This document specifies a method for the determination of nitrogen oxides (NOx) in flue gas of stationary sources and describes the fundamental structure and the key performance characteristics of automated measuring systems.
The method allows continuous monitoring with permanently installed measuring systems of NOx emissions.
This document describes extractive systems and in situ (non-extractive) systems in connection with a range of analysers that operate using, for example, the following principles:
— chemiluminescence (CL);
— infrared absorption (NDIR);
— Fourier transform infrared (FTIR) spectroscopy;
— ultraviolet absorption (NDUV);
— differential optical absorption spectroscopy (DOAS);
Other equivalent instrumental methods such as laser spectroscopic techniques can be used provided they meet the minimum performance requirements specified in this document. The measuring system can be validated with reference materials, in accordance with this document, or comparable methods.
Automated measuring system (AMS) based on the principles listed above has been used successfully in this application for the measuring ranges as shown in Annex F.

  • Standard
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    47 pages
    English language
    sale 15% off
  • Draft
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies flame and electrothermal atomic absorption spectrometric methods for the determination of the time-weighted average mass concentration of particulate lead and lead compounds in workplace air.
These methods are typically applicable to personal sampling of the inhalable fraction of airborne particles, as defined in ISO 7708, and to static (area) sampling. It can be applied to other health-related fractions as required.
The sample dissolution procedure specifies hot plate or microwave assisted digestion, or ultrasonic extraction (see 11.2). The use of an alternative, more vigorous dissolution procedure is necessary when it is desired to extract lead from compounds present in the test atmosphere that are insoluble using the dissolution procedures described herein (see Clause 5).
The flame atomic absorption method is applicable to the determination of masses of approximately 1 µg to 200 µg of lead per sample, without dilution[1]. The electrothermal atomic absorption method is applicable to the determination of masses of approximately 0,01 µg to 0,5 µg of lead per sample, without dilution[1].
The ultrasonic extraction procedure has been validated for the determination of masses of approximately 20 µg to 100 µg of lead per sample, for laboratory-generated lead fume air filter samples[2].
The concentration range for lead in air for which this procedure is applicable is determined in part by the sampling procedure selected by the user (see 10.1).

  • Standard
    37 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    31 pages
    English language
    sale 15% off
  • Draft
    37 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document discusses the physical limitations of probe and particle counter placement, and any tubing that connects the two, particularly in providing representative samples where particles 5 micrometres and greater are of interest. The document further identifies the key factors of sampling performance when classifying and monitoring, and good practice to determine and maintain an acceptable compromise between attainable accuracy in counting and feasibility of counting in real-life situations. This document includes a decision tree, used to identify key considerations when sampling airborne particles, and whether the system requires further assessment. There are also examples provided to illustrate typical application challenges and show how the decision tree can be used. It is assumed that this document is read in conjunction with ISO 14644-1 and ISO 14644-2. This document is not a manual, but an explanatory document. It does not describe measurement methods, which is handled in ISO 14644-1 and ISO 14644-2, but provides information to help make effective choices of sampling configuration, when evaluating a new or existing system.

  • Technical report
    26 pages
    English language
    sale 15% off
  • Draft
    25 pages
    English language
    sale 15% off
  • Draft
    25 pages
    English language
    sale 15% off

This document specifies a determination of formaldehyde (HCHO) and other carbonyl compounds (aldehydes and ketones) in air. The method is specific to formaldehyde but, with modification, at least 12 other aromatic as well as saturated and unsaturated aliphatic carbonyl compounds can be detected and quantified. It is suitable for determination of formaldehyde and other carbonyl compounds in the approximate concentration range 1 µg/m3 to 1 mg/m3. The sampling method gives a time-weighted average (TWA) sample. It can be used for long-term (1 h to 24 h) or short-term (5 min to 60 min) sampling of air for formaldehyde.
This document specifies a sampling and analysis procedure for formaldehyde and other carbonyl compounds that involves collection from air on to adsorbent cartridges coated with 2,4-dinitrophenylhydrazine (DNPH) and subsequent analysis of the hydrazones formed by high performance liquid chromatography (HPLC) with detection by ultraviolet absorption[12],[16]. The method is not suitable for longer chained or unsaturated carbonyl compounds.

  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    27 pages
    English language
    sale 15% off
  • Standard
    29 pages
    French language
    sale 15% off
  • Draft
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document was prepared by the European Committee for Standardization (CEN) as EN 14181:2014 and was adopted, without modification.
This document specifies procedures for establishing quality assurance levels (QAL) for automated measuring systems (AMS) installed on industrial plants for the determination of the flue gas components and other flue gas parameters.
This document specifies:
— a procedure (QAL2) to calibrate the AMS and determine the variability of the measured values obtained by it, so as to demonstrate the suitability of the AMS for its application, following its installation;
— a procedure (QAL3) to maintain and demonstrate the required quality of the measurement results during the normal operation of an AMS, by checking that the zero and span characteristics are consistent with those determined during QAL1;
— a procedure for the annual surveillance tests (AST) of the AMS in order to evaluate (i) that it functions correctly and its performance remains valid and (ii) that its calibration function and variability remain as previously determined.
This document is designed to be used after the AMS has been certified in accordance with the series of documents EN 15267.

