Soil quality -- Characterization of excavated soil and other soil materials intended for re-use

ISO 15176:2002 provides guidance on the range of tests that may be necessary to characterize soil materials intended to be excavated and re-used with, or without, preliminary treatment. Soil materials include excavated soil, dredged materials, fill materials, manufactured soils and soil treated to remove or destroy contaminants.
It takes into account the different requirements of top-soil, sub-soil and other soil materials such as sediments or treated soils. International Standard methods are listed where available.
The test methods are intended to cover a range of possible end uses, such as play areas for small children, including nursery schools, kindergardens, etc.; schools; gardens and other residential areas; allotments; horticulture; agriculture; forestry; recreational areas, e.g. parks, sport fields; restoration of damaged ecosystems; construction sites.
It is intended to be of use in determining the suitability of soil materials for re-use, and the assessment of the environmental impacts that might arise from re-use.
ISO 15176:2002 is not applicable to the placement of soil materials in the water environment or to restore underground workings. It does not address geotechnical requirements when soil materials are to be used as construction material.

Qualité du sol -- Caractérisation de la terre excavée et d'autres matériaux du sol destinés à la réutilisation

L'ISO 15176 fournit les lignes directrices concernant les essais pouvant être nécessaires pour caractériser les matériaux du sol destinés à être excavés et réutilisés avec ou sans traitement préliminaire. Les matériaux du sol incluent la terre excavée, les matériaux de dragage, les matériaux de remblayage, les sols artificiels et les sols initialement pollués mais ayant été traités dans le but de supprimer ou de détruire les contaminants.
Elle prend en compte les différentes exigences du sol superficiel, du sous-sol et d'autres matériaux du sol comme les sédiments ou les sols traités. Des méthodes normalisées ISO sont listées, lorsqu'elles sont disponibles.
Les méthodes d'essai sont destinées à couvrir une grande variété d'utilisations finales possibles comme les zones de jeu pour les enfants en bas âge, y compris les écoles maternelles, les jardins d'enfant, etc.; les écoles; les jardins et autres zones résidentielles; les lotissements; l'horticulture; l'agriculture; les travaux forestiers; les zones de loisirs, par exemple les parcs, les terrains de sport; la restauration d'écosystèmes endommagés; les chantiers.
Elle est prévue pour être utilisée dans le cadre de la détermination de l'aptitude des matériaux du sol pour une réutilisation et l'évaluation des impacts sur l'environnement pouvant résulter de la réutilisation.
L'ISO 15176 n'est pas applicable au dépôt des matériaux du sol dans l'eau ou la restauration du sous-sol. Elle ne traite pas des exigences géotechniques lorsque les matériaux du sol doivent être utilisés comme matériau de construction.

Kakovost tal – Karakterizacija izkopov in drugih talnih materialov, namenjenih ponovni uporabi

General Information

Status
Published
Publication Date
30-Nov-2006
Withdrawal Date
30-Nov-2006
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
01-Dec-2006
Due Date
01-Dec-2006
Completion Date
01-Dec-2006
Standard
ISO 15176:2002 - Soil quality -- Characterization of excavated soil and other soil materials intended for re-use
English language
50 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
SIST ISO 15176:2006
English language
55 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 15176:2002 - Qualité du sol -- Caractérisation de la terre excavée et d'autres matériaux du sol destinés a la réutilisation
French language
52 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


INTERNATIONAL ISO
STANDARD 15176
First edition
2002-10-01
Soil quality — Characterization of
excavated soil and other soil materials
intended for re-use
Qualité du sol — Caractérisation de la terre excavée et d'autres matériaux
du sol destinés à la réutilisation

Reference number
©
ISO 2002
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 2002 – All rights reserved

Contents Page
Foreword . iv
Introduction. v
1 Scope. 1
2 Normative reference. 1
3 Terms and definitions. 2
3.1 Types of soil and other soil materials. 2
3.2 Soil characteristics. 3
3.3 Land and sites . 4
3.4 Utilization, reclamation and treatment. 5
3.5 Assessment. 6
4 Characterization of soil materials and sites. 6
4.1 General. 6
4.2 Investigation strategies. 8
4.3 Sampling strategies. 8
4.4 Characterization of soil materials. 11
5 Data quality, handling and evaluation. 30
6 Using this International Standard. 30
Annex A (informative) Data quality, handling and evaluation. 31
Annex B (informative) Good practice in the re-use of soil materials . 33
B.1 General. 33
B.2 General guidance for re-use . 33
B.3 Handling and storing excavated soil and other soil materials. 34
B.4 Placement at the target site . 34
B.5 After-care of the target site . 35
B.6 Use of soil materials in construction works. 35
Annex C (informative) Guidance on determination of the scope of investigation needed before
excavation of soil materials . 36
C.1 General. 36
C.2 Determining the need for investigation . 36
C.3 Development of analytical strategies. 37
Annex D (informative) Example of classification and evaluation of soils and other soil materials. 40
D.1 General. 40
D.2 The concept of suitability classes. 40
D.3 Suitability classes depending on harmful substance content . 40
D.4 Soil unsuitable for re-use . 42
D.5 Additional suitability classes for soil improvement and reclamation . 42
D.6 Suitability of soils and soil materials for combining. 43
Annex E (informative) Examples of elements and compounds belonging to different contaminant
groups . 45
Bibliography. 47

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted
by the technical committees are circulated to the member bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 15176 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 7, Soil and site
assessment.
Annexes A, B, C, D and E of this International Standard are for information only.
iv © ISO 2002 – All rights reserved

Introduction
This International Standard is one of a series providing guidance on the assessment of soils and soil materials in
relation to certain functions and uses. It should be read in conjunction with these other International Standards,
some of which give more specific guidance in relation to some of the uses listed in the Scope or particular aspects
of assessments. For example, ISO 15800 gives guidance on assessments relating to human exposure to
potentially harmful substances and ISO 15175 gives guidance on characterization of soil related to groundwater.
Soils are the dynamic product of chemical, physical and biological processes. They are the result of interactions
between the inherent nature of the parent material, the prevailing environmental conditions and human activities.
They are a valuable natural resource which should be conserved wherever possible. When construction, mining or
other activities require soils to be excavated and moved from their natural situation, they should as far as possible
be reused in a manner consistent with their natural properties and the intended use of the receiving location. Soils
intended for re-use are usually required to have certain chemical, leaching, geotechnical, physical, biological and
radiochemical attributes consistent with this future use. Particular attention must be paid in situations where there is
reason to believe that the surplus soil may be contaminated.
Soils that are to be excavated should be investigated to determine how they may be re-used so as to minimize the
quantities to be disposed of as waste and to determine environmental impacts that might arise during re-use.
Treatment of soils and soil materials to remove or destroy contaminants or to reduce their availability to the
environment may alter soil properties. These properties should therefore be determined before re-use. For
manufactured soils, the characteristics of both the components and of the manufactured product may need to be
determined.
The purpose of characterizing soil (or other media) as suggested in this International Standard is usually to enable
judgements to be made about its suitability for a defined use (e.g. arable farming, domestic gardens). These
judgements may be made by reference to published international or national guidance that sets out physical, chemical
or other generic criteria that must be met, or against criteria set on a site-specific basis. When substances are present
that might be harmful to human health or the environment, the judgement may also be made on the basis of a site-
specific qualitative, semi-quantitative or fully quantitative risk assessment. In many jurisdictions, formal guidance on
such assessments has been published. In some cases this guidance fits within a legislative framework. Guidance has
also been provided by professional organizations and some standardization bodies.
When deciding whether to re-use soil material, other possibly competing or overriding objectives such as protection
of soil, nature, water and air; physical planning requirements and national legislative requirements may have to be
met.
Assessment of soil material for re-use may require the measurement of the chemical, physical, biological,
geotechnical and radiochemical characteristics of soil material and of the source and target sites. The assessor
should identify those parameters that are appropriate to the task in hand.
This International Standard identifies the functions and properties of soil materials at the source (point of origin)
and also the properties of the target (receiving) site which may be relevant to the potential uses listed in the Scope,
and indicates for which parameters or procedures there are International Standards available. Radiochemical and
geotechnical aspects are not covered. For guidance on the geotechnical aspects of the use of soil materials as
construction material, reference should be made to other relevant International Standards (e.g. those produced by
ISO/TC 182, Geotechnics in the field of civil engineering) or national standards.
The way the soil is handled after excavation may affect soil properties. Some suggestions regarding good practice
in soil handling and related practice and monitoring after placement are provided in annex B.

INTERNATIONAL STANDARD ISO 15176:2002(E)

Soil quality — Characterization of excavated soil and other soil
materials intended for re-use
1 Scope
This International Standard provides guidance on the range of tests that may be necessary to characterize soil
materials intended to be excavated and re-used, with or without preliminary treatment. Soil materials include
excavated soil, dredged materials, fill materials, manufactured soils and soil treated to remove or destroy
contaminants.
It takes into account the different requirements of top soil, sub-soil and other soil materials such as sediments or
treated soils. International Standard methods are listed where available.
The test methods are intended to cover a range of possible end uses, such as:
 play areas for small children, including nursery schools, kindergardens, etc.,
 schools,
 gardens and other residential areas,
 allotments,
 horticulture,
 agriculture,
 forestry,
 recreational areas, e.g. parks, sport fields,
 restoration of damaged ecosystems,
 construction sites.
It is intended to be of use in determining the suitability of soil materials for re-use, and the assessment of the
environmental impacts that might arise from re-use.
This International Standard is not applicable to the placement of soil materials in an aqueous environment or to
restore underground workings. It does not address geotechnical requirements when soil materials are to be used
as construction material.
2 Normative reference
The following normative document contains provisions which, through reference in this text, constitute provisions of
this International Standard. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC
maintain registers of currently valid International Standards.
ISO 11259, Soil quality — Simplified soil description
3 Terms and definitions
For the purposes of this International Standard, the following terms and definitions apply.
3.1 Types of soil and other soil materials
3.1.1
soil
upper layer of the earth's crust composed of mineral parts, organic substance, water, air and living matter
[ISO 11074-1]
3.1.2
top soil
upper part of a natural soil which is generally dark-coloured and has a higher humus and nutrient content when
compared to the subsoil below
[ISO 11074-4]
3.1.3
sub-soil
material underlying the topsoil and overlying the solid (parent) rock beneath
NOTE All or much of the original rock structure has usually been obliterated by pedogenic processes.
3.1.4
soil material
excavated soil, dredged materials, manufactured soils, treated soils and fill materials
3.1.5
excavated soil
any natural material excavated from the ground, including top soil, sub soil, altered parent rock and parent rock
itself
NOTE Excavated soil typically arises during construction works.
3.1.6
manufactured soil
manufactured soil material
manufactured product intended to perform specified soil functions produced by blending combinations of natural,
waste or manufactured materials with the addition of nutrients or other additives when necessary
3.1.7
treated soil
soil that has been subjected to a process-based treatment method
3.1.8
dredged material
material excavated during maintenance, construction, reconstruction and extension measures from waters
NOTE Dredged material may consist of:
 sediments or subhydric soils,
 soils and their parent material beneath the surface water body.
2 © ISO 2002 – All rights reserved

