
It can also be used for the identification of airborne artificial radionuclides, when assessing the exposure levels inside buildings or during waste disposal operations.
Following a nuclear accident, in situ gamma spectrometry is a powerful method for rapid evaluation of the gamma activity deposited onto the soil surface as well as the surficial contamination of flat objects.
NOTE The method described in this document is not suitable when the spatial distribution of the radionuclides in the environment is not precisely known (influence quantities, unknown distribution in soil) or in situations with very high photon flux. However, the use of small volume detectors with suitable electronics allows measurements to be performed under high photon flux.
- Draft60 pagesEnglish languagee-Library read for1 day
ISO 18589-7:2013 specifies the identification of radionuclides and the measurement of their activity in soil using in situ gamma spectrometry with portable systems equipped with germanium or scintillation detectors.
ISO 18589-7:2013 is suitable to rapidly assess the activity of artificial and natural radionuclides deposited on or present in soil layers of large areas of a site under investigation.
ISO 18589-7:2013 can be used in connection with radionuclide measurements of soil samples in the laboratory (ISO 18589‑3) in the following cases:
· routine surveillance of the impact of radioactivity released from nuclear installations or of the evolution of radioactivity in the region;
· investigations of accident and incident situations;
· planning and surveillance of remedial action;
· decommissioning of installations or the clearance of materials.
It can also be used for the identification of airborne artificial radionuclides, when assessing the exposure levels inside buildings or during waste disposal operations.
Following a nuclear accident, in situ gamma spectrometry is a powerful method for rapid evaluation of the gamma activity deposited onto the soil surface as well as the surficial contamination of flat objects.
- Standard62 pagesEnglish languagee-Library read for1 day
This document specifies the crucial steps of a quantitative real-time polymerase chain reaction (qPCR) method to quantify the abundance of specific mRNA molecules extracted from Daphnia magna.
The method allows the identification of molecular responses to exposures for potentially toxic substances through the analysis of the abundance of specific mRNA molecules. In this document, the central genes involved in reproductive and toxic responses are included.
NOTE The selection of genes can be adapted to specific exposure conditions, for example, exposure to known toxic substances, by adding genes known to respond to a specific insult.
The present method allows for rapid, robust and sensitive detection of molecular responses and can be used to analyse the toxic effects of water leachates from soil and waste. The method gives information of the concentration of a substance or test-liquid at which toxic effects begin to occur prior to observations of reproductive or toxic effects at higher levels of organization, which reduces the need for the use of safety factors in toxicity assessment.
The method is useful in several types of risk assessment. In this document, the genes studied are appropriate for the assessment of the risks when recycling materials and for the classification of waste, but the method can be adapted to other types of risk assessment by including other genes.
- Technical specification23 pagesEnglish languagee-Library read for1 day
- Technical specification23 pagesEnglish languagee-Library read for1 day