  • Standard
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    74 pages
    English language
    sale 15% off
  • Draft
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the general principles of certification, including common procedures and requirements, for the certification of air quality monitoring equipment (AQME).
This document applies to the certification of AQME for ambient air quality and emissions from stationary sources for which performance criteria and test procedures are available in European Standards.
This document provides for the certification of AQME according to the requirements of EN ISO/IEC 17065:2012.
This document elaborates and supplements the requirements of EN ISO/IEC 17065:2012 for bodies certifying AQME. It specifies requirements on testing laboratories as well as the manufacturer’s quality management system (QMS) and the surveillance for the manufacturing process as part of the certification process.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements for the manufacturer’s quality management system (QMS), the initial assessment of the manufacturer’s production control and the continuing surveillance of the effect of subsequent changes on the performance of certified air quality monitoring equipment (AQME).
This document also serves as a reference document for auditing the manufacturer’s QMS.
This document elaborates and supplements the requirements of EN ISO 9001:2015.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

To provide a concise overview of the following aspects of the application of reference rooms for the evaluation of emissions from products in indoor environments;
European dimension of the scope (regulations and schemes)
Evaluation of VOC emissions from building products: principles
Background history
Implementation in national regulations
Implementation in voluntary schemes
Broader application of the reference room (in addition to construction products)
Other possible dimensions of a reference room
Conclusion and references

  • Technical report
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard describes a standard method for determining the PM10 or PM2,5 mass concentrations of suspendedparticulate matter in ambient air by sampling the particulate matter on filters and weighing them by means of a balance.
Measurements are performed with samplers with inlet designs as specified in Annex A, operating at a nominal flow rate of 2,3 m3/h,over a nominal sampling period of 24 h. Measurement results are expressed in μg/m3, where the volume of air is the volume atambient conditions near the inlet at the time of sampling.
The range of application of this European Standard is for 24 h measurements from approximately 1 μg/m3 (i.e. the limit of detection ofthe standard measurement method expressed as its uncertainty) up to 150 μg/m3 for PM10 and 120 μg/m3 for PM2,5.
This European Standard describes procedures and gives requirements for the testing and use of so-called sequential samplers,equipped with a filter changer, suitable for extended stand-alone operation. Sequential samplers are commonly used throughout theEuropean Union for the measurement of concentrations in ambient air of PM10 or PM2,5. However, this European Standard does notexclude the use of single-filter samplers.
This European Standard represents an evolution of earlier European Standards (EN 12341:1998 and 2014, EN 14907:2005). Newequipment procured shall comply fully with this European Standard.
Older versions of these samplers, including those described in EN 12341:2014 Annex B, have a special status in terms of their use. These samplers can still be used for monitoring purposes and for ongoing quality control, provided that a well justified additionalallowance is made to their uncertainties
This European Standard also provides guidance for the selection and testing of filters with the aim of reducing the measurementuncertainty of the results obtained when applying this European Standard.

  • Standard
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    62 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the measurement methods and strategies for determining the total number of airborne particles per unit volume of air indoor, using a condensation particle counter (CPC) for particles approximately between 10 nm to 3 µm. NOTE As the particle number concentration is usually dominated by the ultrafine particle (UFP) fraction, the obtained result can be used as an approximation of the UFP concentration. Quality assurance, determination of the measurement uncertainty and minimal reporting information are also discussed in this document. This document is applicable to indoor environments as specified in ISO 16000-1. This document does not address the determination of bioaerosols or the chemical characterization of particles. Nevertheless, some bioaerosols can be detected by the CPC and then contribute to the measured count of particles.

  • Standard
    34 pages
    English language
    sale 15% off

This European Standard describes a standard method for determining the PM10 or PM2,5 mass concentrations of suspendedparticulate matter in ambient air by sampling the particulate matter on filters and weighing them by means of a balance.
Measurements are performed with samplers with inlet designs as specified in Annex A, operating at a nominal flow rate of 2,3 m3/h,over a nominal sampling period of 24 h. Measurement results are expressed in μg/m3, where the volume of air is the volume atambient conditions near the inlet at the time of sampling.
The range of application of this European Standard is for 24 h measurements from approximately 1 μg/m3 (i.e. the limit of detection ofthe standard measurement method expressed as its uncertainty) up to 150 μg/m3 for PM10 and 120 μg/m3 for PM2,5.
This European Standard describes procedures and gives requirements for the testing and use of so-called sequential samplers,equipped with a filter changer, suitable for extended stand-alone operation. Sequential samplers are commonly used throughout theEuropean Union for the measurement of concentrations in ambient air of PM10 or PM2,5. However, this European Standard does notexclude the use of single-filter samplers.
This European Standard represents an evolution of earlier European Standards (EN 12341:1998 and 2014, EN 14907:2005). Newequipment procured shall comply fully with this European Standard.
Older versions of these samplers, including those described in EN 12341:2014 Annex B, have a special status in terms of their use. These samplers can still be used for monitoring purposes and for ongoing quality control, provided that a well justified additionalallowance is made to their uncertainties
This European Standard also provides guidance for the selection and testing of filters with the aim of reducing the measurementuncertainty of the results obtained when applying this European Standard.

  • Standard
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    62 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a procedure for the assessment of the indoor air quality that is valid for all interior rooms in residential and non-residential buildings with natural or mechanical ventilation, in which people do not only stay temporarily. This document is applicable to indoor environments as defined in ISO 16000-1. The assessment of working materials in workrooms or workplaces in buildings, that are subject to statutory occupational safety specifications, are excluded from this document. In these rooms, only air constituents that do not originate from working materials can be assessed according to this document. It is not possible to define classes with exact values for the individual pollutants, as the corresponding limit and guide values differ in individual countries. In addition, the values relate to different observation periods. Aspects concerning electromagnetic fields, noise and vibrations and their effect on the indoor air quality are not the object of this document. The classification of further consequences and measures, such as organisational steps, structural engineering measures, renovation proposals, further human medicine appraisals and the like, are not the object of this document. NOTE This document applies to of all types of indoor environments occupied by all kinds of persons, including regular users, clients and workers.

