This document describes a method for the sampling and determining mercury species in flue gas passing through ducts or chimney stacks. Mercury generally exists in gaseous elemental form, gaseous oxidized form and particulate-bound form. This method applies to the sampling and determination of gaseous elemental mercury (Hg0), gaseous oxidized mercury (Hg2+), particulate-bound mercury (HgP) and total mercury (HgT) in the flue gas from stationary sources.
This method is suitable at locations with high dust content, including locations upstream of the dust removal device with high particulate loadings in flue gas up to 120 g/m3.
This method is applicable to locations with sulfur dioxide (SO2) concentration up to 0,25 % when the sampling volume is 0,5 m3 (on a dry basis as corrected to standard conditions).
The limit of detection and the limit of determination depend on the instrumental limit of detection, reagent blank, field blank, measurement technique and volume of sampled gas. When the sampling volume is 1,5 m3 (on a dry basis as corrected to standard conditions), the expected limits of detection for Hg0, HgP, Hg2+ and HgT are 0,103 μg/m3, 0,011 μg/m3, 0,035 μg/m3 and 0,127 μg/m3, respectively. The expected limits of determination for Hg0, HgP, Hg2+ and HgT are 0,229 μg/m3, 0,025 μg/m3, 0,082 μg/m3 and 0,263 μg/m3, respectively.

  • Standard
    43 pages
    English language
    e-Library read for
    1 day
  • Standard
    37 pages
    English language
    sale 15% off

This document provides a methodology for calculating greenhouse gas (GHG) emissions from the semiconductor and display industry. This document includes the manufacture of semiconductor devices, microelectromechanical systems (MEMS), photovoltaic (PV) devices and displays. This document allows to report GHG emissions for various purposes and on different bases, such as a per-plant basis, per-company basis (by country or by region) or an international group basis. This document addresses all of the following direct and indirect sources of GHG:
— direct GHG emissions [as defined in ISO 14064-1:2018, 5.2.4 a)] from sources that are owned or controlled by the company, such as emissions resulting from the following sources:
— process: fluorinated compound (FC) gases and nitrous oxide (N2O) used in etching and wafer cleaning (EWC), remote plasma cleaning (RPC), in situ plasma cleansing (IPC), in situ thermal cleaning (ITC), N2O thin film deposition (TFD), and other N2O using process;
— fuel combustion related to equipment and on-site vehicles, room heating/cooling;
— fuel combustion of fuels for on-site power generation;
— indirect GHG emissions [as defined in ISO 14064-1:2018, 5.2.4 b)] from the generation of imported electricity, heat or steam consumed by the organization.
Other indirect GHG emissions [as defined in ISO 14064-1:2018, 5.2.4 c) to f)], which are the consequence of an organization’s activities, but arise from GHG sources that are owned or controlled by other organizations, are excluded from this document.

  • Standard
    46 pages
    English language
    e-Library read for
    1 day
  • Standard
    40 pages
    English language
    sale 15% off

This document specifies a manual reference method for the determination of the mass concentration of specific elements in stationary source emissions. The method is applicable to each of the specific elements in the concentration range of 0,005 mg/m3 to 5 mg/m3.
This document has been validated for the determination of the mass concentration of metals in incineration exhaust gases - applying the performance criteria stated in Clause 9 - for the following elements:
-   arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), thallium (Tl), and vanadium (V) and their compounds.
The document can be used to determine metals other than those listed above (for example, selenium (Se) (ISO 17211), tellurium (Te), beryllium (Be), tin (Sn) and zinc (Zn)).
NOTE 1   These other metals mentioned above are commonly required by National Regulations, but this document currently has not yet been validated for these metals.
The document was validated for waste incinerators, but it is also applicable to other industrial processes, the practical experience shows that it can be applied over wide concentration ranges and various emission sources.
If mercury is intended to be determined as well, this can be sampled in a side stream arrangement of the sampling train (EN 13211) [5].
NOTE 2   This document has been validated with the described materials, equipment, sampling, and digestion performances etc., followed by analyses with atomic absorption spectroscopy (AAS) and inductively coupled plasma optical emission spectroscopy (ICP-OES,) or inductively coupled mass spectrometry (ICP-MS). This does not exclude the use of other types of equipment or analyses that meet the requirements and have been proven to be equivalent to the described European Standard.