3.1.9
fill material
made ground
mixed natural (often displaced or disturbed) soil materials and other materials characteristic of urban and industrial
sites
EXAMPLES Building rubble, timber and other wastes.
3.2 Soil characteristics
3.2.1
soil function
use of soil which is significant to man and the environment
NOTE Important soil functions are:
 control of substance and energy cycles as compartments of ecosystems;
 basis for the production of agricultural products;
 basis for the life of plants, animals and man;
 carrier of genetic reservoir;
 basis for the stability of buildings;
 buffer inhibiting movement of water, contaminents or other agents into the groundwater;
 reservoir of archeological remains;
 reservoir of paleoecological remains.
NOTE Adapted from ISO 11074-4.
3.2.2
background concentration
concentration of a substance characteristic of a soil type in an area or region arising from both natural sources and
non-natural diffuse sources such as atmospheric deposition
cf. natural background concentration (3.2.4)
NOTE It is commonly expressed in terms of an average, median, a range of values, or a background value (3.2.3).
3.2.3
background value
expression of the upper limit of the range of the background concentration
NOTE It is commonly expressed as the percentile value.
3.2.4
natural background concentration
concentration of a substance that is derived solely from natural sources
NOTE 1 It is of geogenic origin.
NOTE 2 It is commonly expressed in terms of average, a range of values, or a natural-background value (3.2.5).
3.2.5
natural background value
expression of the upper limit of the range of the natural background concentration
NOTE It is commonly expressed as percentile value.
3.2.6
contaminant
substance or agent present in soil as a result of human activity
cf. pollutant (3.2.7), potentially harmful substance (3.2.8)
NOTE There is no assumption in this definition that harm results from the presence of the contaminant.
3.2.7
pollutant
substance or agent present in the soil which due to its properties, amount or concentration causes adverse impact
on soil functions or soil use
cf. contaminant (3.2.6), potentially harmful substance (3.2.8)
NOTE See Introduction in ISO 11074-1:1996.
3.2.8
potentially harmful substance
substance which, when present in sufficient concentration or amount, may be harmful to humans or the
environment
NOTE It may be present as a result of human activity [contaminant (3.2.6)] or naturally.
3.2.9
residual contamination
amount or concentration of contaminants remaining in specific media following remediation
[ISO 11074-4]
3.2.10
trace element
element present in low concentration in soil material
NOTE A trace element may be essential at low concentration but harmful at higher concentration.
3.2.11
essential trace element
element essential at low concentrations for plant or animal (including human) metabolism
NOTE An element may be essential at low concentrations but become harmful at higher concentrations.
3.3 Land and sites
3.3.1
damaged or degraded land
land which, due to natural processes or human activity, is no longer able to properly sustain an economic function
and/or its original natural, or near-natural ecological function
3.3.2
target site
site at which soil is to be re-used
4 © ISO 2002 – All rights reserved

3.4 Utilization, reclamation and treatment
3.4.1
re-use of soil materials
useful and harmless utilization of soil materials
NOTE In the context of this International Standard, re-use means transfer of soil materials to another location for use in
agriculture, horticulture, forestry, gardens, recreational areas and construction sites.
3.4.2
construction works
soil application including earthworks and embankments, landscape engineering, road construction, construction of
waste disposal sites, and backfilling of excavated sites or mines
NOTE Construction works are applications where soil materials are not required to have a direct productive use, although
they may support other layers intended to have productive use.
3.4.3
reclamation
restoration
rehabilitation
〈of land〉 return of damaged, degraded or derelict land to beneficial use
NOTE The term remediation is commonly restricted to the process of dealing with contaminated/polluted sites.
3.4.4
soil rehabilitation
actions taken to improve the capability of damaged or degraded soil to perform specified functions
NOTE An example of such action is the addition of organic matter and nutrients to promote plant growth.
NOTE Adapted from ISO 11074-4.
3.4.5
remediation strategy
combination of remedial techniques and associated work programmes that will meet specified contamination-
related remediation objectives and other objectives, and overcome possible restraints
NOTE 1 Adapted from ISO 11074-4.
NOTE 2 Examples of objectives are residual-contaminant concentrations, and engineering-related objectives.
3.4.6
process-based treatment method
application of physical, chemical or biological processes either to remove or destroy contaminants, or to reduce
their availability to the environment
[ISO 11074-4]
NOTE Different treatment methods, e.g. biotreatment, are defined in ISO 11074-4.
3.4.7
stockpile
temporary deposit of soil material for later use
3.4.8
investigation for compliance or performance
investigation, or programme of on-going inspection, testing or monitoring, to confirm that a remediation strategy
has been properly implemented and/or when a containment approach has been adopted, that this continues to
perform to the specified level
EXAMPLE Testing to confirm that all contaminated material has been removed.
[ISO 11074-4]
3.5 Assessment
3.5.1
hazard
property of a substance or material, or any action, which may have an adverse effect on soil functions
NOTE A hazard has the potential to cause harm.
3.5.2
risk
expression of the probability that an adverse effect on soil functions will occur under defined conditions, and the
magnitude of the consequences of the effect occurring
3.5.3
harmlessness
condition in which the application of a soil material does not result in damage to the present functions of the soil
already existing at the target site
3.5.4
data quality objectives
required detection limits, accuracy, reproducibility and repeatability of the required analytical and other data
NOTE 1 The objectives are often presented in a statement.
NOTE 2 Generic data quality objectives may sometimes be set at national level.
NOTE 3 The objectives may also include the amount of data required for an area of land (or part of a site) to enable a sound
comparison with generic guidelines or standards or for a site-specific or material-specific estimation of risk.
4 Characterization of soil materials and sites
4.1 General
The purpose of characterizing soil and soil materials as suggested in this International Standard is usually to
enable judgements to be made about its suitability for a defined use (e.g. arable farming, domestic gardens).
Before any judgement can be made about suitability, the right type, quantity and quality of data must be available
(see annex A). It is likely to be necessary to determine the relevant chemical, physical, biological and other
characteristics as appropriate. This requires the development of an overall investigation strategy which needs to
include, in particular:
 sampling strategies, and
 analytical and testing strategies
for each location and/or medium that is to be assessed.
The first step, therefore in the assessment of soil materials which have been, or may be, excavated or treated is to
review the already available information and data to determine whether they are sufficient to enable an assessment
to be made. If the data are not, then an appropriate investigation should be carried out. Subclause 4.2 discusses
the situation when there is prior knowledge that excavation is to take place. Obviously the approach described
needs to be adjusted for other situations (e.g. when the soil material of interest is a manufactured soil).
Sometimes investigations are required for the sole purpose of deciding whether soil and other soil material such as
fill materials are suitable for re-use (the situation envisaged in Figure 1) but often this is only one of a number of
objectives of a more comprehensive investigation of a suspect potentially contaminated site. In this latter case, the
initial task becomes to ensure that the overall sampling, analytical and testing strategies for the investigation
properly address the needs of this specific objective. In practice, investigations are commonly phased for both
technical and cost reasons and it may therefore be preferable to carry out at least part of the characterization,
6 © ISO 2002 – All rights reserved

particularly for example of the nutrient and trace element status, physical and biological soil properties, through a
supplementary investigation (see Figure 2). The real need to assess the soil material for re-use may only arise
during the development of a remediation strategy, and the need to gather supplementary information at this stage
is no different than that for other components of the remediation strategy (e.g. the need for geotechnical data
relevant to installation of a cut-off wall may become apparent, the need for gas-permeability data for application of
soil vapour extraction may become apparent).
The discussion below focuses on soil materials that are to be excavated. This International Standard covers a
number of other situations including for example dredged materials, treated soil materials and manufactured soils.
Comparable appropriate investigation is required to be sure that there is a good understanding of the source of the
material and its components so that appropriate analytical and testing strategies can be developed.

Figure 1 — Overall flow chart for characterization of soil materials for re-use
4.2 Investigation strategies
The typical overall investigation strategy for a potentially contaminated site (i.e. one where it is suspected
potentially harmful substances may be present as a result of human activity) is to:
 carry out a preliminary investigation comprising a desk-top study and a site reconnaissance (walk over-
survey). The aim is to build up as comprehensive a picture as possible of the history of the site, its geology
and hydrogeology, environmental setting, and current condition;
and, on the basis of the resulting conceptual model, to:
 develop a strategy for intrusive investigation which properly takes into account the health and safety of the
investigation team and the general public, and which avoids harm to the environment.
Often, but not always, the intrusive investigation will be phased (see Figure 2). An initial exploratory investigation
(Phase 2) may be carried out first to attempt to confirm hypotheses drawn from the preliminary investigation
(Phase 1) and to provide initial information to be better able to design the subsequent main investigation (Phase 3).
In the light of the results of these early phases, it may be necessary to carry out supplementary investigations
(Phase 4) to determine, for example the suitability of soil for re-use, or to gather information relevant to the
application of a process-based treatment method.
It is important that the information and data required to assess excavated soil material for re-use be identified as far
as possible before the investigation starts. In this way appropriate sampling, analytical and testing strategies can
be developed at the outset. If this is not done, there may be significant gaps in the information available,
necessitating further costly intrusive investigation. As suggested in 4.1, however, some aspects of characterization
may often be better addressed through a supplementary investigation.
The approach outlined above should be adapted for other sources of soil materials, for example when soil material
is being manufactured it would be appropriate to enquire into the source and history of each of the ingredients. In
the case of soil material from a process-based treatment method, it would be appropriate to enquire into the history
of the source site. Exploratory sampling programmes could then be carried out before designing and embarking on
a programme for continuous monitoring of feed and output materials.
4.3 Sampling strategies
4.3.1 General considerations
Investigation may be required (as appropriate)
 in situ at the point of excavation,
 following excavation,
 following treatment,
 following manufacture of manufactured soil,
 in situ at the source or target site.
The sampling strategies and the measurements to be made (analytical and testing strategy) should be determined
on the basis of
 the history of the site from which the soil material is excavated or dredged,
 the quantity of soil material to be assessed,
 available data or results of previous investigations,
8 © ISO 2002 – All rights reserved

Figure 2 — Diagram showing how assessment of excavated soil material might fit into investigation of a
suspect potentially contaminated site (as opposed to the alternative of a dedicated investigation
with this sole objective)
 the nature and type of material to be characterized,
 the nature of any process based treatment methods that has been applied to the soil material,
 the intended use of the soil material,
 the planned way of handling the soil material from excavation to target site, e.g. transport and stockpiling,
 the history and present condition of the target site,
 the intended use of the target site,
 data quality objectives (see annex A).
When deciding on investigation, sampling, analytical and testing strategies, reference should be made to any
relevant statutory (i.e. legally binding) requirements or other relevant guidance applicable in the jurisdiction where
the soil is to be excavated and/or re-used.
Before commencing any investigation it is essential to define the objectives of the investigation and to prepare a
sampling strategy consistent with those objectives. Reference should be made to relevant International Standards and
to the guidance attached to any national guidelines or standards relating to soil quality that are to be used in the
assessment of the results of the investigation. In some jurisdictions, there may be a legal requirement to follow certain
procedures if published criteria are to be used as the basis of the assessment.
Within the scope of this International Standard, sampling may be required of in situ or excavated (ex situ) soil, fill
materials, dredged materials, manufactured soils and their components, and treated soils. For example:
 in situ soils and other materials intended for excavation;
 in situ soils at the intended location of use;
 groundwater at the point of excavation or at the point of re-deposition;
 sediments in situ in ponds, lakes, canals, estuaries etc.;
 stockpiles of excavated soils and other soil materials;
 stockpiles of excavated sediments;
 soil materials arising from a process-based remediation method;
 in situ soil, etc., after emplacement, to ensure compliance and performance.
International Standards should be applied for sampling soils in various contexts; these are published as parts of
ISO 10381. International Standards are also available for sampling surface water (ISO 5667-4, 5667-6), groundwater
(ISO 5667-11), and sediments (ISO 5667-12). Otherwise appropriate national or equivalent standards should be used.
In general, soil materials should be sampled in situ rather than after placement in stockpiles. This enables potential
environmental impacts arising from handling and storage to be determined, and may enable potential damage to the
soil that may arise during storage to be avoided (see annex B).
Whilst the testing of soils for geotechnical properties is outside of the scope of this International Standard, the guidance
available for description, sampling and investigation design may sometimes be helpful. In particular, attention is drawn
to ISO 14688-1 and to ISO 14689. These International Standards include definitions (e.g. of soil and rock) specific to
geotechnical applications.
10 © ISO 2002 – All rights reserved