  • Standard
    25 pages
    English language
    sale 15% off

This document specifies the requirements for the manufacturer’s quality management system (QMS), the initial assessment of the manufacturer’s production control and the continuing surveillance of the effect of subsequent changes on the performance of certified air quality monitoring equipment (AQME).
This document also serves as a reference document for auditing the manufacturer’s QMS.
This document elaborates and supplements the requirements of EN ISO 9001:2015.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the general principles of certification, including common procedures and requirements, for the certification of air quality monitoring equipment (AQME).
This document applies to the certification of AQME for ambient air quality and emissions from stationary sources for which performance criteria and test procedures are available in European Standards.
This document provides for the certification of AQME according to the requirements of EN ISO/IEC 17065:2012.
This document elaborates and supplements the requirements of EN ISO/IEC 17065:2012 for bodies certifying AQME. It specifies requirements on testing laboratories as well as the manufacturer’s quality management system (QMS) and the surveillance for the manufacturing process as part of the certification process.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

To provide a concise overview of the following aspects of the application of reference rooms for the evaluation of emissions from products in indoor environments;
European dimension of the scope (regulations and schemes)
Evaluation of VOC emissions from building products: principles
Background history
Implementation in national regulations
Implementation in voluntary schemes
Broader application of the reference room (in addition to construction products)
Other possible dimensions of a reference room
Conclusion and references

  • Technical report
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for determination of volatile organic compounds (VOC) in indoor air and in air sampled for the determination of the emission from products or materials used in indoor environments (according to ISO 16000‑1) using test chambers and test cells. The method uses sorbent sampling tubes with subsequent thermal desorption (TD) and gas chromatographic (GC) analysis employing a capillary column and a mass spectrometric (MS) detector with or without an additional flame ionisation detector (FID)[13].
The method is applicable to the measurement of most GC-compatible vapour-phase organic compounds at concentrations ranging from micrograms per cubic metre to several milligrams per cubic metre. Many very volatile organic compounds (VVOC) and semi-volatile organic compounds (SVOC) can be analysed depending on the sorbents used.

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    36 pages
    English language
    sale 15% off
  • Standard
    39 pages
    French language
    sale 15% off
  • Draft
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    37 pages
    English language
    sale 15% off
  • Draft
    39 pages
    French language
    sale 15% off

This document specifies the whole vehicle test chamber, the vapour sampling assembly and the operating conditions for the determination of volatile organic compounds (VOCs), and carbonyl compounds in vehicle cabin air. There are three measurements performed: one (for VOCs and carbonyl compounds) during the simulation of ambient conditions (ambient mode) at standard conditions of 23 °C - 25 °C with no air exchange; a second only for the measurement of formaldehyde at elevated temperatures (parking mode); and a third for VOCs and carbonyl compounds simulating driving after the vehicle has been parked in the sun starting at elevated temperatures (driving mode). For the simulation of the mean sun irradiation, a fixed irradiation in the whole vehicle test chamber is employed.
The VOC method is valid for measurement of non-polar and slightly polar VOCs in a concentration range of sub-micrograms per cubic metre up to several milligrams per cubic metre. Using the principles specified in this method, some semi-volatile organic compounds (SVOC) can also be analysed. Compatible compounds are those which can be trapped and released from the Tenax TA®[1] sorbent tubes described in ISO 16000‑6, which includes VOCs ranging in volatility from n-C6 to n-C16.
The sampling and analysis procedure for formaldehyde and other carbonyl compounds is performed by collecting air on to cartridges coated with 2,4-dinitrophenylhydrazine (DNPH) and subsequent analysis by high performance liquid chromatography (HPLC) with detection by ultraviolet absorption. Formaldehyde and other carbonyl compounds can be determined in the approximate concentration range 1 µg/m3 to 1 mg/m3.
The method is valid for passenger cars, as defined in ECE-TRANS-WP.29/1045.
This document gives guidelines for:
a) transport and storage of the test vehicles until the start of the test;
b) conditioning for the surroundings of the test vehicle and the test vehicle itself as well as the whole vehicle test chamber;
c) conditioning of the test vehicle prior to measurements;
d) simulation of ambient air conditions (ambient mode);
e) formaldehyde sampling at elevated temperatures (parking mode);
f) simulation of driving after the test vehicle has been parked in the sun (driving mode).
  
[1] Tenax TA® is the trade name of a product supplied by Buchem. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    29 pages
    English language
    sale 15% off
  • Draft
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    29 pages
    English language
    sale 15% off

This document describes a test method to determine the activity concentration of atmospheric tritium by trapping tritium in air by bubbling through a water solution. Atmospheric tritium activity concentration levels are expressed in becquerel per cubic metre (Bq∙m-3). The formulae are given for a sampling system with four bubblers. They can also be applied to trapping systems with only one trapping module consisting of two bubblers if only HTO is in the atmosphere to be sampled. This document does not cover laboratory test sample results, in becquerel per litre of trapping solution, according to ISO 9698 or ISO 13168. The test method detection limit result is between 0,2 Bq∙m-3 and 0,5 Bq∙m-3 when the sampling duration is about one week.

  • Standard
    35 pages
    English language
    sale 15% off
  • Standard
    36 pages
    French language
    sale 15% off
  • Draft
    35 pages
    English language
    sale 15% off
  • Draft
    35 pages
    English language
    sale 15% off

This document specifies a method for the determination of the mass concentration of particulate cadmium and cadmium compounds in workplace air, using either flame or electrothermal atomic absorption spectrometry. The sample digestion procedure specified in 10.2.2 has been validated for a selection of cadmium compounds and pigments and glass enamels containing cadmium. The analytical method has been validated for the determination of masses of 10 ng to 600 ng of cadmium per sample using electrothermal atomic absorption spectrometry, and 0,15 µg to 96 µg of cadmium per sample using flame atomic absorption spectrometry. The concentration range for cadmium in air for which this procedure is applicable is determined in part by the sampling procedure selected by the user. The method is applicable to personal sampling of the inhalable or respirable fraction of airborne particles, as defined in ISO 7708, and to stationary sampling.