  • Standard
    74 pages
    English language
    e-Library read for
    1 day

This document specifies a method for the determination of sulfur dioxide (SO2) in flue gases of stationary sources and describes the fundamental structure and the key performance characteristics of automated measuring systems.
The method allows continuous monitoring with permanently installed measuring systems of SO2 emissions.
This document describes extractive systems and in situ (non-extractive) systems in connection with a range of analysers that operate using, for example, the following principles:
— non-dispersive infrared absorption (NDIR);
— Fourier transform infrared (FTIR) spectroscopy;
— laser spectroscopic technique or tunable laser spectroscopy (TLS);
— non-dispersive ultraviolet absorption (NDUV);
— differential optical absorption spectroscopy (DOAS).
Other equivalent instrumental methods can be used provided they meet the minimum performance requirements specified in this document. The measuring system can be validated with reference materials, according to this document, or comparable methods.
Automated measuring system (AMS) based on the principles listed above has been used successfully in this application for the measuring ranges as shown in Annex E.

  • Standard
    48 pages
    English language
    e-Library read for
    1 day
  • Standard
    43 pages
    English language
    sale 15% off

This document specifies the standard reference method (SRM) for the measurement of low dust concentration in ducted gaseous streams in the concentrations below 50 mg/m3 at standard conditions.
This document is primarily developed and validated for gaseous streams emitted by waste incinerators. More generally, it can be applied to gases emitted from other stationary sources, and to higher concentrations.
If the gases contain unstable, reactive or semi-volatile substances, the measurement depends on the sampling and filter treatment conditions.
This method has been validated in field tests with special emphasis to dust concentrations around 5 mg/m3. The results of the field tests are presented in Annex A.

  • Standard
    59 pages
    English language
    e-Library read for
    1 day
  • Standard
    53 pages
    English language
    sale 15% off
  • Standard
    59 pages
    French language
    sale 15% off
  • Standard
    59 pages
    French language
    sale 15% off

This document specifies test methods to determine particle emissions (including ultrafine particles) and specified volatile organic compounds (including aldehydes) from desktop MEX-TRB/P processes often used in non-industrial environments such as school, homes and office spaces in an emission test chamber under specified test conditions. However, these tests do not necessarily accurately predict real-world results.
This document specifies a conditioning method using an emission test chamber with controlled temperature, humidity, air exchange rate, air velocity, and procedures for monitoring, storage, analysis, calculation, and reporting of emission rates.
This document is intended to cover desktop MEX-TRB/P machine which is typically sized for placement on a desktop, used in non-industrial places like school, home and office space. The primary purpose of this document is to quantify particle and chemical emission rates from desktop MEX-TRB/P machine.
However, not all possible emissions are covered by this method. Many feedstocks can release hazardous emissions that are not measured by the chemical detectors prescribed in this document. It is the responsibility of the user to understand the material being extruded and the potential chemical emissions. An example is Poly Vinyl Chloride feedstocks that can potentially emit chlorinated compounds, which cannot be measured by the method described in this document.

  • Standard
    33 pages
    English language
    e-Library read for
    1 day

This document specifies a manual reference method for the determination of the mass concentration of specific elements in stationary source emissions. The method is applicable to each of the specific elements in the concentration range of 0,005 mg/m3 to 5 mg/m3.
This document has been validated for the determination of the mass concentration of metals in incineration exhaust gases - applying the performance criteria stated in Clause 9 - for the following elements:
-   arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), thallium (Tl), and vanadium (V) and their compounds.
The document can be used to determine metals other than those listed above (for example, selenium (Se) (ISO 17211), tellurium (Te), beryllium (Be), tin (Sn) and zinc (Zn)).
NOTE 1   These other metals mentioned above are commonly required by National Regulations, but this document currently has not yet been validated for these metals.
The document was validated for waste incinerators, but it is also applicable to other industrial processes, the practical experience shows that it can be applied over wide concentration ranges and various emission sources.
If mercury is intended to be determined as well, this can be sampled in a side stream arrangement of the sampling train (EN 13211) [5].
NOTE 2   This document has been validated with the described materials, equipment, sampling, and digestion performances etc., followed by analyses with atomic absorption spectroscopy (AAS) and inductively coupled plasma optical emission spectroscopy (ICP-OES,) or inductively coupled mass spectrometry (ICP-MS). This does not exclude the use of other types of equipment or analyses that meet the requirements and have been proven to be equivalent to the described European Standard.