4.3.2 Sampling in situ soil materials
If sufficient data are not already available (see 4.3 and annex A), it will be necessary to sample soil materials at the
point of excavation and/or at the target site. Relevant International Standards on sampling soils in relation to soil quality
are listed in clause 2 and in the Bibliography.
4.3.3 Sampling sediments
Guidance on sampling of sediments is given in ISO 5667-12.
4.3.4 Sampling materials arising from a process-based remediation method
Assessment of materials arising from a process-based treatment method usually requires sampling in a statistically
sound way in order to confirm compliance with pre-determined chemical, physical or biological criteria (for example
residual concentrations of pollutants).
NOTE At the time of publication of this International Standard, no directly relevant International Standards have been
published which deal with this item. However, an International Standard on sampling of stockpiles is in preparation.
4.3.5 Sampling manufactured soil materials
Assessment of manufactured soil materials usually requires sampling in a statistically sound way in order to confirm
compliance with pre-determined chemical, physical or biological criteria.
The materials used in manufacture usually require characterization before blending.
NOTE At the time of publication of this International Standard, no directly relevant International Standards have been
published which deal with this item. However, an International Standard on sampling of stockpiles is in preparation.
4.3.6 Sampling stockpiles of untreated or treated soil materials
Soil materials may be stockpiled after excavation or dredging. Treated materials may also be stockpiled before re-use.
Special sampling methods are required for such stockpiles. Samples from different stockpiles should not be mixed.
NOTE At the time of publication of this International Standard, no directly relevant International Standards have been
published which deal with this item. However, an International Standard on sampling of stockpiles is in preparation.
4.3.7 Sampling soil materials after placement at the target site
It may be necessary to sample soil materials after placement at the target site for compliance and performance
assessment. This may be required shortly after placement or some years afterward, to see, for example, if a desired
improvement in a soil function has been achieved. In general, sampling methods applicable to in situ soil materials are
appropriate.
4.3.8 Sampling the water environment
It may sometimes be necessary to sample groundwater or surface waters at the location from which soil materials are
to be excavated or dredged, or at the target site. In this case ISO 5667-4, ISO 5667-6 and ISO 5667-11 shall be
observed.
4.4 Characterization of soil materials
4.4.1 General
Depending on the intended use, characterization of soil materials require determination of basic characteristics (for
example pH, mineralogy), chemical, physical (including texture), geotechnical, biological and radiochemical properties.
It is often also necessary to determine or describe certain aspects of the site from which the soil material is to be
excavated from (source site) and/or at which the soil material is to be used (target site). Figure 1 indicates the broad
areas in which measurement or description may be required. The figure assumes that a dedicated investigation is
being carried out for the specific purpose of assessing soil material for re-use. However, as discussed in 4.1 and 4.2
and illustrated in Figure 2, investigation related to re-use of soil material may be simply one aspect of a wider
investigation and assessment programme.
Certain parameters require determination in almost all situations; others only require measurement depending on
the intended use of the soil material.
4.4.2 Characterization of source and target sites
Suggestions about the characteristics of the source and target sites that might be determined are listed in Table 1.
In general, the parameters to be determined at the source site are those relevant to the extraction process itself
and subsequent intermediate storage and handling, and direct observations that can be made on-site (e.g. in
inspection pits) that are relevant to the intended use of the excavated soil material. At the target site, the
parameters of concern are primarily those that are relevant to the placement process and the properties of the
existing top soil and subsoil which are relevant to determination of whether imported soil material can be used
without harm (see annex B for discussion of the concept of ”harmlessness”).
4.4.3 Physical and chemical characterization, including basic characteristics
4.4.3.1 General
It may be necessary to measure chemical parameters in the following broad groups:
 basic characteristic parameters (e.g. pH, cation exchange capacity, petrographic features);
 nutrients;
 trace elements;
 potentially harmful substances.
Certain parameters require measurement in almost all situations; others only require measurement for some
intended uses of the soil material. A judgement should, however, be made on a case-by-case basis.
Some elements may be regarded as essential trace elements at low concentrations, but at higher concentrations
may be harmful to some biota. For example, copper is listed in Table 5 as an essential trace element but is also
included in subsequent tables dealing with potentially harmful substances.
In order to estimate the availability of inorganic substances to different environmental compartments, it may be
necessary to distinguish between different fractions of an analyte, e.g. soluble in strong acid, weak extractants, or
water. Although the extractants may be different, it is often possible to use the same methods to analyse the
extractant. Guidance on available International Standard methods and their applicability to different extractants is
given in Table 2.
Whereas the inorganic analyst is primarily concerned with the analysis of a defined number of elements and
anions, the organic analyst is often interested in looking for any chemical which may be present. In practice,
organic analyses take two forms:
a) determination of what is present (qualitative analysis), and
b) determination of how much of a specific compound or class of compounds is present (quantitative analysis).
The detection of “adventitious” or unexpected substances, particularly when complex mixtures of organic chemical
species are present, requires the use of analytical screening methods such as gas chromatography/mass
spectometry. It is also customary to employ analytical methods that purport to give total concentrations of classes
of compounds such as phenols, polycyclic aromatic hydrocarbons (PAHs), total petrol hydrocarbons (TPH) and
chlorinated hydrocarbons. Care is required in both the use and interpretation of the results of such methods.
12 © ISO 2002 – All rights reserved

Table 1 — Characterization of source and target sites
Source site Target site
Soil to be used Soil to be used for Soil to be used Soil to be used for
International
Parameters
for natural construction (e.g. for natural construction (e.g.
Standard
(productive) earth works) (productive) earth works)
function function
Land use:
Vegetation, buildings, etc. X X X X –
Topography: X X X X ISO 11259
Surface characteristic:
Rock outcrops, erosion, cracks, etc. X X X X ISO 11259
Hydrology:
Surface water balance – – X X –
Rainfall – – X X –
Evapotranspiration – – X X –
Groundwater recharge X X X X –
Depth to groundwater table X X X X –
Soil geometry:
Stratigraphy X X X X ISO 11259
Inhomogeneities X X X X ISO 11259
Fracturing X X X X ISO 11259
Geology:
Type of parent material X X X X ISO 11259
Effective soil depth X X X X ISO 11259
Soil type/soil:
Soil type and sequence of horizons X X X X ISO 11259
Description:
Thickness of horizons X X X X ISO 11259
Colour of the horizon matrix X – X – ISO 11259
Texture:
Mottles X – X – ISO 11259
Moisture status X – X – ISO 11259
Structure X – X – ISO 11259
Compactness X – X – ISO 11259
Total estimated porosity X – X – ISO 11259
Roots X X X X ISO 11259
Worm channels, biological activity X – X – ISO 11259
Other characteristics:
Presence of non-soil material X X X X –
Presence of biodegradable material X X X X –
Presence of buildings, etc. X X – – –
Present plant: X – X – –
Engineering qualities: X X X X –
NOTE ”X” indicates that the information or chararacteristic may be relevant. However, decisions about relevance should always be made on a
case-by-case basis.
Qualitative analysis is frequently carried out prior to quantitative analysis. Class analyses frequently precede
specific compound analyses.
“Total” applied to organic compounds (e.g. phenols) usually means that an analytical technique has been employed
that cannot distinguish between similar compounds: in the case of phenols say between monohydric, dihydric and
trihydric compounds (i.e. compounds with one, two and three hydroxyl groups attached to the benzene ring).
However, the term “total” may be misleading: not all phenols may be detected by the method employed (e.g. there
may be limitations in terms of molecular weight o
...


SLOVENSKI STANDARD
01-december-2006
Kakovost tal – Karakterizacija izkopov in drugih talnih materialov, namenjenih
ponovni uporabi
Soil quality -- Characterization of excavated soil and other soil materials intended for re-
use
Qualité du sol -- Caractérisation de la terre excavée et d'autres matériaux du sol destinés
à la réutilisation
Ta slovenski standard je istoveten z: ISO 15176:2002
ICS:
13.080.99 Drugi standardi v zvezi s Other standards related to
kakovostjo tal soil quality
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 15176
First edition
2002-10-01
Soil quality — Characterization of
excavated soil and other soil materials
intended for re-use
Qualité du sol — Caractérisation de la terre excavée et d'autres matériaux
du sol destinés à la réutilisation

Reference number
©
ISO 2002
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 2002 – All rights reserved

Contents Page
Foreword . iv
Introduction. v
1 Scope. 1
2 Normative reference. 1
3 Terms and definitions. 2
3.1 Types of soil and other soil materials. 2
3.2 Soil characteristics. 3
3.3 Land and sites . 4
3.4 Utilization, reclamation and treatment. 5
3.5 Assessment. 6
4 Characterization of soil materials and sites. 6
4.1 General. 6
4.2 Investigation strategies. 8
4.3 Sampling strategies. 8
4.4 Characterization of soil materials. 11
5 Data quality, handling and evaluation. 30
6 Using this International Standard. 30
Annex A (informative) Data quality, handling and evaluation. 31
Annex B (informative) Good practice in the re-use of soil materials . 33
B.1 General. 33
B.2 General guidance for re-use . 33
B.3 Handling and storing excavated soil and other soil materials. 34
B.4 Placement at the target site . 34
B.5 After-care of the target site . 35
B.6 Use of soil materials in construction works. 35
Annex C (informative) Guidance on determination of the scope of investigation needed before
excavation of soil materials . 36
C.1 General. 36
C.2 Determining the need for investigation . 36
C.3 Development of analytical strategies. 37
Annex D (informative) Example of classification and evaluation of soils and other soil materials. 40
D.1 General. 40
D.2 The concept of suitability classes. 40
D.3 Suitability classes depending on harmful substance content . 40
D.4 Soil unsuitable for re-use . 42
D.5 Additional suitability classes for soil improvement and reclamation . 42
D.6 Suitability of soils and soil materials for combining. 43
Annex E (informative) Examples of elements and compounds belonging to different contaminant
groups . 45
Bibliography. 47

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted
by the technical committees are circulated to the member bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 15176 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 7, Soil and site
assessment.
Annexes A, B, C, D and E of this International Standard are for information only.
iv © ISO 2002 – All rights reserved

Introduction
This International Standard is one of a series providing guidance on the assessment of soils and soil materials in
relation to certain functions and uses. It should be read in conjunction with these other International Standards,
some of which give more specific guidance in relation to some of the uses listed in the Scope or particular aspects
of assessments. For example, ISO 15800 gives guidance on assessments relating to human exposure to
potentially harmful substances and ISO 15175 gives guidance on characterization of soil related to groundwater.
Soils are the dynamic product of chemical, physical and biological processes. They are the result of interactions
between the inherent nature of the parent material, the prevailing environmental conditions and human activities.
They are a valuable natural resource which should be conserved wherever possible. When construction, mining or
other activities require soils to be excavated and moved from their natural situation, they should as far as possible
be reused in a manner consistent with their natural properties and the intended use of the receiving location. Soils
intended for re-use are usually required to have certain chemical, leaching, geotechnical, physical, biological and
radiochemical attributes consistent with this future use. Particular attention must be paid in situations where there is
reason to believe that the surplus soil may be contaminated.
Soils that are to be excavated should be investigated to determine how they may be re-used so as to minimize the
quantities to be disposed of as waste and to determine environmental impacts that might arise during re-use.
Treatment of soils and soil materials to remove or destroy contaminants or to reduce their availability to the
environment may alter soil properties. These properties should therefore be determined before re-use. For
manufactured soils, the characteristics of both the components and of the manufactured product may need to be
determined.
The purpose of characterizing soil (or other media) as suggested in this International Standard is usually to enable
judgements to be made about its suitability for a defined use (e.g. arable farming, domestic gardens). These
judgements may be made by reference to published international or national guidance that sets out physical, chemical
or other generic criteria that must be met, or against criteria set on a site-specific basis. When substances are present
that might be harmful to human health or the environment, the judgement may also be made on the basis of a site-
specific qualitative, semi-quantitative or fully quantitative risk assessment. In many jurisdictions, formal guidance on
such assessments has been published. In some cases this guidance fits within a legislative framework. Guidance has
also been provided by professional organizations and some standardization bodies.
When deciding whether to re-use soil material, other possibly competing or overriding objectives such as protection
of soil, nature, water and air; physical planning requirements and national legislative requirements may have to be
met.
Assessment of soil material for re-use may require the measurement of the chemical, physical, biological,
geotechnical and radiochemical characteristics of soil material and of the source and target sites. The assessor
should identify those parameters that are appropriate to the task in hand.
This International Standard identifies the functions and properties of soil materials at the source (point of origin)
and also the properties of the target (receiving) site which may be relevant to the potential uses listed in the Scope,
and indicates for which parameters or procedures there are International Standards available. Radiochemical and
geotechnical aspects are not covered. For guidance on the geotechnical aspects of the use of soil materials as
construction material, reference should be made to other relevant International Standards (e.g. those produced by
ISO/TC 182, Geotechnics in the field of civil engineering) or national standards.
The way the soil is handled after excavation may affect soil properties. Some suggestions regarding good practice
in soil handling and related practice and monitoring after placement are provided in annex B.