  • Standard
    21 pages
    English language
    sale 15% off
  • Draft
    21 pages
    English language
    sale 15% off

This document specifies the following requirements: a) requirements for measurement sections and sites with respect to performing emission measurements; b) requirements for the measurement objective, plan and report of emission measurements of air pollutants and reference quantities to be carried out in waste gas ducts at industrial plants. This document applies to periodic measurements using manual or automated reference methods (RM). This document specifies generic principles which can be applied to perform emission measurements at different plant types and to meet different measurement objectives. NOTE The measurement objective is specified by the customer. The testing institute identifies the measurement objective and related regulatory requirements at the beginning of the measurement planning. Where measurements are being made for regulatory purposes, the customer should seek approval from the competent authority. This document specifies procedures for taking representative samples in waste gas ducts. This document specifies a procedure for finding the best available sampling point for automated measuring systems used for continuous monitoring of emissions. The planning and reporting aspects of this document are applicable to emission measurements at diffusive and fugitive emission sources. This document does not address aspects of structural safety of chimneys and ducts, construction of working platforms and safety of personnel using them.

  • Standard
    77 pages
    English language
    sale 15% off
  • Standard
    82 pages
    French language
    sale 15% off
  • Draft
    77 pages
    English language
    sale 15% off
  • Draft
    77 pages
    English language
    sale 15% off
  • Draft
    78 pages
    French language
    sale 15% off

This proposed standard will establish a common methodology for the quantification of energy consumption and greenhouse gas (GHG) emissions related to any transport operations (of freight, passengers or both).
It will specify general principles, definitions, system boundaries, calculation methods, apportionment rules (allocation) and data recommendations, with the objective to promote standardised, consistent, credible and verifiable reporting, regarding energy consumption and GHG emissions related to any transport. It will also include examples on the application of the principles and default emission and consumption data recommended in the absence of available specific data.
Potential users of this proposed standard are any person or organisation who needs to refer to a standardized methodology when reporting the results of the quantification of energy consumption and GHG emissions related to a transport service, especially:
 transport service operators (freight or passengers carriers);
 transport service organisers (carriers subcontracting transport operations and freight forwarders);
 transport service users (shippers and passengers).
GHG calculation scope shall include Scope1-3 emissions on a well-to-wheel basis. Therefore, the calculation of energy consumption and GHG emissions shall cover upstream energy processes (like fuel extraction/production, transport and refining) as well as processes at point of use.
With reference to Scope 1-3 according to the GHG Protocol „Corporate Value Chain (Scope 3) Accounting and Reporting Standard”, the new ISO standard shall also contain the definition of roles and reporting scopes of the above actors in the transport chain.

  • Standard
    133 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    144 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements for the installation and on-going quality assurance and quality control of data acquisition and handling systems (DAHS). This includes requirements on
— installation (Clause 5)
— quality assurance and quality control during QAL2 (Clause 6)
— quality assurance and quality control during on-going operation (Clause 7)
— annual functional test (Clause 8)
This document supports the requirements of EN 14181 and legislation such as the IED, MCPD and E-PRTR. It does not preclude the use of additional features and functions provided the minimum requirements of this European Standard are met and that these features do not adversely affect data quality, clarity or access.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements for the installation and on-going quality assurance and quality control of data acquisition and handling systems (DAHS). This includes requirements on:
-   installation (Clause 5);
-   quality assurance and quality control during QAL2 (Clause 6);
-   quality assurance and quality control during on-going operation (Clause 7);
-   annual functional test (Clause 8);
-   documentation (Clause 9).
This document supports the requirements of EN 14181 and legislation such as the IED [1], MCPD [2] and E-PRTR [3]. It does not preclude the use of additional features and functions provided the minimum requirements of this document are met and that these features do not adversely affect data quality, clarity or access.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document supports the elaboration of standardized measurement methods for the determination of stationary source emissions by manual or automated measurement methods.
This document describes the basic elements of standardized measurement methods for the determination of stationary source emissions.
This document is supplemented by an electronic template providing a uniform structure and common elements and texts.
NOTE   Detailed information on the electronic template is given in Annex A.
This document is addressed to working groups of CEN/TC 264 dealing with stationary source emissions. It aims at facilitating in the working groups the elaboration and the harmonization of documents produced by CEN/TC 264. Such documents can be European standards (EN), European Technical Specifications (CEN/TS) or European Technical Reports (CEN/TR).

  • Technical report
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a harmonized method for calculating the emissions of greenhouse gases from the electrolysis section of primary aluminium smelters and aluminium anode baking plants. This document also specifies key performance indicators for the purpose of benchmarking of aluminium and boundaries.

  • Standard
    17 pages
    English language
    sale 15% off

This document specifies a harmonized methodology for calculating greenhouse gas (GHG) emissions from the cement industry, with a view to reporting these emissions for various purposes and by different basis, such as, plant basis, company basis (by country or by region) or even international group basis. It addresses all the following direct and indirect sources of GHG included: — Direct GHG emissions [ISO 14064-1:2018, 5.2.4, a)] from sources that are owned or controlled by the organization, such as emissions that result from the following processes: — calcinations of carbonates and combustion of organic carbon contained in raw materials; — combustion of kiln fuels (fossil kiln fuels, alternative fossil fuels, mixed fuels with biogenic carbon content, biomass and bioliquids) related to either clinker production or drying of raw materials and fuels, or both; — combustion of non-kiln fuels (fossil fuels, alternative fossil fuels, mixed fuels with biogenic carbon content, biomass and bioliquids) related to equipment and on-site vehicles, room heating and cooling, drying of MIC (e.g. slag or pozzolana); — combustion of fuels for on-site power generation; — combustion of carbon contained in wastewater; — Indirect GHG emissions [ISO 14064-1:2018, 5.2.4, b)] from the generation of purchased electricity consumed in the organization’s owned or controlled equipment; — Other indirect GHG emissions [(ISO 14064-1:2018, 5.2.4, c) to f)] from purchased clinker. Excluded from this document are all other ISO 14064-1:2018, 5.2.4, c) to f) emissions from the cement industry.