  • Standard
    74 pages
    English language
    e-Library read for
    1 day

This document describes a method for the sampling and determining mercury species in flue gas passing through ducts or chimney stacks. Mercury generally exists in gaseous elemental form, gaseous oxidized form and particulate-bound form. This method applies to the sampling and determination of gaseous elemental mercury (Hg0), gaseous oxidized mercury (Hg2+), particulate-bound mercury (HgP) and total mercury (HgT) in the flue gas from stationary sources. This method is suitable at locations with high dust content, including locations upstream of the dust removal device with high particulate loadings in flue gas up to 120 g/m3. This method is applicable to locations with sulfur dioxide (SO2) concentration up to 0,25 % when the sampling volume is 0,5 m3 (on a dry basis as corrected to standard conditions). The limit of detection and the limit of determination depend on the instrumental limit of detection, reagent blank, field blank, measurement technique and volume of sampled gas. When the sampling volume is 1,5 m3 (on a dry basis as corrected to standard conditions), the expected limits of detection for Hg0, HgP, Hg2+ and HgT are 0,103 μg/m3, 0,011 μg/m3, 0,035 μg/m3 and 0,127 μg/m3, respectively. The expected limits of determination for Hg0, HgP, Hg2+ and HgT are 0,229 μg/m3, 0,025 μg/m3, 0,082 μg/m3 and 0,263 μg/m3, respectively.

  • Standard
    43 pages
    English language
    e-Library read for
    1 day
  • Standard
    37 pages
    English language
    sale 15% off

This document specifies the standard reference method (SRM) for the measurement of low dust concentration in ducted gaseous streams in the concentrations below 50 mg/m3 at standard conditions. This document is primarily developed and validated for gaseous streams emitted by waste incinerators. More generally, it can be applied to gases emitted from other stationary sources, and to higher concentrations. If the gases contain unstable, reactive or semi-volatile substances, the measurement depends on the sampling and filter treatment conditions. This method has been validated in field tests with special emphasis to dust concentrations around 5 mg/m3. The results of the field tests are presented in Annex A.

  • Standard
    59 pages
    English language
    e-Library read for
    1 day
  • Standard
    53 pages
    English language
    sale 15% off
  • Standard
    59 pages
    French language
    sale 15% off
  • Standard
    59 pages
    French language
    sale 15% off

This document covers the measurements of the emissions of carbon monoxide (CO) and nitrogen oxides (NOX) produced by the combustion of gaseous fuel in domestic appliances. It is also possible to adapt it to liquid fuel appliances.
It explains how to correct the measured values obtained at the testing conditions of temperature, humidity and gas used into the reference conditions, as well as their conversion to different aeration factor expressed as %O2 in the dry products of combustion.
The document also contains information on the types of sampling probes, mainly their form and their dimensions, which depend on the type of flue gas system.
It also gives detailed information on the sampling of the flue gas to be analysed, the transport / transfer lines and their components, and the materials recommended for their construction.
This document contains hints on the calculation of the uncertainties and the parameters to be considered in the whole analysis chain from the sampling probe to the analysers including the calibration gases.
The calculation of the uncertainties of the measurements of NOX and CO is not covered by this document.

  • Technical report
    41 pages
    English language
    e-Library read for
    1 day

This document specifies a measurement method based on an automatic method for determination of the mass concentration of formaldehyde in ducts and stacks emitting to the atmosphere. It specifies the sampling and gas conditioning system. Furthermore, it specifies the characteristics to be determined and the performance criteria to be fulfilled by portable automated measuring systems (P-AMS) using appropriate techniques to measure formaldehyde.
This method is intended for intermittent monitoring of formaldehyde emissions as well as for the calibration and validation of automated formaldehyde measuring systems.
The analyser is calibrated using test gases produced by a test gas generator.

  • Technical specification
    40 pages
    English language
    e-Library read for
    1 day

This document specifies test methods to determine particle emissions (including ultrafine particles) and specified volatile organic compounds (including aldehydes) from desktop MEX-TRB/P processes often used in non-industrial environments such as school, homes and office spaces in an emission test chamber under specified test conditions. However, these tests do not necessarily accurately predict real-world results.
This document specifies a conditioning method using an emission test chamber with controlled temperature, humidity, air exchange rate, air velocity, and procedures for monitoring, storage, analysis, calculation, and reporting of emission rates.
This document is intended to cover desktop MEX-TRB/P machine which is typically sized for placement on a desktop, used in non-industrial places like school, home and office space. The primary purpose of this document is to quantify particle and chemical emission rates from desktop MEX-TRB/P machine.
However, not all possible emissions are covered by this method. Many feedstocks can release hazardous emissions that are not measured by the chemical detectors prescribed in this document. It is the responsibility of the user to understand the material being extruded and the potential chemical emissions. An example is Poly Vinyl Chloride feedstocks that can potentially emit chlorinated compounds, which cannot be measured by the method described in this document.