INTERNATIONAL STANDARD ISO 15176:2002(E)

Soil quality — Characterization of excavated soil and other soil
materials intended for re-use
1 Scope
This International Standard provides guidance on the range of tests that may be necessary to characterize soil
materials intended to be excavated and re-used, with or without preliminary treatment. Soil materials include
excavated soil, dredged materials, fill materials, manufactured soils and soil treated to remove or destroy
contaminants.
It takes into account the different requirements of top soil, sub-soil and other soil materials such as sediments or
treated soils. International Standard methods are listed where available.
The test methods are intended to cover a range of possible end uses, such as:
 play areas for small children, including nursery schools, kindergardens, etc.,
 schools,
 gardens and other residential areas,
 allotments,
 horticulture,
 agriculture,
 forestry,
 recreational areas, e.g. parks, sport fields,
 restoration of damaged ecosystems,
 construction sites.
It is intended to be of use in determining the suitability of soil materials for re-use, and the assessment of the
environmental impacts that might arise from re-use.
This International Standard is not applicable to the placement of soil materials in an aqueous environment or to
restore underground workings. It does not address geotechnical requirements when soil materials are to be used
as construction material.
2 Normative reference
The following normative document contains provisions which, through reference in this text, constitute provisions of
this International Standard. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC
maintain registers of currently valid International Standards.
ISO 11259, Soil quality — Simplified soil description
3 Terms and definitions
For the purposes of this International Standard, the following terms and definitions apply.
3.1 Types of soil and other soil materials
3.1.1
soil
upper layer of the earth's crust composed of mineral parts, organic substance, water, air and living matter
[ISO 11074-1]
3.1.2
top soil
upper part of a natural soil which is generally dark-coloured and has a higher humus and nutrient content when
compared to the subsoil below
[ISO 11074-4]
3.1.3
sub-soil
material underlying the topsoil and overlying the solid (parent) rock beneath
NOTE All or much of the original rock structure has usually been obliterated by pedogenic processes.
3.1.4
soil material
excavated soil, dredged materials, manufactured soils, treated soils and fill materials
3.1.5
excavated soil
any natural material excavated from the ground, including top soil, sub soil, altered parent rock and parent rock
itself
NOTE Excavated soil typically arises during construction works.
3.1.6
manufactured soil
manufactured soil material
manufactured product intended to perform specified soil functions produced by blending combinations of natural,
waste or manufactured materials with the addition of nutrients or other additives when necessary
3.1.7
treated soil
soil that has been subjected to a process-based treatment method
3.1.8
dredged material
material excavated during maintenance, construction, reconstruction and extension measures from waters
NOTE Dredged material may consist of:
 sediments or subhydric soils,
 soils and their parent material beneath the surface water body.
2 © ISO 2002 – All rights reserved

3.1.9
fill material
made ground
mixed natural (often displaced or disturbed) soil materials and other materials characteristic of urban and industrial
sites
EXAMPLES Building rubble, timber and other wastes.
3.2 Soil characteristics
3.2.1
soil function
use of soil which is significant to man and the environment
NOTE Important soil functions are:
 control of substance and energy cycles as compartments of ecosystems;
 basis for the production of agricultural products;
 basis for the life of plants, animals and man;
 carrier of genetic reservoir;
 basis for the stability of buildings;
 buffer inhibiting movement of water, contaminents or other agents into the groundwater;
 reservoir of archeological remains;
 reservoir of paleoecological remains.
NOTE Adapted from ISO 11074-4.
3.2.2
background concentration
concentration of a substance characteristic of a soil type in an area or region arising from both natural sources and
non-natural diffuse sources such as atmospheric deposition
cf. natural background concentration (3.2.4)
NOTE It is commonly expressed in terms of an average, median, a range of values, or a background value (3.2.3).
3.2.3
background value
expression of the upper limit of the range of the background concentration
NOTE It is commonly expressed as the percentile value.
3.2.4
natural background concentration
concentration of a substance that is derived solely from natural sources
NOTE 1 It is of geogenic origin.
NOTE 2 It is commonly expressed in terms of average, a range of values, or a natural-background value (3.2.5).
3.2.5
natural background value
expression of the upper limit of the range of the natural background concentration
NOTE It is commonly expressed as percentile value.
3.2.6
contaminant
substance or agent present in soil as a result of human activity
cf. pollutant (3.2.7), potentially harmful substance (3.2.8)
NOTE There is no assumption in this definition that harm results from the presence of the contaminant.
3.2.7
pollutant
substance or agent present in the soil which due to its properties, amount or concentration causes adverse impact
on soil functions or soil use
cf. contaminant (3.2.6), potentially harmful substance (3.2.8)
NOTE See Introduction in ISO 11074-1:1996.
3.2.8
potentially harmful substance
substance which, when present in sufficient concentration or amount, may be harmful to humans or the
environment
NOTE It may be present as a result of human activity [contaminant (3.2.6)] or naturally.
3.2.9
residual contamination
amount or concentration of contaminants remaining in specific media following remediation
[ISO 11074-4]
3.2.10
trace element
element present in low concentration in soil material
NOTE A trace element may be essential at low concentration but harmful at higher concentration.
3.2.11
essential trace element
element essential at low concentrations for plant or animal (including human) metabolism
NOTE An element may be essential at low concentrations but become harmful at higher concentrations.
3.3 Land and sites
3.3.1
damaged or degraded land
land which, due to natural processes or human activity, is no longer able to properly sustain an economic function
and/or its original natural, or near-natural ecological function
3.3.2
target site
site at which soil is to be re-used
4 © ISO 2002 – All rights reserved

3.4 Utilization, reclamation and treatment
3.4.1
re-use of soil materials
useful and harmless utilization of soil materials
NOTE In the context of this International Standard, re-use means transfer of soil materials to another location for use in
agriculture, horticulture, forestry, gardens, recreational areas and construction sites.
3.4.2
construction works
soil application including earthworks and embankments, landscape engineering, road construction, construction of
waste disposal sites, and backfilling of excavated sites or mines
NOTE Construction works are applications where soil materials are not required to have a direct productive use, although
they may support other layers intended to have productive use.
3.4.3
reclamation
restoration
rehabilitation
〈of land〉 return of damaged, degraded or derelict land to beneficial use
NOTE The term remediation is commonly restricted to the process of dealing with contaminated/polluted sites.
3.4.4
soil rehabilitation
actions taken to improve the capability of damaged or degraded soil to perform specified functions
NOTE An example of such action is the addition of organic matter and nutrients to promote plant growth.
NOTE Adapted from ISO 11074-4.
3.4.5
remediation strategy
combination of remedial techniques and associated work programmes that will meet specified contamination-
related remediation objectives and other objectives, and overcome possible restraints
NOTE 1 Adapted from ISO 11074-4.
NOTE 2 Examples of objectives are residual-contaminant concentrations, and engineering-related objectives.
3.4.6
process-based treatment method
application of physical, chemical or biological processes either to remove or destroy contaminants, or to reduce
their availability to the environment
[ISO 11074-4]
NOTE Different treatment methods, e.g. biotreatment, are defined in ISO 11074-4.
3.4.7
stockpile
temporary deposit of soil material for later use
3.4.8
investigation for compliance or performance
investigation, or programme of on-going inspection, testing or monitoring, to confirm that a remediation strategy
has been properly implemented and/or when a containment approach has been adopted, that this continues to
perform to the specified level
EXAMPLE Testing to confirm that all contaminated material has been removed.
[ISO 11074-4]
3.5 Assessment
3.5.1
hazard
property of a substance or material, or any action, which may have an adverse effect on soil functions
NOTE A hazard has the potential to cause harm.
3.5.2
risk
expression of the probability that an adverse effect on soil functions will occur under defined conditions, and the
magnitude of the consequences of the effect occurring
3.5.3
harmlessness
condition in which the application of a soil material does not result in damage to the present functions of the soil
already existing at the target site
3.5.4
data quality objectives
required detection limits, accuracy, reproducibility and repeatability of the required analytical and other data
NOTE 1 The objectives are often presented in a statement.
NOTE 2 Generic data quality objectives may sometimes be set at national level.
NOTE 3 The objectives may also include the amount of data required for an area of land (or part of a site) to enable a sound
comparison with generic guidelines or standards or for a site-specific or material-specific estimation of risk.
4 Characterization of soil materials and sites
4.1 General
The purpose of characterizing soil and soil materials as suggested in this International Standard is usually to
enable judgements to be made about its suitability for a defined use (e.g. arable farming, domestic gardens).
Before any judgement can be made about suitability, the right type, quantity and quality of data must be available
(see annex A). It is likely to be necessary to determine the relevant chemical, physical, biological and other
characteristics as appropriate. This requires the development of an overall investigation strategy which needs to
include, in particular:
 sampling strategies, and
 analytical and testing strategies
for each location and/or medium that is to be assessed.
The first step, therefore in the assessment of soil materials which have been, or may be, excavated or treated is to
review the already available information and data to determine whether they are sufficient to enable an assessment
to be made. If the data are not, then an appropriate investigation should be carried out. Subclause 4.2 discusses
the situation when there is prior knowledge that excavation is to take place. Obviously the approach described
needs to be adjusted for other situations (e.g. when the soil material of interest is a manufactured soil).
Sometimes investigations are required for the sole purpose of deciding whether soil and other soil material such as
fill materials are suitable for re-use (the situation envisaged in Figure 1) but often this is only one of a number of
objectives of a more comprehensive investigation of a suspect potentially contaminated site. In this latter case, the
initial task becomes to ensure that the overall sampling, analytical and testing strategies for the investigation
properly address the needs of this specific objective. In practice, investigations are commonly phased for both
technical and cost reasons and it may therefore be preferable to carry out at least part of the characterization,
6 © ISO 2002 – All rights reserved

particularly for example of the nutrient and trace element status, physical and biological soil properties, through a
supplementary investigation (see Figure 2). The real need to assess the soil material for re-use may only arise
during the development of a remediation strategy, and the need to gather supplementary information at this stage
is no different than that for other components of the remediation strategy (e.g. the need for geotechnical data
relevant to installation of a cut-off wall may become apparent, the need for gas-permeability data for application of
soil vapour extraction may become apparent).
The discussion below focuses on soil materials that are to be excavated. This International Standard covers a
number of other situations including for example dredged materials, treated soil materials and manufactured soils.
Comparable appropriate investigation is required to be sure that there is a good understanding of the source of the
material and its components so that appropriate analytical and testing strategies can be developed.