  • Standard
    67 pages
    English language
    sale 15% off
  • Draft
    67 pages
    English language
    sale 15% off
  • Draft
    67 pages
    English language
    sale 15% off

This document provides a harmonized methodology for calculating greenhouse gas (GHG) emissions from the lime industry. It includes the manufacture of lime and any downstream lime products manufactured at the plant, such as ground or hydrated lime. This document allows for reporting of GHG emissions for various purposes and on different basis, such as plant basis, company basis (by country or by region) or international organization basis. This document addresses all of the following direct and indirect sources of GHG included as defined in ISO 14064-1: — direct greenhouse gas emissions [see ISO 14064-1:2018, 5.2.4 a)] from greenhouse gas sources that are owned or controlled by the company, such as emissions resulting from the following sources: — calcination of carbonates and combustion of organic carbon contained in the kiln stone; — combustion of kiln fuels (fossil kiln fuels, alternative fossil fuels, mixed fuels with biogenic carbon content, biomass fuels and bio fuels) related to lime production and/or drying of raw materials; — combustion of non-kiln fuels (fossil kiln fuels, mixed fuels with biogenic carbon content, biomass fuels and bio fuels) related to equipment and on-site vehicles, heating/cooling and other on-site uses; — combustion of fuels for on-site power generation; — indirect greenhouse gas emissions [see ISO 14064-1:2018, 5.2.4 b)] from the generation of imported electricity, heat or steam consumed by the organization; — other indirect greenhouse gas emissions [see ISO 14064-1:2018, 5.2.4 c) to f)], which are a consequence of an organization's activities, but arise from greenhouse gas sources that are owned or controlled by other organizations, except emissions from imported kiln stone, are excluded from this document. This document is intended to be used in conjunction with ISO 19694-1, which contains generic, overall requirements, definitions and rules applicable to the determination of GHG emissions for all energy-intensive sectors, provides common methodological issues and defines the details for applying the rules. The application of this document to the sector-specific standards ensures accuracy, precision and reproducibility of the results.

  • Standard
    51 pages
    English language
    sale 15% off
  • Draft
    51 pages
    English language
    sale 15% off
  • Draft
    51 pages
    English language
    sale 15% off

This document provides a harmonized methodology for calculating GHG emissions from the ferro-alloys industry based on the mass balance approach. This document also provides key performance indicators over time for ferro-alloys plants. This document covers the following direct and indirect sources of GHG: — direct GHG emissions [see ISO 14064-1:2018, 5.2.4 a)] from sources that are owned or controlled by the company, such as emissions resulting from the following sources: — smelting (reduction) process; — decomposition of carbonates inside the furnace; — auxiliaries operation related to the smelting operation (i.e. aggregates, drying processes, heating of ladles, etc.); — indirect GHG emissions [see ISO 14064-1:2018, 5.2.4 b)] from the generation of purchased electricity consumed in the company’s owned or controlled equipment.

  • Standard
    26 pages
    English language
    sale 15% off
  • Draft
    26 pages
    English language
    sale 15% off
  • Draft
    26 pages
    English language
    sale 15% off

This document supports the elaboration of standardized measurement methods for the determination of stationary source emissions by manual or automated measurement methods.
This document describes the basic elements of standardized measurement methods for the determination of stationary source emissions.
This document is supplemented by an electronic template providing a uniform structure and common elements and texts.
NOTE   Detailed information on the electronic template is given in Annex A.
This document is addressed to working groups of CEN/TC 264 dealing with stationary source emissions. It aims at facilitating in the working groups the elaboration and the harmonization of documents produced by CEN/TC 264. Such documents can be European standards (EN), European Technical Specifications (CEN/TS) or European Technical Reports (CEN/TR).

  • Technical report
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies requirements for the calibration and validation (QAL2), the ongoing quality assurance during operation (QAL3) and the annual surveillance test (AST) of automated measuring systems (AMS) used for monitoring total mercury emissions from stationary sources to demonstrate compliance with an emission limit value (ELV). This document is derived from EN 14181 and is only applicable in conjunction with EN 14181.
This document is applicable by direct correlation with the standard reference method (SRM) described in EN 13211.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies procedures for establishing quality assurance levels (QAL) for automated measuring systems (AMS) installed on industrial plants for the determination of the flue gas components and other flue gas parameters. This document specifies: — a procedure (QAL2) to calibrate the AMS and determine the variability of the measured values obtained by it, so as to demonstrate the suitability of the AMS for its application, following its installation; — a procedure (QAL3) to maintain and demonstrate the required quality of the measurement results during the normal operation of an AMS, by checking that the zero and span characteristics are consistent with those determined during QAL1; — a procedure for the annual surveillance tests (AST) of the AMS in order to evaluate (i) that it functions correctly and its performance remains valid and (ii) that its calibration function and variability remain as previously determined. This document is designed to be used after the AMS has been certified in accordance with the series of documents EN 15267.

  • Standard
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    74 pages
    English language
    sale 15% off
  • Draft
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document references the latest publication of SAE J1962. On-board diagnostic (OBD) regulations require road vehicles to be equipped with a standardized connector for purposes of access to OBD information by external test equipment. This document describes the requirements for the physical connection and associated pin usage to allow for standard access to the OBD data. This document is technically equivalent to SAE J1962 with the exception of the specific requirements identified and the specification of additional requirements related to right hand driven (RHD) vehicles.