  • Standard
    33 pages
    English language
    e-Library read for
    1 day

This document specifies a measurement method based on an automatic method for determination of the mass concentration of formaldehyde in ducts and stacks emitting to the atmosphere. It specifies the sampling and gas conditioning system. Furthermore, it specifies the characteristics to be determined and the performance criteria to be fulfilled by portable automated measuring systems (P-AMS) using appropriate techniques to measure formaldehyde.
This method is intended for intermittent monitoring of formaldehyde emissions as well as for the calibration and validation of automated formaldehyde measuring systems.
The analyser is calibrated using test gases produced by a test gas generator.

  • Technical specification
    40 pages
    English language
    e-Library read for
    1 day

This document covers the measurements of the emissions of carbon monoxide (CO) and nitrogen oxides (NOX) produced by the combustion of gaseous fuel in domestic appliances. It is also possible to adapt it to liquid fuel appliances.
It explains how to correct the measured values obtained at the testing conditions of temperature, humidity and gas used into the reference conditions, as well as their conversion to different aeration factor expressed as %O2 in the dry products of combustion.
The document also contains information on the types of sampling probes, mainly their form and their dimensions, which depend on the type of flue gas system.
It also gives detailed information on the sampling of the flue gas to be analysed, the transport / transfer lines and their components, and the materials recommended for their construction.
This document contains hints on the calculation of the uncertainties and the parameters to be considered in the whole analysis chain from the sampling probe to the analysers including the calibration gases.
The calculation of the uncertainties of the measurements of NOX and CO is not covered by this document.

  • Technical report
    41 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
5.1 The measurement of particle-bound, oxidized, elemental, and total mercury in stationary-source flue gases provides data that can be used for emissions assessments and reporting, the certification of continuous mercury monitoring systems, regulatory compliance determinations and research programs associated with dispersion modelling, deposition evaluation, human health and environmental impact assessments. Particle-bound, oxidized, and elemental mercury measurements before and after control devices may be necessary for optimizing and evaluating the mercury removal efficiency of emission control technologies.  
5.2 This test method was developed initially for the measurement of mercury in coal-fired power plants and has been extensively validated for that application. Since the introduction of this method, it has been extensively used on other combustion sources such as cement kilns and waste incinerators. With additional procedures given in this standard, it is also applicable to sources having a flue gas composition with high levels of hydrochloric acid, and low levels of sulfur dioxide (Section 16).
SCOPE
1.1 This test method applies to the determination of elemental, oxidized, particle-bound, and total mercury emissions from stationary combustion sources.  
1.2 This test method is applicable to elemental, oxidized, particle-bound, and total mercury concentrations ranging from approximately 0.5 μg/Nm3 to 100 μg/Nm3.  
1.3 This test method describes equipment and procedures for obtaining samples from effluent ducts and stacks, equipment and procedures for laboratory analysis, and procedures for calculating results.  
1.4 This test method is applicable to sampling elemental, oxidized, and particle-bound mercury in flue gases of coal-fired stationary sources. It may not be suitable at all measurement locations, particularly those with high particulate loadings, as explained in Section 16.  
1.5 Method applicability is limited to flue gas stream temperatures within the thermal stability range of the sampling probe and filter components.  
1.6 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.  
1.7 This standard requires users to be familiar with EPA stack-gas sampling procedures as stated in EPA Methods 1–4, Method 5, and Method 17.  
1.8 The method requires a high level of experience and quality control both in the field testing and analytical procedures to obtain high quality data.  
1.9 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.  
1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    21 pages
    English language
    sale 15% off
  • Standard
    21 pages
    English language
    sale 15% off

This document specifies a method for the determination of sulfur dioxide (SO2) in flue gases of stationary sources and describes the fundamental structure and the key performance characteristics of automated measuring systems. The method allows continuous monitoring with permanently installed measuring systems of SO2 emissions. This document describes extractive systems and in situ (non-extractive) systems in connection with a range of analysers that operate using, for example, the following principles: - non-dispersive infrared absorption (NDIR); - Fourier transform infrared (FTIR) spectroscopy; - laser spectroscopic technique or tunable laser spectroscopy (TLS); - non-dispersive ultraviolet absorption (NDUV); - differential optical absorption spectroscopy (DOAS). Other equivalent instrumental methods can be used provided they meet the minimum performance requirements specified in this document. The measuring system can be validated with reference materials, according to this document, or comparable methods. Automated measuring system (AMS) based on the principles listed above has been used successfully in this application for the measuring ranges as shown in Annex E.