Figure 1 — Overall flow chart for characterization of soil materials for re-use
4.2 Investigation strategies
The typical overall investigation strategy for a potentially contaminated site (i.e. one where it is suspected
potentially harmful substances may be present as a result of human activity) is to:
 carry out a preliminary investigation comprising a desk-top study and a site reconnaissance (walk over-
survey). The aim is to build up as comprehensive a picture as possible of the history of the site, its geology
and hydrogeology, environmental setting, and current condition;
and, on the basis of the resulting conceptual model, to:
 develop a strategy for intrusive investigation which properly takes into account the health and safety of the
investigation team and the general public, and which avoids harm to the environment.
Often, but not always, the intrusive investigation will be phased (see Figure 2). An initial exploratory investigation
(Phase 2) may be carried out first to attempt to confirm hypotheses drawn from the preliminary investigation
(Phase 1) and to provide initial information to be better able to design the subsequent main investigation (Phase 3).
In the light of the results of these early phases, it may be necessary to carry out supplementary investigations
(Phase 4) to determine, for example the suitability of soil for re-use, or to gather information relevant to the
application of a process-based treatment method.
It is important that the information and data required to assess excavated soil material for re-use be identified as far
as possible before the investigation starts. In this way appropriate sampling, analytical and testing strategies can
be developed at the outset. If this is not done, there may be significant gaps in the information available,
necessitating further costly intrusive investigation. As suggested in 4.1, however, some aspects of characterization
may often be better addressed through a supplementary investigation.
The approach outlined above should be adapted for other sources of soil materials, for example when soil material
is being manufactured it would be appropriate to enquire into the source and history of each of the ingredients. In
the case of soil material from a process-based treatment method, it would be appropriate to enquire into the history
of the source site. Exploratory sampling programmes could then be carried out before designing and embarking on
a programme for continuous monitoring of feed and output materials.
4.3 Sampling strategies
4.3.1 General considerations
Investigation may be required (as appropriate)
 in situ at the point of excavation,
 following excavation,
 following treatment,
 following manufacture of manufactured soil,
 in situ at the source or target site.
The sampling strategies and the measurements to be made (analytical and testing strategy) should be determined
on the basis of
 the history of the site from which the soil material is excavated or dredged,
 the quantity of soil material to be assessed,
 available data or results of previous investigations,
8 © ISO 2002 – All rights reserved

Figure 2 — Diagram showing how assessment of excavated soil material might fit into investigation of a
suspect potentially contaminated site (as opposed to the alternative of a dedicated investigation
with this sole objective)
 the nature and type of material to be characterized,
 the nature of any process based treatment methods that has been applied to the soil material,
 the intended use of the soil material,
 the planned way of handling the soil material from excavation to target site, e.g. transport and stockpiling,
 the history and present condition of the target site,
 the intended use of the target site,
 data quality objectives (see annex A).
When deciding on investigation, sampling, analytical and testing strategies, reference should be made to any
relevant statutory (i.e. legally binding) requirements or other relevant guidance applicable in the jurisdiction where
the soil is to be excavated and/or re-used.
Before commencing any investigation it is essential to define the objectives of the investigation and to prepare a
sampling strategy consistent with those objectives. Reference should be made to relevant International Standards and
to the guidance attached to any national guidelines or standards relating to soil quality that are to be used in the
assessment of the results of the investigation. In some jurisdictions, there may be a legal requirement to follow certain
procedures if published criteria are to be used as the basis of the assessment.
Within the scope of this International Standard, sampling may be required of in situ or excavated (ex situ) soil, fill
materials, dredged materials, manufactured soils and their components, and treated soils. For example:
 in situ soils and other materials intended for excavation;
 in situ soils at the intended location of use;
 groundwater at the point of excavation or at the point of re-deposition;
 sediments in situ in ponds, lakes, canals, estuaries etc.;
 stockpiles of excavated soils and other soil materials;
 stockpiles of excavated sediments;
 soil materials arising from a process-based remediation method;
 in situ soil, etc., after emplacement, to ensure compliance and performance.
International Standards should be applied for sampling soils in various contexts; these are published as parts of
ISO 10381. International Standards are also available for sampling surface water (ISO 5667-4, 5667-6), groundwater
(ISO 5667-11), and sediments (ISO 5667-12). Otherwise appropriate national or equivalent standards should be used.
In general, soil materials should be sampled in situ rather than after placement in stockpiles. This enables potential
environmental impacts arising from handling and storage to be determined, and may enable potential damage to the
soil that may arise during storage to be avoided (see annex B).
Whilst the testing of soils for geotechnical properties is outside of the scope of this International Standard, the guidance
available for description, sampling and investigation design may sometimes be helpful. In particular, attention is drawn
to ISO 14688-1 and to ISO 14689. These International Standards include definitions (e.g. of soil and rock) specific to
geotechnical applications.
10 © ISO 2002 – All rights reserved

4.3.2 Sampling in situ soil materials
If sufficient data are not already available (see 4.3 and annex A), it will be necessary to sample soil materials at the
point of excavation and/or at the target site. Relevant International Standards on sampling soils in relation to soil quality
are listed in clause 2 and in the Bibliography.
4.3.3 Sampling sediments
Guidance on sampling of sediments is given in ISO 5667-12.
4.3.4 Sampling materials arising from a process-based remediation method
Assessment of materials arising from a process-based treatment method usually requires sampling in a statistically
sound way in order to confirm compliance with pre-determined chemical, physical or biological criteria (for example
residual concentrations of pollutants).
NOTE At the time of publication of this International Standard, no directly relevant International Standards have been
published which deal with this item. However, an International Standard on sampling of stockpiles is in preparation.
4.3.5 Sampling manufactured soil materials
Assessment of manufactured soil materials usually requires sampling in a statistically sound way in order to confirm
compliance with pre-determined chemical, physical or biological criteria.
The materials used in manufacture usually require characterization before blending.
NOTE At the time of publication of this International Standard, no directly relevant International Standards have been
published which deal with this item. However, an International Standard on sampling of stockpiles is in preparation.
4.3.6 Sampling stockpiles of untreated or treated soil materials
Soil materials may be stockpiled after excavation or dredging. Treated materials may also be stockpiled before re-use.
Special sampling methods are required for such stockpiles. Samples from different stockpiles should not be mixed.
NOTE At the time of publication of this International Standard, no directly relevant International Standards have been
published which deal with this item. However, an International Standard on sampling of stockpiles is in preparation.
4.3.7 Sampling soil materials after placement at the target site
It may be necessary to sample soil materials after placement at the target site for compliance and performance
assessment. This may be required shortly after placement or some years afterward, to see, for example, if a desired
improvement in a soil function has been achieved. In general, sampling methods applicable to in situ soil materials are
appropriate.
4.3.8 Sampling the water environment
It may sometimes be necessary to sample groundwater or surface waters at the location from which soil materials are
to be excavated or dredged, or at the target site. In this case ISO 5667-4, ISO 5667-6 and ISO 5667-11 shall be
observed.
4.4 Characterization of soil materials
4.4.1 General
Depending on the intended use, characterization of soil materials require determination of basic characteristics (for
example pH, mineralogy), chemical, physical (including texture), geotechnical, biological and radiochemical properties.
It is often also necessary to determine or describe certain aspects of the site from which the soil material is to be
excavated from (source site) and/or at which the soil material is to be used (target site). Figure 1 indicates the broad
areas in which measurement or description may be required. The figure assumes that a dedicated investigation is
being carried out for the specific purpose of assessing soil material for re-use. However, as discussed in 4.1 and 4.2
and illustrated in Figure 2, investigation related to re-use of soil material may be simply one aspect of a wider
investigation and assessment programme.
Certain parameters require determination in almost all situations; others only require measurement depending on
the intended use of the soil material.
4.4.2 Characterization of source and target sites
Suggestions about the characteristics of the source and target sites that might be determined are listed in Table 1.
In general, the parameters to be determined at the source site are those relevant to the extraction process itself
and subsequent intermediate storage and handling, and direct observations that can be made on-site (e.g. in
inspection pits) that are relevant to the intended use of the excavated soil material. At the target site, the
parameters of concern are primarily those that are relevant to the placement process and the properties of the
existing top soil and subsoil which are relevant to determination of whether imported soil material can be used
without harm (see annex B for discussion of the concept of ”harmlessness”).
4.4.3 Physical and chemical characterization, including basic characteristics
4.4.3.1 General
It may be necessary to measure chemical parameters in the following broad groups:
 basic characteristic parameters (e.g. pH, cation exchange capacity, petrographic features);
 nutrients;
 trace elements;
 potentially harmful substances.
Certain parameters require measurement in almost all situations; others only require measurement for some
intended uses of the soil material. A judgement should, however, be made on a case-by-case basis.
Some elements may be regarded as essential trace elements at low concentrations, but at higher concentrations
may be harmful to some biota. For example, copper is listed in Table 5 as an essential trace element but is also
included in subsequent tables dealing with potentially harmful substances.
In order to estimate the availability of inorganic substances to different environmental compartments, it may be
necessary to distinguish between different fractions of an analyte, e.g. soluble in strong acid, weak extractants, or
water. Although the extractants may be different, it is often possible to use the same methods to analyse the
extractant. Guidance on available International Standard methods and their applicability to different extractants is
given in Table 2.
Whereas the inorganic analyst is primarily concerned with the analysis of a defined number of elements and
anions, the organic analyst is often interested in looking for any chemical which may be present. In practice,
organic analyses take two forms:
a) determination of what is present (qualitative analysis), and
b) determination of how much of a specific compound or class of compounds is present (quantitative analysis).
The detection of “adventitious” or unexpected substances, particularly when complex mixtures of organic chemical
species are present, requires the use of analytical screening methods such as gas chromatography/mass
spectometry. It is also customary to employ analytical methods that purport to give total concentrations of classes
of compounds such as phenols, polycyclic aromatic hydrocarbons (PAHs), total petrol hydrocarbons (TPH) and
chlorinated hydrocarbons. Care is required in both the use and interpretation of the results of such methods.
12 © ISO 2002 – All rights reserved

Table 1 — Characterization of source and target sites
Source site Target site
Soil to be used Soil to be used for Soil to be used Soil to be used for
International
Parameters
for natural construction (e.g. for natural construction (e.g.
Standard
(productive) earth works) (productive) earth works)
function function
Land use:
Vegetation, buildings, etc. X X X X –
Topography: X X X X ISO 11259
Surface characteristic:
Rock outcrops, erosion, cracks, etc. X X X X ISO 11259
Hydrology:
Surface water balance – – X X –
Rainfall – – X X –
Evapotranspiration – – X X –
Groundwater recharge X X X X –
Depth to groundwater table X X X X –
Soil geometry:
Stratigraphy X X X X ISO 11259
Inhomogeneities X X X X ISO 11259
Fracturing X X X X ISO 11259
Geology:
Type of parent material X X X X ISO 11259
Effective soil depth X X X X ISO 11259
Soil type/soil:
Soil type and sequence of horizons X X X X ISO 11259
Description:
Thickness of horizons X X X X ISO 11259
Colour of the horizon matrix X – X – ISO 11259
Texture:
Mottles X – X – ISO 11259
Moist
...


NORME ISO
INTERNATIONALE 15176
Première édition
2002-10-01
Qualité du sol — Caractérisation de la terre
excavée et d'autres matériaux du sol
destinés à la réutilisation
Soil quality — Characterization of excavated soil and other soil materials
intended for re-use
Numéro de référence
©
ISO 2002
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier peut
être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence autorisant
l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées acceptent de fait la
responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute responsabilité en la
matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info du
fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir l'exploitation de
ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation, veuillez en informer le
Secrétariat central à l'adresse donnée ci-dessous.