  • Standard
    4 pages
    English language
    sale 15% off
  • Draft
    4 pages
    English language
    sale 15% off
  • Draft
    4 pages
    English language
    sale 15% off

This document establishes typical assessment processes to determine grading levels of air chemical cleanliness (ACC) in cleanrooms and associated controlled environments, in terms of airborne concentrations of specific chemical substances (individual, group or category), and provides a protocol to include test methods, analysis and time-weighted factors for their determination. This document currently considers only concentrations of air chemical contaminants between 100 g/m3 and 10−12 g/m3 under cleanroom operational conditions.
This document is not relevant for application in those industries, processes or productions where the presence of airborne chemical substances is not considered a risk to the product or process.
It is not the intention of this document to describe the nature of air chemical contaminants.
This document does not give a classification of surface chemical contamination.

  • Standard
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the process for creating a cleanroom from requirements through to its design, construction and start-up. It applies to new, refurbished and modified cleanroom installations. It does not prescribe specific technological or contractual means of achieving these requirements. It is intended for use by users, specifiers, designers, purchasers, suppliers, builders and performance verifiers of cleanroom installations. The primary cleanliness consideration is airborne particle concentration. Detailed checklists are provided for the requirements, design, construction and start-up, which include important performance parameters to be considered. Energy management design approaches are identified to support an energy-efficient cleanroom design. Construction guidance is provided, including requirements for start-up and verification. A basic element of this document is consideration of aspects, including maintenance, that will help to ensure continued satisfactory operation for the entire life cycle of the cleanroom.
NOTE       Further guidance is given in Annexes A to D. ISO 14644-1, ISO 14644-2, ISO 14644-8, ISO 14644-9, ISO 14644-10, ISO 14644-12 and ISO 14644-17 provide complementary information. ISO 14644-7 offers guidance on design, construction and requirements for separative devices (clean air hoods, glove boxes, isolators and mini-environments).
The following subjects are mentioned but not addressed in this document:
—    specific operational activities, processes to be accommodated and process equipment in the cleanroom installation;
—    fire and safety regulations;
—    ongoing operation, cleaning and maintenance activities, which are covered by ISO 14644-5.

  • Standard
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides guidance for — the sampling process of the aerosol particles in the air using filter media. This document takes into account the specific behaviour of aerosol particles in ambient air (Annex B). — Two methods for sampling procedures with subsequent or simultaneous measurement: — the determination of the activity concentration of radionuclides bound to aerosol particles in the air knowing the activity deposited in the filter; — the operating use of continuous air monitoring devices used for real time measurement. The activity concentration is expressed in becquerel per cubic metre (Bq∙m-3). This document describes the test method to determine activity concentrations of radionuclides bound to aerosol particles after air sampling passing through a filter media designed to trap aerosol particles. The method can be used for any type of environmental study or monitoring. The test method is used in the context of a quality assurance management system (ISO/IEC 17025[2]). This document does not cover the details of measurement test techniques (gamma spectroscopy, global alpha and beta counting, liquid scintillation, alpha spectrometry) used to determine the activity deposited in the media filter, which are either based on existing standards or internal methods developed by the laboratory in charge of those measurements. Also, this document does not cover the variability of the aerosol particle sizes as given by the composition of the dust contained in ambient air[3][4]. This document does not address to sampling of radionuclides bound to aerosol particles in the effluent air of nuclear facilities [see ISO 2889:2021][5]. The procedures described here facilitate the sampling of aerosol bound radionuclides. It is supposed to conform to the national and international requirements for monitoring programmes safety standards of IAEA[6]. The characteristics of the sampling location (coordinates, type of vegetation, obstacles) need to be documented prior to commencing the monitoring. The guidelines of the World Meteorology Organization (WMO) include the criteria for representative measurements of temperature, wind-speed, wind direction, humidity and precipitation for all the weather stations in the world[7].

  • Standard
    45 pages
    English language
    sale 15% off
  • Standard
    47 pages
    French language
    sale 15% off

This document specifies requirements for the calibration and validation (QAL2), the ongoing quality assurance during operation (QAL3) and the annual surveillance test (AST) of AMS used for monitoring total mercury emissions from stationary sources to demonstrate compliance with an emission limit value (ELV). This document is derived from EN 14181 and is only applicable in conjunction with EN 14181.
This document is applicable by direct correlation with the standard reference method (SRM) described in EN 13211.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies performance requirements for battery powered pumps used for personal
sampling of chemical and biological agents in workplace air. It also specifies test methods in order to
determine the performance characteristics of such pumps under prescribed laboratory conditions.
This document is applicable to battery powered pumps having a nominal volumetric flow rate above
10 ml ⋅ min−1, as used with combinations of sampler and collection substrate for sampling of gases,
vapours, dusts, fumes, mists and fibres.
This document is primarily intended for flow-controlled pumps.

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies performance requirements and test methods under prescribed laboratory conditions for the evaluation of pumped samplers used in conjunction with an air sampling pump and of procedures using these samplers for the determination of semi-volatile chemical agent in workplace atmospheres. The procedures given in this document provide results only for the sum of airborne particles and vapour. The concentration is calculated in terms of mass per unit volume. This document is applicable to pumped samplers and measuring procedures using these samplers in which sampling and analysis are carried out in separate stages.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements on
—the competence of proficiency testing providers,
—the test facility characteristics, and
—the design, operation and evaluation of proficiency testing schemes by means of interlaboratory comparisons.
All these aspects are necessary in order to organise and conduct proficiency testing on industrial emissions that is ‘Fit for the Purposes’ declared in the scope of the proficiency testing.
Requirements on the competence of proficiency testing providers cover personnel, organisation, equipment and environment.
Requirements on the test facility characteristics cover measurement sections, measurements ports and working area for the participants.
Requirements on the proficiency testing schemes cover
—the design, including planning, preparations, homogeneity and stability of test atmospheres and statistical design,
—the operation, including handling and instruction of participants, and
—testing results evaluation, including statistical data.
This document supplements the requirements of EN ISO/IEC 17043.
This document supports the application of proficiency testing schemes for checking the performance of testing laboratories in the context of qualification, accreditation and related quality checks in relation to the application of standardized measurement methods such as standard reference methods (SRM) or alternative methods (AM).