  • Standard
    48 pages
    English language
    e-Library read for
    1 day
  • Standard
    43 pages
    English language
    sale 15% off

This document provides a methodology for calculating greenhouse gas (GHG) emissions from the semiconductor and display industry. This document includes the manufacture of semiconductor devices, microelectromechanical systems (MEMS), photovoltaic (PV) devices and displays. This document allows to report GHG emissions for various purposes and on different bases, such as a per-plant basis, per-company basis (by country or by region) or an international group basis. This document addresses all of the following direct and indirect sources of GHG: - direct GHG emissions [as defined in ISO 14064-1:2018, 5.2.4 a)] from sources that are owned or controlled by the company, such as emissions resulting from the following sources: - process: fluorinated compound (FC) gases and nitrous oxide (N2O) used in etching and wafer cleaning (EWC), remote plasma cleaning (RPC), in situ plasma cleansing (IPC), in situ thermal cleaning (ITC), N2O thin film deposition (TFD), and other N2O using process; - fuel combustion related to equipment and on-site vehicles, room heating/cooling; - fuel combustion of fuels for on-site power generation; - indirect GHG emissions [as defined in ISO 14064-1:2018, 5.2.4 b)] from the generation of imported electricity, heat or steam consumed by the organization. Other indirect GHG emissions [as defined in ISO 14064-1:2018, 5.2.4 c) to f)], which are the consequence of an organization’s activities, but arise from GHG sources that are owned or controlled by other organizations, are excluded from this document.

  • Standard
    46 pages
    English language
    e-Library read for
    1 day
  • Standard
    40 pages
    English language
    sale 15% off

Ta tehnična specifikacija določa zahteve za prve, občasne in izredne meritve emisije iz malih kurilnih
naprav na trdna goriva v skladu s predpisom, ki ureja emisijo snovi v zrak iz malih kurilnih naprav, ter s
predpisom, ki ureja preglede, čiščenje in meritve pri malih kurilnih napravah. Tehnična specifikacija se
uporablja za ugotavljanje emisije, vključno z meritvami prahu, iz navedenih naprav. Poleg tega so
opisane tudi kontrolne aktivnosti, povezane z napravo in obratovanjem, ki morajo biti predhodno
izvedene, da se zagotovi ustrezen postopek merjenja emisije.
Dodatek A obravnava posebnosti pri kurilnih napravah na trdna goriva za ogrevanje posameznega
prostora, imenovanih enosobne male kurilne naprave.
Dodatek B vsebuje vzorec zapisnika o meritvah emisije na enosobnih malih kurilnih napravah.
Merila za razvrščanje enosobnih malih kurilnih naprav na trdna goriva so navedena v dodatku C.

  • Technical specification
    69 pages
    Slovenian language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
5.1 This practice may be used to collect dust from carpeted or bare floor surfaces for gravimetric or chemical analysis. The collected sample is substantially unmodified by the sampling procedure.  
5.2 This practice provides for a reproducible dust removal rate from level loop and plush carpets, as well as bare floors. It has the ability to achieve relatively constant removal efficiency at different loadings of floor dust.  
5.3 This practice also provides for the efficient capture of semivolatile organic chemicals associated with the dust. The test system can be fitted with special canisters downstream of the cyclone for the capture of specific semivolatile organic chemicals that may volatilize from the dust particles during collection.  
5.4 This practice does not describe procedures for evaluation of the safety of floor surfaces or the potential human exposure to floor dust. It is the user's responsibility to evaluate the data collected by this practice and make such determinations in the light of other available information.  
5.5 This practice provides per-event dust chemical concentration and chemical loading. Advantages and trade-offs of different sampling approaches have been discussed (7).  
5.6 This practice uses a removable, cleanable dropout jar that facilitates per-event sampling. Other per-event vacuum attachments are commercially available. These are not directly comparable with composite sampling done using whole vacuum cleaner bags.
SCOPE
1.1 This practice covers a procedure for the collection of a sample of dust from carpets and bare floors that can be analyzed for inorganic metals such as lead and organic compounds such as pesticides and other semi-volatile organic compounds (SVOCs).  
1.2 This practice is applicable to a variety of carpeted and bare floor surfaces. It has been tested for level loop and plush pile carpets and bare wood floors, specifically. This practice is not applicable to elevated, non-floor surfaces.  
1.3 This practice is not intended for the collection and evaluation of dust for the presence of asbestos fibers.  
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.5 This practice describes use of a sampling device, the High-Volume Small Surface Sampler (HVS3). Other event-based sampling devices that use commercially available vacuum attachments are not in scope. Composite sampling using whole vacuum cleaner bags is not in scope. Other approaches for floor or non-floor surface sampling (Practices D6966, D6661, D7144) are not within the scope.  
1.6 This practice only applies to the HVS3. Other dust sampling methods may or may not be directly comparable. Method evaluation for other dust sampling approaches is encouraged. This could be done by comparison with methods outlined in this standard practice for HVS3 or through independent evaluation using field spikes and certified reference materials.  
1.7 This practice provides information on dust loading, chemical dust concentration, and chemical dust loading. Information on the type of floor, the floor surface area sampled, and amount of dust collected is required (see Fig. 2). Cleaning the vacuum attachments in between sampling events is also required (see Section 13).  
1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    9 pages
    English language
    sale 15% off
  • Standard
    9 pages
    English language
    sale 15% off