©  ISO 2002
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque
forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l’ISO à
l’adresse ci-après ou du comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax. + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Imprimé en Suisse
ii © ISO 2002 – Tous droits réservés

Sommaire Page
Avant-propos . iv
Introduction. v
1 Domaine d’application. 1
2 Référence normative. 1
3 Termes et définitions . 2
3.1 Types de sol et d’autres matériaux du sol. 2
3.2 Caractéristiques du sol. 3
3.3 Terres et sites. 5
3.4 Utilisation, remise en état et traitement. 5
3.5 Évaluation. 6
4 Caractérisation des matériaux du sol et des sites . 7
4.1 Généralités. 7
4.2 Stratégies d’investigation. 8
4.3 Stratégies d’échantillonnage. 9
4.4 Caractérisation des matériaux du sol . 11
5 Qualité des données, manipulation et évaluation . 31
6 Utilisation de la présente Norme internationale . 31
Annexe A (informative) Qualité des données, manipulation et évaluation. 32
Annexe B (informative) Règles de l’art de la réutilisation des matériaux du sol . 34
B.1 Généralités. 34
B.2 Principes généraux de réutilisation . 34
B.3 Manipulation et stockage de la terre excavée et de tout autre matériau du sol. 35
B.4 Dépôt sur le site d’accueil. 36
B.5 Entretien ultérieur du site d’accueil . 37
B.6 Utilisation des matériaux du sol dans le cadre de travaux de construction. 37
Annexe C (informative) Lignes directrices relatives à la détermination du domaine d’application de
l’étude requise lorsque des matériaux du sol doivent être excavés . 38
C.1 Généralités. 38
C.2 Détermination de la nécessité de réaliser l’étude. 38
C.3 Développement de stratégies d’analyse. 39
Annexe D (informative) Exemple de classification et d’évaluation des sols et d’autres matériaux du
sol . 42
D.1 Généralités. 42
D.2 Concept des classes d’aptitude . 42
D.3 Classes d’aptitude dépendant de la teneur en substance dangereuse . 42
D.4 Sol inapproprié à une réutilisation . 45
D.5 Classes supplémentaires d’aptitude pour la bonification et la remise en état du sol. 45
D.6 Aptitude des sols et des matériaux du sol à une combinaison . 46
Annexe E (informative) Exemples d’éléments et de composés appartenant aux différents groupes de
contaminants . 47
Bibliographie. 49

Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes nationaux de
normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est en général confiée aux
comités techniques de l’ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité
technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en
liaison avec l’ISO participent également aux travaux. L’ISO collabore étroitement avec la Commission
électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 3.
La tâche principale des comités techniques est d’élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur publication
comme Normes internationales requiert l’approbation de 75 % au moins des comités membres votants.
L’attention est appelée sur le fait que certains des éléments de la présente Norme internationale peuvent faire
l’objet de droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable de
ne pas avoir identifié de tels droits de propriété et averti de leur existence.
L’ISO 15176 a été élaborée par le comité technique ISO/TC 190, Qualité du sol, sous-comité SC 7, Évaluation des
sols et des sites.
Les annexes A, B, C, D et E de la présente Norme internationale sont données uniquement à titre d’information.
iv © ISO 2002 – Tous droits réservés

Introduction
La présente Norme internationale fait partie d’une série de lignes directrices relatives à l’évaluation des sols et des
matériaux du sol en vue de certaines fonctions et utilisations. Il convient de la lire conjointement avec les autres
Normes internationales, dont certaines donnent des lignes directrices plus spécifiques en fonction de certaines
utilisations énoncées dans le domaine d’application ou des aspects d’évaluation particuliers. Par exemple,
l’ISO 15800 donne des lignes directrices concernant les études relatives à l’exposition des personnes à des
substances potentiellement dangereuses et l’ISO 15175 donne des lignes directrices sur la caractérisation du sol
en relation avec les nappes phréatiques.
Les sols sont le résultat dynamique de processus chimiques, physiques et biologiques. Ils résultent des
interactions entre la nature inhérente des matériaux «parents», des conditions environnementales prédominantes
et des activités humaines. Ils constituent une ressource naturelle qu’il convient de conserver dans la mesure du
possible. Si des activités de construction, d’exploitation minière ou autres requièrent une excavation des sols et
leur déplacement par rapport à leur situation naturelle, il convient, dans la mesure du possible, de les réutiliser de
façon cohérente en fonction de leur propriétés naturelles et de l’utilisation prévue dans le nouvel endroit
d’implantation. Les sols prévus pour une réutilisation doivent généralement présenter un comportement à la
lixiviation et des propriétés chimiques, géotechniques, physiques, biologiques et radiochimiques cohérentes avec
cette utilisation ultérieure. Il convient de faire particulièrement attention dans les cas où il est possible que le sol
soit contaminé.
Il convient que les sols devant être excavés soient étudiés pour déterminer de quelle manière il est possible de les
réutiliser de façon à réduire au minimum les quantités devant être éliminées sous forme de déchets et pour
déterminer les impacts sur l’environnement susceptibles de résulter de la réutilisation. Le traitement des sols et des
matériaux du sol visant à supprimer ou à détruire les contaminants ou à réduire leur présence dans
l’environnement peut altérer les propriétés du sol. Il convient par conséquent de déterminer ces propriétés avant la
réutilisation. Pour les sols artificiels, il est possible qu’il soit nécessaire de déterminer à la fois les caractéristiques
des composants et celles du produit fabriqués.
L’objectif de la caractérisation du sol (ou de toute autre substance) tel que suggéré dans la présente Norme
internationale est généralement de permettre des jugements relatifs à son aptitude à une utilisation définie (par
exemple l’exploitation des terres arables, les jardins de particuliers). Ces jugements peuvent être effectués par
référence aux lignes directrices internationales ou nationales existantes définissant des critères physiques,
chimiques ou génériques qu’il est nécessaire de remplir ou par rapport à des critères établis sur une base
spécifique au site. Lorsque des substances susceptibles de nuire à la santé humaine ou à l’environnement sont
présentes, il est également possible que le jugement soit basé sur une évaluation du risque qualitative, semi-
quantitative ou complètement quantitative spécifique au site. Des lignes directrices formelles relatives à ces
évaluations ont également été publiées par de nombreuses instances. Dans certains cas, ces lignes directrices
s’inscrivent dans un cadre législatif. Des organisations professionnelles et certains organismes de normalisation
ont également produit des lignes directrices.
Lors de la décision de réutiliser ou non les matériaux du sol, il est possible que d’autres objectifs complémentaires
ou concurrents comme la protection du sol, de la nature, de l’eau et de l’air, les exigences de planification physique
et les exigences législatives nationales soient à respecter.
L’évaluation du matériau du sol destiné à être réutilisé peut nécessiter le mesurage des caractéristiques chimiques,
physiques, biologiques, géotechniques et radiochimiques du matériau du sol et du site d’origine aussi bien que du
site d’accueil. Il convient d’identifier les paramètres qui sont en adéquation avec la tâche entreprise.
La présente Norme internationale identifie les fonctions et les propriétés des matériaux du sol à l’endroit initial (site
source) ainsi que les propriétés du nouveau site (site d’accueil) qui peuvent être applicables aux utilisations
potentielles énoncées dans le domaine d’application et indique les Normes internationales disponibles pour tel
paramètre ou mode opératoire. Les aspects radiochimiques et géotechniques ne sont pas traités. Concernant des
lignes directrices relatives aux aspects géotechniques de l’utilisation des matériaux du sol comme matériaux de
construction, il convient de se référer aux autres Normes internationales applicables (par exemple celles qui ont
été produites par l’ISO/TC 182, Géotechnique, ou aux normes nationales en vigueur.
Le mode de traitement du sol après excavation peut affecter les propriétés du sol. Certaines suggestions
concernant une méthode correcte de manipulation du sol et des pratiques et surveillance relatives après placement
sont fournies à l’annexe B.
vi © ISO 2002 – Tous droits réservés

NORME INTERNATIONALE ISO 15176:2002(F)

Qualité du sol — Caractérisation de la terre excavée et d'autres
matériaux du sol destinés à la réutilisation
1 Domaine d’application
La présente Norme internationale fournit les lignes directrices concernant les essais pouvant être nécessaires pour
caractériser les matériaux du sol destinés à être excavés et réutilisés, avec ou sans traitement préliminaire. Les
matériaux du sol incluent la terre excavée, les matériaux de dragage, les matériaux de remblayage, les sols
artificiels et les sols initialement pollués mais ayant été traités dans le but de supprimer ou de détruire les
contaminants.
Elle prend en compte les différentes exigences du sol superficiel, du sous-sol et d’autres matériaux du sol comme
les sédiments ou les sols traités. Des méthodes normalisées ISO sont listées, lorsqu’elles sont disponibles.
Les méthodes d’essai sont destinées à couvrir une grande variété d’utilisations finales possibles comme:
 les zones de jeu pour les enfants en bas âge, y compris les écoles maternelles, les jardins d’enfant, etc.;
 les écoles;
 les jardins et autres zones résidentielles;
 les lotissements;
 l’horticulture;
 l’agriculture;
 les travaux forestiers;
 les zones de loisirs, par exemple les parcs, les terrains de sport;
 la restauration d’écosystèmes endommagés;
 les chantiers.
Elle est prévue pour être utilisée dans le cadre de la détermination de l’aptitude des matériaux du sol pour une
réutilisation et l’évaluation des impacts sur l’environnement pouvant résulter de la réutilisation.
La présente Norme internationale n’est pas applicable au dépôt des matériaux du sol dans l’eau ou la restauration
du sous-sol. Elle ne traite pas des exigences géotechniques lorsque les matériaux du sol doivent être utilisés
comme matériau de construction.
2 Référence normative
Le document normatif suivant contient des dispositions qui, par suite de la référence qui y est faite, constituent des
dispositions valables pour la présente Norme internationale. Pour les références datées, les amendements
ultérieurs ou les révisions de ces publications ne s’appliquent pas. Toutefois, les parties prenantes aux accords
fondés sur la présente Norme internationale sont invitées à rechercher la possibilité d’appliquer l’édition la plus
récente du document normatif indiqué ci-après. Pour les références non datées, la dernière édition du document
normatif en référence s’applique. Les membres de l’ISO et de la CEI possèdent le registre des Normes
internationales en vigueur.
ISO 11259, Qualité du sol — Description simplifiée du sol
3 Termes et définitions
Pour les besoins de la présente Norme internationale, les termes et définitions suivants s’appliquent.
3.1 Types de sol et d’autres matériaux du sol
3.1.1
sol
couche supérieure de la croûte terrestre composée de particules minérales, de matière organique, d’eau, d’air et
d’organismes
[ISO 11074-1]
3.1.2
sol superficiel
partie supérieure d’un sol naturel, généralement de couleur brune et contenant plus de substances organiques et
de nutriments que le sous-sol
[ISO 11074-4]
3.1.3
sous-sol
matériau situé au-dessous du sol superficiel et au-dessus de la roche mère solide sous-jacente
NOTE Une grande partie ou la totalité de la structure rocheuse originelle a généralement été effacée par les phénomènes
pédogénétiques.
3.1.4
matériau du sol
ensemble des terres excavées, des matériaux de dragage, des sols artificiels, des sols traités et des matériaux de
remblai
3.1.5
terre excavée
tout type de matériau naturel extrait du sol, y compris le sol superficiel, le sous-sol, la roche mère altérée et la
roche mère elle-même
NOTE La terre excavée est généralement mise à jour lors de travaux de construction.
3.1.6
sol artificiel
matériau artificiel
matériau artificiel censé remplir des fonctions déterminées du sol et constitué par mélange de matériaux naturels,
de déchets ou de matériaux artificiels auxquels ont été ajoutés, si nécessaire, des nutriments et autres additifs
3.1.7
sol traité
sol qui a été soumis à un procédé de traitement
2 © ISO 2002 – Tous droits réservés