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines recommendations dealing with the quality of the air on civil aircraft concerning chemical compounds potentially originating from, but not limited, to, the ventilation air supplied to the cabin and flight deck.
A special emphasis is on the engine and APU bleed air contaminants potentially brought into the cabin through the air conditioning, pressurization and ventilation systems.
The document is applicable to civil aircraft in operation from the period that is defined as when the first person enters the aircraft until the last person leaves the aircraft.
The document recommends means to prevent exposure to certain types of chemical compounds, including those that could cause adverse effects, taking into account the Precautionary Principle.

  • Technical report
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    79 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the process for creating a cleanroom from requirements through to its design, construction and start-up. It applies to new, refurbished and modified cleanroom installations. It does not prescribe specific technological or contractual means of achieving these requirements. It is intended for use by users, specifiers, designers, purchasers, suppliers, builders and performance verifiers of cleanroom installations. The primary cleanliness consideration is airborne particle concentration. Detailed checklists are provided for the requirements, design, construction and start-up, which include important performance parameters to be considered. Energy management design approaches are identified to support an energy-efficient cleanroom design. Construction guidance is provided, including requirements for start-up and verification. A basic element of this document is consideration of aspects, including maintenance, that will help to ensure continued satisfactory operation for the entire life cycle of the cleanroom.
NOTE       Further guidance is given in Annexes A to D. ISO 14644-1, ISO 14644-2, ISO 14644-8, ISO 14644-9, ISO 14644-10, ISO 14644-12 and ISO 14644-17 provide complementary information. ISO 14644-7 offers guidance on design, construction and requirements for separative devices (clean air hoods, glove boxes, isolators and mini-environments).
The following subjects are mentioned but not addressed in this document:
—    specific operational activities, processes to be accommodated and process equipment in the cleanroom installation;
—    fire and safety regulations;
—    ongoing operation, cleaning and maintenance activities, which are covered by ISO 14644-5.

  • Standard
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    1 page
    English language
    sale 15% off
  • Draft
    1 page
    English language
    sale 15% off
  • Draft
    1 page
    English language
    sale 15% off

This document establishes a procedure for the assessment of particle cleanliness levels on solid surfaces in cleanrooms and associated controlled environment applications. Recommendations on testing and measuring methods, as well as information about surface characteristics, are given in Annexes A to D.
This document applies to all solid surfaces in cleanrooms and associated controlled environments, such as walls, ceilings, floors, working environments, tools, equipment and products. The procedure for the assessment of surface cleanliness by particle concentration (SCP) is limited to particles of between 0,05 µm and 500 µm.
The following issues are not considered in this document:
—    requirements for the cleanliness and suitability of surfaces for specific processes;
—    procedures for the cleaning of surfaces;
—    material characteristics;
—    references to interactive bonding forces or generation processes that are usually time-dependent and process-dependent;
—    selection and use of statistical methods for assessment and testing;
—    other characteristics of particles, such as electrostatic charge, ionic charges and microbiological state.

  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes appropriate testing processes to determine the cleanliness of surfaces in cleanrooms with regard to the presence of chemical compounds or elements (including molecules, ions, atoms and particles). This document is applicable to all solid surfaces in cleanrooms and associated controlled environments such as walls, ceilings, floors, worksurfaces, tools, equipment and devices.
NOTE 1    For the purpose of this document, consideration is only given to the chemical characteristics of a particle. The physical properties of the particle are not considered and this document does not cover the interaction between the contamination and the surface.
NOTE 2    This document does not include the contamination generation process or any time-dependent influences (e.g. deposition, sedimentation, ageing) or process-dependent activities such as transportation and handling. Neither does it include guidance on statistical quality-control techniques to ensure compliance.

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies performance requirements and test methods under prescribed laboratory conditions for the evaluation of diffusive samplers (see Reference [1]) and of procedures using these samplers for the determination of gases and vapours in workplace atmospheres (see Reference [2]).
This document is applicable to diffusive samplers and measuring procedures using these samplers, such as ISO 16200‑2 and ISO 16017‑2, in which sampling and analysis are carried out in separate stages.
This document is not applicable to
—    diffusive samplers which are used for the direct determination of concentrations, and
—    diffusive samplers which rely on sorption into a liquid.
This document addresses requirements for method developers and/or manufacturers.
NOTE      For the purposes of this document a manufacturer can be any commercial or non-commercial entity.

  • Standard
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the process for creating a cleanroom from requirements through to its design, construction and start-up. It applies to new, refurbished and modified cleanroom installations. It does not prescribe specific technological or contractual means of achieving these requirements. It is intended for use by users, specifiers, designers, purchasers, suppliers, builders and performance verifiers of cleanroom installations. The primary cleanliness consideration is airborne particle concentration. Detailed checklists are provided for the requirements, design, construction and start-up, which include important performance parameters to be considered. Energy management design approaches are identified to support an energy-efficient cleanroom design. Construction guidance is provided, including requirements for start-up and verification. A basic element of this document is consideration of aspects, including maintenance, that will help to ensure continued satisfactory operation for the entire life cycle of the cleanroom. NOTE Further guidance is given in Annexes A to D. ISO 14644-1, ISO 14644-2, ISO 14644-8, ISO 14644-9, ISO 14644-10, ISO 14644-12 and ISO 14644-17 provide complementary information. ISO 14644-7 offers guidance on design, construction and requirements for separative devices (clean air hoods, glove boxes, isolators and mini-environments). The following subjects are mentioned but not addressed in this document: — specific operational activities, processes to be accommodated and process equipment in the cleanroom installation; — fire and safety regulations; — ongoing operation, cleaning and maintenance activities, which are covered by ISO 14644-5.