This document specifies a method for the determination of nitrogen oxides (NOx) in flue gas of stationary sources and describes the fundamental structure and the key performance characteristics of automated measuring systems.
The method allows continuous monitoring with permanently installed measuring systems of NOx emissions.
This document describes extractive systems and in situ (non-extractive) systems in connection with a range of analysers that operate using, for example, the following principles:
— chemiluminescence (CL);
— infrared absorption (NDIR);
— Fourier transform infrared (FTIR) spectroscopy;
— ultraviolet absorption (NDUV);
— differential optical absorption spectroscopy (DOAS);
Other equivalent instrumental methods such as laser spectroscopic techniques can be used provided they meet the minimum performance requirements specified in this document. The measuring system can be validated with reference materials, in accordance with this document, or comparable methods.
Automated measuring system (AMS) based on the principles listed above has been used successfully in this application for the measuring ranges as shown in Annex F.

  • Standard
    52 pages
    English language
    e-Library read for
    1 day
  • Standard
    47 pages
    English language
    sale 15% off

This document specifies procedures for establishing quality assurance levels (QAL) for automated measuring systems (AMS) installed on industrial plants for the determination of the flue gas components and other flue gas parameters.
This document specifies:
— a procedure (QAL2) to calibrate the AMS and determine the variability of the measured values obtained by it, so as to demonstrate the suitability of the AMS for its application, following its installation;
— a procedure (QAL3) to maintain and demonstrate the required quality of the measurement results during the normal operation of an AMS, by checking that the zero and span characteristics are consistent with those determined during QAL1;
— a procedure for the annual surveillance tests (AST) of the AMS in order to evaluate (i) that it functions correctly and its performance remains valid and (ii) that its calibration function and variability remain as previously determined.
This document is designed to be used after the AMS has been certified in accordance with the series of documents EN 15267.

  • Standard
    80 pages
    English language
    e-Library read for
    1 day
  • Standard
    74 pages
    English language
    sale 15% off

This document specifies the following requirements: a) requirements for measurement sections and sites with respect to performing emission measurements; b) requirements for the measurement objective, plan and report of emission measurements of air pollutants and reference quantities to be carried out in waste gas ducts at industrial plants. This document applies to periodic measurements using manual or automated reference methods (RM). This document specifies generic principles which can be applied to perform emission measurements at different plant types and to meet different measurement objectives. NOTE The measurement objective is specified by the customer. The testing institute identifies the measurement objective and related regulatory requirements at the beginning of the measurement planning. Where measurements are being made for regulatory purposes, the customer should seek approval from the competent authority. This document specifies procedures for taking representative samples in waste gas ducts. This document specifies a procedure for finding the best available sampling point for automated measuring systems used for continuous monitoring of emissions. The planning and reporting aspects of this document are applicable to emission measurements at diffusive and fugitive emission sources. This document does not address aspects of structural safety of chimneys and ducts, construction of working platforms and safety of personnel using them.

  • Standard
    77 pages
    English language
    sale 15% off
  • Standard
    82 pages
    French language
    sale 15% off

This document specifies the requirements for the installation and on-going quality assurance and quality control of data acquisition and handling systems (DAHS). This includes requirements on:
-   installation (Clause 5);
-   quality assurance and quality control during QAL2 (Clause 6);
-   quality assurance and quality control during on-going operation (Clause 7);
-   annual functional test (Clause 8);
-   documentation (Clause 9).
This document supports the requirements of EN 14181 and legislation such as the IED [1], MCPD [2] and E-PRTR [3]. It does not preclude the use of additional features and functions provided the minimum requirements of this document are met and that these features do not adversely affect data quality, clarity or access.