3.1.8
matériau de dragage
matériau excavé des eaux pendant les travaux de maintenance, de construction, de reconstruction et d’extension
NOTE Les matériaux de dragage peuvent se composer de
 sédiments ou sols aquatiques;
 sols et roches mères correspondantes situés au-dessous de la surface des eaux.
3.1.9
matériau de remblayage
terre remblayée
matériaux du sol naturels mélangés (souvent déplacés ou remaniés) et autres matériaux caractéristiques des sites
urbains et industriels
EXEMPLE Débris de bâtiment, bois de construction et autres déchets.
3.2 Caractéristiques du sol
3.2.1
fonctions du sol
fonctions définissant l’importance du sol pour l’homme et l’environnement
NOTE 1 Les fonctions importantes du sol comprennent
 le contrôle des cycles des substances et de l’énergie en tant que compartiment des écosystèmes;
 la base pour la production agricole;
 le support vital pour les plantes, les animaux et l’homme;
 la constitution d’une réserve génétique;
 le support pour la stabilité des immeubles;
 la constitution d’un «tampon» régulant la pénétration dans les eaux souterraines de l’eau, des polluants et autres agents;
 la conservation des traces archéologiques;
 la conservation de traces paléoécologiques.
NOTE 2 Adaptée de l’ISO 11074-4.
3.2.2
bruit de fond
concentration d’une substance caractéristique d’un type de sol d’une zone ou d’une région résultant à la fois de
sources naturelles et de sources diffuses non naturelles comme le dépôt atmosphérique
cf. bruit de fond naturel (3.2.4)
NOTE Elle est souvent exprimée en termes d’une moyenne, une médiane, une plage de valeurs ou une valeur de fond
(3.2.3).
3.2.3
valeur de fond
expression de la limite supérieure de la plage de bruits de fond
NOTE Elle est souvent exprimée en percentiles.
3.2.4
bruit de fond naturel
concentration d’une substance qui est uniquement dérivée de sources naturelles
NOTE 1 Elle est d’origine géogénique.
NOTE 2 Elle est souvent exprimée en termes d’une moyenne, une plage de valeurs ou une valeur de fond naturelle (3.2.5).
3.2.5
valeur de fond naturelle
expression de la limite supérieure de la plage de concentrations de fond naturelles
NOTE Elle est souvent exprimée en percentiles.
3.2.6
contaminant
substance ou agent présent dans le sol et résultant de l’activité humaine
cf. polluant (3.2.7), substance potentiellement dangereuse (3.2.8)
NOTE Cette définition n’implique nullement que la présence de contaminant a un effet négatif.
3.2.7
polluant
substance ou agent présent dans le sol et qui, de par ses propriétés, quantité ou concentration, a des effets
négatifs (nocifs) sur les fonctions du sol ou l’utilisation du sol
cf. contaminant (3.2.6), substance potentiellement dangereuse (3.2.8)
NOTE Voir l’introduction de l’ISO 11074-1:1996.
3.2.8
substance potentiellement dangereuse
substance pouvant être dangereuse pour les êtres humains ou l’environnement lorsqu’elle est présente en quantité
ou concentration suffisante
NOTE Sa présence peut être due à l’activité humaine [contaminant (3.2.6)] ou à une cause naturelle.
3.2.9
pollution résiduelle
quantité ou concentration de polluants restant dans un milieu déterminé après remédiation
[ISO 11074-4]
3.2.10
élément trace
élément présent en faible concentration dans le matériau du sol
NOTE Un élément trace peut être essentiel à des concentrations faibles mais néfaste à une concentration plus élevée.
3.2.11
élément trace essentiel
élément essentiel à faible concentration pour le métabolisme des végétaux ou des animaux (y compris les êtres
humains)
NOTE Un élément peut être essentiel à des concentrations faibles mais devenir néfaste à des concentrations plus
élevées.
4 © ISO 2002 – Tous droits réservés

3.3 Terres et sites
3.3.1
terre endommagée ou dégradée
terre qui n’est plus capable d’assurer une fonction économique et/ou la fonction écologique initiale naturelle ou
quasi naturelle en raison de processus naturels ou de l’activité humaine
3.3.2
site d’accueil
site sur lequel le sol doit être réutilisé
3.4 Utilisation, remise en état et traitement
3.4.1
réutilisation
utilisation sans risque et avec profit des matériaux du sol
NOTE Dans le cadre de la présente Norme internationale, le terme «réutilisation» signifie le transfert des matériaux du sol
vers d’autres lieux pour une utilisation dans l’agriculture, l’horticulture, l’exploitation forestière, les jardins, les zones de loisirs et
les chantiers.
3.4.2
travaux de construction
application du sol recouvrant les travaux publics et les remblais, les travaux paysagers, la construction de routes,
la construction de décharges et le remblayage de sites excavés ou de mines
NOTE Les travaux de construction sont des applications pour lesquelles les matériaux du sol n’ont pas obligatoirement
d’usage directement productif bien qu’ils puissent servir de support à des couches ayant un usage productif.
3.4.3
réhabilitation
〈d’un terrain〉 remise en état d’une terre endommagée, dégradée ou d’une friche industrielle
NOTE Le terme remédiation est généralement réservé au procédé de traitement des sites pollués/contaminés.
3.4.4
réhabilitation du sol
dispositions prises pour améliorer la capacité d’un sol endommagé ou dégradé à assurer des fonctions
déterminées
NOTE 1 Un exemple d’une telle action est l’adjonction de matières organiques et de nutriments pour favoriser la croissance
de plantes.
NOTE 2 Adaptée de l’ISO 11074-4.
3.4.5
stratégie de remédiation
ensemble des méthodes de remédiation et travaux connexes respectant des objectifs spécifiés liés à la pollution
ainsi que d’autres objectifs, et permettant de dépasser d’éventuelles restrictions d’usage
NOTE 1 Adaptée de l’ISO 11074-4.
NOTE 2 Des exemples d’objectifs sont les concentrations résiduelles en contaminants, ainsi que d’autres objectifs liés à
l’exécution des travaux.
3.4.6
méthode de traitement
méthode se fondant sur la mise en œuvre de techniques physiques, chimiques ou biologiques soit pour éliminer ou
détruire les polluants, soit pour réduire leur impact sur l’environnement
[ISO 11074-4]
NOTE Différentes méthodes de traitement, par exemple le biotraitement, sont définis dans l’ISO 11074-4.
3.4.7
matériau en tas
dépôt temporaire de matériaux du sol destinés à une utilisation ultérieure
3.4.8
diagnostic de conformité ou de performance
étude ou programme de contrôle, de tests ou de surveillance, effectué(e) en continu, pour vérifier qu’une stratégie
de remédiation a été convenablement mise en œuvre et/ou, quand l’approche adoptée est celle du confinement,
que les résultats ont atteint au niveau prévu
EXEMPLE Essais pour confirmer que tous les matériaux pollués ont été éliminés.
[ISO 11074-4]
3.5 Évaluation
3.5.1
danger
propriété d’une substance ou d’un matériau ou de toute action susceptible d’avoir des effets négatifs sur les
fonctions du sol
NOTE Un danger a un potentiel nocif.
3.5.2
risque
expression de la probabilité selon laquelle un effet négatif sur les fonctions du sol sera occasionné dans des
conditions définies et l’ampleur des conséquences de l’effet produit
3.5.3
innocuité
conditions selon lesquelles l’application d’un matériau du sol n’entraîne pas de dégradations des fonctions existant
dans le sol du site d’accueil
3.5.4
objectifs de qualité des données
indication des limites de détection, de l’exactitude, de la reproductibilité et de la répétabilité requises des données
analytiques ou autres
NOTE 1 Les objectifs sont souvent présentés dans une déclaration.
NOTE 2 Des objectifs de qualité des données génériques peuvent parfois être déterminés au niveau national.
NOTE 3 Les objectifs peuvent également inclure la quantité de données nécessaire pour une zone de territoire (ou une
partie d’un site) pour permettre une comparaison fiable avec les lignes directrices ou les normes génériques ou pour une
estimation des risques spécifiques au site ou au matériau.
6 © ISO 2002 – Tous droits réservés

4 Caractérisation des matériaux du sol et des sites
4.1 Généralités
L’objectif de la caractérisation du sol et des matériaux du sol tel que suggéré dans la présente Norme
internationale est de permettre des jugements relatifs à son aptitude à une utilisation définie (par exemple
l’exploitation des terres arables, les jardins de particuliers). Avant de prononcer tout jugement sur son aptitude, la
nature, la quantité et la qualité des paramètres analysés doivent être disponibles (voir l’annexe A). Il sera
probablement nécessaire de déterminer les caractéristiques chimiques, physiques, biologiques et toute autre
caractéristique pertinente selon le cas. Ceci exige la mise au point d’une stratégie de diagnostic globale qui devra
inclure notamment:
 des stratégies d’échantillonnage, et
 des stratégies d’analyse et d’essai
pour chaque endroit et/ou milieu à évaluer.
La première étape, qui concerne l’évaluation des matériaux du sol qui ont été ou peuvent être excavés ou traités,
est de réexaminer les informations et les données déjà disponibles afin de déterminer si elles sont suffisantes pour
permettre une évaluation. Si les données ne sont pas suffisantes, il convient de réaliser un diagnostic approprié. Le
paragraphe 4.2 étudie la situation lorsqu’il est connu à l’avance qu’une excavation va être réalisée. L’approche
décrite devra certainement être adaptée dans le cas de situations différentes (par exemple lorsque le matériau du
sol étudié est un sol artificiel).
Des études sont parfois nécessaires dans le seul objectif de décider si le sol et d’autres matériaux du sol comme
les matériaux de remblai sont appropriés pour une réutilisation (situation envisagée à la Figure 1) mais ceci est
souvent l’un des nombreux objectifs d’une étude plus complète concernant un site suspect potentiellement
contaminé. Dans ce dernier cas, la tâche initiale est de s’assurer que les stratégies globales d’échantillonnage,
d’analyse et d’essai de l’étude correspondent aux besoins de cet objectif spécifique. En pratique, les études sont
souvent réalisées par étapes successives pour des raisons à la fois techniques et financières et il peut par
conséquent être préférable de réaliser au moins une partie de la caractérisation, pour déterminer, par exemple, les
nutriments et les éléments traces et les propriétés physiques et biologiques du sol en réalisant une étude
complémentaire (voir la Figure 2). Le besoin réel d’évaluer le matériau du sol pour une réutilisation peut apparaître
au cours de l’élaboration d’une stratégie de remédiation et le besoin de rassembler des informations
complémentaires à ce niveau ne diffère pas de celui de la stratégie initiale de remédiation (par exemple le besoin
de données géotechniques pertinentes pour l’installation d’une paroi étanche ou de données relatives à la
perméabilité au gaz pour l’application de l’extraction de la vapeur du sol).
La discussion ci-dessous met l’accent sur les matériaux du sol devant être excavés. La présente Norme
internationale couvre un certain nombre de situations différentes, y compris par exemple les matériaux de dragage,
les matériaux du sol traité et les sols artificiels. Une étude appropriée comparable est nécessaire pour assurer une
bonne compréhension de la source du matériau et de ses composants afin de pouvoir développer des stratégies
d’analyse et d’essai appropriées.
Figure 1 — Organigramme général pour la caractérisation des matériaux du sol destinés à une réutilisation
4.2 Stratégies d’investigation
La stratégie d’investigation globale type pour un site potentiellement contaminé (c’est-à-dire un site où des
substances potentiellement dangereuses résultant de l’activité humaine peuvent être présentes) comporte les
points suivants:
 réaliser une étude préliminaire comprenant une étude de bureau et une reconnaissance du site (étude avec
déplacement). L’objectif est de réaliser une étude historique aussi complète que possible du site, de sa
géologie et son hydrogéologie, des conditions environnementales et de son état actuel;
puis, sur la base du modèle conceptuel qui en résulte
8 © ISO 2002 – Tous droits réservés