  • Standard
    57 pages
    English language
    sale 15% off

This part of IEC 62990 specifies general requirements for design, function and performance, and describes the test methods that apply to portable, transportable, and fixed equipment for the detection and concentration measurement of toxic gases and vapours in workplace atmospheres and other industrial and commercial applications. This document is applicable to continuously sensing equipment whose primary purpose is to provide an indication, alarm and/or other output function the purpose of which is to indicate the presence of a toxic gas or vapour in the atmosphere and in some cases to initiate automatic or manual protective action(s). It is applicable to equipment in which the sensor generates an electrical signal when gas is present.
This document applies to two types of equipment:
• Type HM (Health Monitoring) ‘occupational exposure’ equipment: For occupational exposure measurement, the performance requirements are focused on uncertainty of measurement of gas concentrations in the region of Occupational Exposure Limit Values (OELV). The upper limit of measurement will be defined by the manufacturer in accordance with 4.2.1.
• Type SM (Safety Monitoring) ‘general gas detection’ equipment: For general gas detection applications (e.g. safety warning, leak detection), the performance requirements are focused on alarm signalling. The upper limit of measurement will be defined by the manufacturer according to the intended use of the equipment. In general, the requirements for accuracy will be higher for Type HM equipment than for Type SM equipment. The same equipment may meet the requirements of both Type HM and Type SM. For equipment used for sensing the presence of multiple gases this document applies only to the detection of toxic gas or vapour.
This document is not applicable to equipment:
- with samplers and concentrators such as sorbents or paper tape having an irreversible indication;
- used for the measurement of gases and vapours related to the risk of explosion;
- used for the measurement of oxygen; – used only in laboratories for analysis or measurement;
- used only for process measurement purposes;
- used in the domestic environment;
- used in environmental air pollution monitoring;
- used for open-path (line of sight) area gas measurement;
- used for ventilation control in car parks or tunnels.

  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 62990 specifies general requirements for design, function and performance, and describes the test methods that apply to portable, transportable, and fixed equipment for the detection and concentration measurement of toxic gases and vapours in workplace atmospheres and other industrial and commercial applications. This document is applicable to continuously sensing equipment whose primary purpose is to provide an indication, alarm and/or other output function the purpose of which is to indicate the presence of a toxic gas or vapour in the atmosphere and in some cases to initiate automatic or manual protective action(s). It is applicable to equipment in which the sensor generates an electrical signal when gas is present.
This document applies to two types of equipment:
- Type HM (Health Monitoring) ‘occupational exposure’ equipment: For occupational exposure measurement, the performance requirements are focused on uncertainty of measurement of gas concentrations in the region of Occupational Exposure Limit Values (OELV). The upper limit of measurement will be defined by the manufacturer in accordance with 4.2.1.
- Type SM (Safety Monitoring) ‘general gas detection’ equipment: For general gas detection applications (e.g. safety warning, leak detection), the performance requirements are focused on alarm signalling. The upper limit of measurement will be defined by the manufacturer according to the intended use of the equipment. In general, the requirements for accuracy will be higher for Type HM equipment than for Type SM equipment. The same equipment may meet the requirements of both Type HM and Type SM. For equipment used for sensing the presence of multiple gases this document applies only to the detection of toxic gas or vapour.
This document is not applicable to equipment:
- with samplers and concentrators such as sorbents or paper tape having an irreversible indication;
- used for the measurement of gases and vapours related to the risk of explosion;
- used for the measurement of oxygen; – used only in laboratories for analysis or measurement;
- used only for process measurement purposes;
- used in the domestic environment;
- used in environmental air pollution monitoring;
- used for open-path (line of sight) area gas measurement;
- used for ventilation control in car parks or tunnels.

  • Standard
    64 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    64 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the framework for determining emissions to the atmosphere of Volatile Organic Compounds (VOCs). It specifies a system of methods to detect and/or identify and/or quantify VOC emissions from industrial sources. These methods include Optical Gas Imaging (OGI), Differential Absorption Lidar (DIAL), Solar Occultation Flux (SOF), Tracer Correlation (TC), and Reverse Dispersion Modelling (RDM). It specifies the methodologies for carrying out all the above, and also the performance requirements and capabilities of the direct monitoring methods, the requirements for the results and their measurement uncertainties.
This document specifically addresses, but is not restricted to, the petrochemicals, oil refining, and chemical industries receiving, processing, storing, and/or exporting of VOCs, and includes the emissions of VOCs from the natural gas processing/conditioning industry and the storage of natural gas and similar fuels. The methods specified in this document have been validated at onshore facilities.
This document is applicable to diffuse VOC emissions to atmosphere but not to the emissions of VOCs into water and into solid materials such as soils. It is complementary to EN 15446 [9], the standardized method for the detection, localization of sources (individual leaks from equipment and piping), and quantification of fugitive VOC emissions within the scope of a Leak Detection and Repair Programme (LDAR).
This document has been validated for non-methane VOCs, but the methodology is in principle applicable to methane and other gases.
This document specifies methods to determine (detect, identify and/or quantify) VOC emissions during the periods of monitoring. It does not address the extrapolation of emissions to time periods beyond the monitoring period.

  • Standard
    101 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    96 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for the evaluation of measuring procedures using samplers for the determination of a chemical agent present in the workplace atmosphere as a mixture of airborne particles and vapour.
The procedures given in this document provide results only for the sum of airborne particles and vapour. The concentration is calculated in terms of mass per unit volume.
NOTE      The physical behaviour of a mixture of airborne particles and vapour is described in Annex A. Examples of substances which can be present in multiple phases are toluene diisocyanate, diethanolamine, ethyleneglycol and tributylphosphate.
This document can also be applied to complex mixtures, such as metal working fluids or bitumen fumes.
This document is applicable to samplers and measuring procedures using these samplers in which sampling and analysis are carried out in separate stages.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day