  • Standard
    18 pages
    English language
    e-Library read for
    1 day

This document specifies the requirements for the installation and on-going quality assurance and quality control of data acquisition and handling systems (DAHS). This includes requirements on:
-   installation (Clause 5);
-   quality assurance and quality control during QAL2 (Clause 6);
-   quality assurance and quality control during on-going operation (Clause 7);
-   annual functional test (Clause 8);
-   documentation (Clause 9).
This document supports the requirements of EN 14181 and legislation such as the IED [1], MCPD [2] and E-PRTR [3]. It does not preclude the use of additional features and functions provided the minimum requirements of this document are met and that these features do not adversely affect data quality, clarity or access.

  • Standard
    18 pages
    English language
    e-Library read for
    1 day

This document supports the elaboration of standardized measurement methods for the determination of stationary source emissions by manual or automated measurement methods.
This document describes the basic elements of standardized measurement methods for the determination of stationary source emissions.
This document is supplemented by an electronic template providing a uniform structure and common elements and texts.
NOTE   Detailed information on the electronic template is given in Annex A.
This document is addressed to working groups of CEN/TC 264 dealing with stationary source emissions. It aims at facilitating in the working groups the elaboration and the harmonization of documents produced by CEN/TC 264. Such documents can be European standards (EN), European Technical Specifications (CEN/TS) or European Technical Reports (CEN/TR).

  • Technical report
    21 pages
    English language
    e-Library read for
    1 day

This document provides a harmonized methodology for calculating GHG emissions from the ferro-alloys industry based on the mass balance approach. This document also provides key performance indicators over time for ferro-alloys plants. This document covers the following direct and indirect sources of GHG: - direct GHG emissions [see ISO 14064-1:2018, 5.2.4 a)] from sources that are owned or controlled by the company, such as emissions resulting from the following sources: - smelting (reduction) process; - decomposition of carbonates inside the furnace; - auxiliaries operation related to the smelting operation (i.e. aggregates, drying processes, heating of ladles, etc.); - indirect GHG emissions [see ISO 14064-1:2018, 5.2.4 b)] from the generation of purchased electricity consumed in the company’s owned or controlled equipment.

  • Standard
    26 pages
    English language
    sale 15% off

This document specifies a harmonized method for calculating the emissions of greenhouse gases from the electrolysis section of primary aluminium smelters and aluminium anode baking plants. This document also specifies key performance indicators for the purpose of benchmarking of aluminium and boundaries.

  • Standard
    17 pages
    English language
    sale 15% off

This document specifies a harmonized methodology for calculating greenhouse gas (GHG) emissions from the cement industry, with a view to reporting these emissions for various purposes and by different basis, such as, plant basis, company basis (by country or by region) or even international group basis. It addresses all the following direct and indirect sources of GHG included: - Direct GHG emissions [ISO 14064-1:2018, 5.2.4, a)] from sources that are owned or controlled by the organization, such as emissions that result from the following processes: - calcinations of carbonates and combustion of organic carbon contained in raw materials; - combustion of kiln fuels (fossil kiln fuels, alternative fossil fuels, mixed fuels with biogenic carbon content, biomass and bioliquids) related to either clinker production or drying of raw materials and fuels, or both; - combustion of non-kiln fuels (fossil fuels, alternative fossil fuels, mixed fuels with biogenic carbon content, biomass and bioliquids) related to equipment and on-site vehicles, room heating and cooling, drying of MIC (e.g. slag or pozzolana); - combustion of fuels for on-site power generation; - combustion of carbon contained in wastewater; - Indirect GHG emissions [ISO 14064-1:2018, 5.2.4, b)] from the generation of purchased electricity consumed in the organization’s owned or controlled equipment; - Other indirect GHG emissions [(ISO 14064-1:2018, 5.2.4, c) to f)] from purchased clinker. Excluded from this document are all other ISO 14064-1:2018, 5.2.4, c) to f) emissions from the cement industry.