 développer une stratégie d’étude intrusive prenant bien en compte la santé et la sécurité de l’équipe chargée
de l’étude et du grand public, et évitant de nuire à l’environnement.
L’étude intrusive sera la plupart du temps réalisée par étapes successives (voir la Figure 2). Une étude exploratoire
initiale (phase 2) peut être réalisée en premier lieu pour tenter de confirmer les hypothèses résultant de l’étude
préliminaire (phase 1) et fournir des informations de base permettant une meilleure conception de l’étude principale
ultérieure (phase 3). Selon les résultats de ces précédentes phases, il peut être nécessaire de réaliser des études
complémentaires (phase 4) pour déterminer, par exemple, l’aptitude du sol à une réutilisation ou pour rassembler
des informations pertinentes pour l’application d’un procédé de traitement.
Il est important d’identifier les informations et les données nécessaires pour l’évaluation du matériau du sol excavé
destiné à une réutilisation avec autant de précision que possible avant le début de l’étude. Ceci permet ainsi de
mettre en place des stratégies d’échantillonnage, d’analyse et d’essai appropriées dès le début. Si ceci ne peut
être réalisé, il peut apparaître des insuffisances marquées dans les informations disponibles, ce qui oblige à
pratiquer de nouvelles études intrusives onéreuses. Comme suggéré en 4.1, cependant, certains aspects de la
caractérisation peuvent souvent être mieux traités par le biais d’une étude complémentaire.
L’approche décrite ci-dessus peut être adaptée à d’autres sources de matériaux du sol, par exemple lorsque le
matériau du sol est artificiel, il serait approprié de considérer la source et l’historique de chaque constituant. Dans
le cas du matériau du sol résultant d’un procédé de traitement, il serait approprié de consulter l’historique du site
source. Il convient que des programmes d’échantillonnage exploratoires soient alors réalisés avant la conception et
la mise en place d’un programme de contrôle continu des entrées et des sorties des matériaux.
4.3 Stratégies d’échantillonnage
4.3.1 Considérations générales
Une étude peut être nécessaire (selon le cas)
 in situ sur le lieu d’excavation;
 après l’excavation;
 après le traitement;
 après la fabrication du sol artificiel;
 in situ sur le site source ou le site d’accueil.
Il convient que les stratégies d’échantillonnage et les mesurages à effectuer (stratégie d’analyse et d’essai) soient
déterminé(e)s sur la base de
 l’historique du site à partir duquel le matériau du sol est excavé ou dragué;
 la quantité de matériau du sol à évaluer;
 les données ou résultats des études antérieures disponibles;
 la nature et le type du matériau à caractériser;
 la nature de toute méthode de traitement basée sur un procédé et devant être appliquée au matériau du sol;
 l’utilisation prévue du matériau du sol;
 la méthode planifiée pour le traitement du matériau du sol depuis l’excavation et jusqu’au site d’accueil, par
exemple le transport et la mise en tas;
 l’historique et l’état actuel du site d’accueil;
 l’utilisation prévue du site d’accueil;
 les objectifs de qualité des données (voir l’annexe A).
Lors de la définition des stratégies d’étude, d’échantillonnage, d’analyse et d’essai, il convient de se référer à toute
exigence légale pertinente (c’est-à-dire obligation légale) ou toute autre ligne directrice applicable légalement dans
la zone où le sol doit être excavé et/ou réutilisé.
Avant le début de toute étude, il est essentiel de définir des objectifs d’étude et de préparer une stratégie
d’échantillonnage cohérente avec ces objectifs. Il convient de se référer aux Normes internationales pertinentes et
aux lignes directrices associées à tout guide ou norme nationale relatif (relative) à la qualité du sol et devant être
utilisée pour l’évaluation des résultats de l’étude. Dans certaines juridictions, il peut exister une exigence légale de
suivre certaines procédures, les critères publiés doivent être utilisés comme base de l’évaluation.
Dans le domaine d’application de la présente Norme internationale, un échantillonnage peut être nécessaire sur
des terres excavées (c’est-à-dire ex situ) ou in situ, des matériaux de remblayage, des matériaux de dragage, des
sols artificiels et leurs composants ainsi que sur des sols traités. Par exemple:
 des sols in situ et d’autres matériaux devant être excavés;
 des sols in situ à l’endroit d’utilisation prévu;
 des nappes d’eaux souterraines sur le lieu d’excavation ou de redéposition;
 des sédiments in situ dans des étangs, des lacs, des canaux, des estuaires, etc.;
 des tas de terres excavées et d’autres matériaux du sol;
 des tas de sédiments excavés;
 des matériaux du sol provenant d’un procédé de remédiation;
 des sols in situ, etc., après un dépôt, afin de garantir la conformité et les performances.
Il convient d’appliquer les Normes internationales relatives à l’échantillonnage des sols dans des contextes variés;
celles-ci sont publiées en tant que parties de l’ISO 10381. Des Normes internationales sont également disponibles
pour l’échantillonnage des eaux de surface (ISO 5667-4, ISO 5667-6), souterraines (ISO 5667-11) et des
sédiments (ISO 5667-12). Il convient également d’utiliser les normes nationales ou équivalentes qui s’avèrent
appropriées.
Il convient en général d’échantillonner les matériaux du sol in situ plutôt qu’après le placement en tas. Ceci permet
de déterminer les éventuels impacts sur l’environnement résultant de la manutention et du stockage et d’éviter des
détériorations éventuelles du sol lors du stockage (voir l’annexe B).
Bien que la réalisation d’essais sur les sols relatifs aux propriétés géotechniques n’appartienne pas au domaine
d’application de la présente Norme internationale, les lignes directrices disponibles pour la description,
l’échantillonnage et la conception de l’étude peuvent parfois s’avérer utiles. L’attention est particulièrement attirée
sur l’ISO 14688-1 et l’ISO 14689. Ces Normes internationales comprennent des définitions (par exemple du sol et
de la roche) spécifiques aux applications géotechniques.
4.3.2 Échantillonnage de matériaux du sol in situ
Dans le cas où les données ne sont pas suffisantes (voir 4.3 et l’annexe A), il sera nécessaire d’échantillonner des
matériaux du sol sur le lieu d’excavation et/ou sur le site d’accueil. Des Normes internationales relatives à
l’échantillonnage des sols en fonction de la qualité du sol sont énumérées dans l’article 2 et la bibliographie.
4.3.3 Échantillonnage de sédiments
Des lignes directrices relatives à l’échantillonnage de sédiments sont données dans l’ISO 5667-12.
10 © ISO 2002 – Tous droits réservés

4.3.4 Matériaux d’échantillonnage résultant d’un procédé de remédiation
L’évaluation des matériaux provenant d’un procédé de traitement nécessite généralement une méthode
d’échantillonnage statistiquement fiable afin de confirmer la conformité à des critères chimiques, physiques ou
biologiques prédéterminés (par exemple les concentrations résiduelles en polluants).
NOTE À l’heure de la publication de la présente Norme internationale, aucune Norme internationale directement applicable
à ce sujet n’est publiée. Néanmoins, une Norme internationale concernant l’échantillonnage des tas est en cours de
préparation.
4.3.5 Échantillonnage des matériaux du sol artificiel
L’évaluation des matériaux du sol artificiel nécessite généralement une méthode d’échantillonnage statistiquement
fiable afin de confirmer la conformité aux critères chimiques, physiques ou biologiques prédéterminés.
Les matériaux utilisés pour la fabrication nécessitent en général une caractérisation avant d’être mélangés.
NOTE À l’heure de la publication de la présente Norme internationale, aucune Norme internationale directement applicable
à ce sujet n’est publiée. Néanmoins, une Norme internationale concernant l’échantillonnage des tas est en cours de
préparation.
4.3.6 Échantillonnage des tas de matériaux du sol traité ou non traité
Les matériaux du sol peuvent être entassés après l’excavation ou le dragage. Les matériaux traités peuvent
également être entassés avant leur réutilisation. Des méthodes d’échantillonnage spécifiques sont nécessaires
pour ces tas. Il convient de ne pas mélanger des échantillons provenant de tas différents.
NOTE À l’heure de la publication de la présente Norme internationale, aucune Norme internationale directement applicable
à ce sujet n’est publiée. Néanmoins, une Norme internationale concernant l’échantillonnage des tas est en cours de
préparation.
4.3.7 Échantillonnage de matériaux du sol après le dépôt sur le site d’accueil
Il peut s’avérer nécessaire d’échantillonner des matériaux du sol après leur dépôt sur le site d’accueil afin d’évaluer
leur conformité et leur performance. Cela peut être nécessaire immédiatement après le dépôt ou après plusieurs
années afin de contrôler, par exemple, si une bonification souhaitée d’une fonction du sol a été obtenue. En
général, les méthodes d’échantillonnage applicables aux matériaux du sol in situ sont appropriées.
4.3.8 Échantillonnage des eaux de l’environnement
Il peut parfois s’avérer nécessaire d’échantillonner les eaux souterraines ou de surface à l’endroit où les matériaux
du sol doivent être excavés ou dragués ou sur le site d’accueil. Dans ces cas, l’ISO 5667-4, l’ISO 5667-6 et
l’ISO 5667-11 doivent être respectées.
4.4 Caractérisation des matériaux du sol
4.4.1 Généralités
Selon l’utilisation prévue, la caractérisation des matériaux du sol nécessite une détermination des paramètres de
base (par exemple le pH, la minéralogie), des propriétés chimiques, physiques (y compris la texture),
géotechniques, biologiques et radiochimiques. Il est également souvent nécessaire de déterminer ou décrire
certains aspects du site à partir duquel le matériau du sol doit être excavé (site source) et/ou sur lequel le matériau
du sol doit être utilisé (site d’accueil). La Figure 1 indique les grands domaines pour lesquels un mesurage ou une
description peut être nécessaire. La figure suppose qu’une étude spécifique est réalisée pour le besoin spécifique
d’évaluer le matériau du sol en vue d’une réutilisation. Cependant, comme décrit en 4.1 et 4.2 et illustré à la
Figure 2, l’étude relative à la réutilisation du matériau du sol peut constituer seulement un aspect d’une étude plus
large et d’un programme d’évaluation.
Certains paramètres nécessitent une détermination dans quasiment toutes les situations. D’autres nécessitent
seulement des mesurages en fonction de l’utilisation prévue du matériau du sol.
Figure 2 — Schéma démontrant de quelle manière l’évaluation du matériau du sol excavé peut être intégrée
dans le diagnostic d’un site suspect potentiellement contaminé
(par comparaison avec un diagnostic dédié avec cet objectif unique)
12 © ISO 2002 – Tous droits réservés

4.4.2 Caractérisation du site source et du site d’accueil
Des suggestions concernant les caractéristiques des sites source et d’accueil qui pourraient être évaluées sont
énoncées au Tableau 1. En général, les paramètres à déterminer sur le site source sont ceux qui sont pertinents
pour le procédé d’extraction lui-même ainsi que le stockage et la manutention intermédiaires ultérieurs, il est aussi
possible de faire des observations pertinentes directes sur site (par exemple puits de contrôle) pour l’utilisation
prévue du matériau du sol excavé. Sur le site d’accueil, les paramètres intéressants sont principalement ceux qui
concernent le procédé de dépôt et les propriétés du sol superficiel et du sous-sol existants qui sont pertinents pour
déterminer si le matéri
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...