  • Standard
    67 pages
    English language
    sale 15% off

This document provides a harmonized methodology for calculating greenhouse gas (GHG) emissions from the lime industry. It includes the manufacture of lime and any downstream lime products manufactured at the plant, such as ground or hydrated lime. This document allows for reporting of GHG emissions for various purposes and on different basis, such as plant basis, company basis (by country or by region) or international organization basis. This document addresses all of the following direct and indirect sources of GHG included as defined in ISO 14064-1: - direct greenhouse gas emissions [see ISO 14064-1:2018, 5.2.4 a)] from greenhouse gas sources that are owned or controlled by the company, such as emissions resulting from the following sources: - calcination of carbonates and combustion of organic carbon contained in the kiln stone; - combustion of kiln fuels (fossil kiln fuels, alternative fossil fuels, mixed fuels with biogenic carbon content, biomass fuels and bio fuels) related to lime production and/or drying of raw materials; - combustion of non-kiln fuels (fossil kiln fuels, mixed fuels with biogenic carbon content, biomass fuels and bio fuels) related to equipment and on-site vehicles, heating/cooling and other on-site uses; - combustion of fuels for on-site power generation; - indirect greenhouse gas emissions [see ISO 14064-1:2018, 5.2.4 b)] from the generation of imported electricity, heat or steam consumed by the organization; - other indirect greenhouse gas emissions [see ISO 14064-1:2018, 5.2.4 c) to f)], which are a consequence of an organization's activities, but arise from greenhouse gas sources that are owned or controlled by other organizations, except emissions from imported kiln stone, are excluded from this document. This document is intended to be used in conjunction with ISO 19694-1, which contains generic, overall requirements, definitions and rules applicable to the determination of GHG emissions for all energy-intensive sectors, provides common methodological issues and defines the details for applying the rules. The application of this document to the sector-specific standards ensures accuracy, precision and reproducibility of the results.

  • Standard
    51 pages
    English language
    sale 15% off

This document supports the elaboration of standardized measurement methods for the determination of stationary source emissions by manual or automated measurement methods.
This document describes the basic elements of standardized measurement methods for the determination of stationary source emissions.
This document is supplemented by an electronic template providing a uniform structure and common elements and texts.
NOTE   Detailed information on the electronic template is given in Annex A.
This document is addressed to working groups of CEN/TC 264 dealing with stationary source emissions. It aims at facilitating in the working groups the elaboration and the harmonization of documents produced by CEN/TC 264. Such documents can be European standards (EN), European Technical Specifications (CEN/TS) or European Technical Reports (CEN/TR).

  • Technical report
    21 pages
    English language
    e-Library read for
    1 day

This document specifies requirements for the calibration and validation (QAL2), the ongoing quality assurance during operation (QAL3) and the annual surveillance test (AST) of AMS used for monitoring total mercury emissions from stationary sources to demonstrate compliance with an emission limit value (ELV). This document is derived from EN 14181 and is only applicable in conjunction with EN 14181.
This document is applicable by direct correlation with the standard reference method (SRM) described in EN 13211.

  • Standard
    25 pages
    English language
    e-Library read for
    1 day

This document specifies procedures for establishing quality assurance levels (QAL) for automated measuring systems (AMS) installed on industrial plants for the determination of the flue gas components and other flue gas parameters. This document specifies: - a procedure (QAL2) to calibrate the AMS and determine the variability of the measured values obtained by it, so as to demonstrate the suitability of the AMS for its application, following its installation; - a procedure (QAL3) to maintain and demonstrate the required quality of the measurement results during the normal operation of an AMS, by checking that the zero and span characteristics are consistent with those determined during QAL1; - a procedure for the annual surveillance tests (AST) of the AMS in order to evaluate (i) that it functions correctly and its performance remains valid and (ii) that its calibration function and variability remain as previously determined. This document is designed to be used after the AMS has been certified in accordance with the series of documents EN 15267.

  • Standard
    80 pages
    English language
    e-Library read for
    1 day
  • Standard
    74 pages
    English language
    sale 15% off

This document specifies requirements for the calibration and validation (QAL2), the ongoing quality assurance during operation (QAL3) and the annual surveillance test (AST) of AMS used for monitoring total mercury emissions from stationary sources to demonstrate compliance with an emission limit value (ELV). This document is derived from EN 14181 and is only applicable in conjunction with EN 14181.
This document is applicable by direct correlation with the standard reference method (SRM) described in EN 13211.

  • Standard
    25 pages
    English language
    e-Library read for
    1 day

This document supplements the requirements of EN ISO/IEC 17043 by providing clarification and additional information for proficiency testing schemes for emission measurements. It gives specific requirements for:
—   competence of proficiency testing providers;
—   proficiency testing facility characteristics; and
—   design, operation and evaluation of proficiency testing schemes by means of interlaboratory comparisons.
All these aspects are necessary in order to organize and conduct proficiency testing on emission measurements.
Requirements on the competence of proficiency testing providers cover personnel, organisation, equipment and environment.
Requirements on the proficiency testing facility characteristics cover measurement sections, measurements ports and working area for the participants.
Requirements on the proficiency testing schemes cover:
—   design, including planning, preparations, homogeneity and stability of test atmospheres and statistical design;
—   operation, including handling and instruction of participants;
—   calculation and use of assigned values; and
—   testing results evaluation, including statistical data.
This document supports the application of proficiency testing schemes for checking the performance of testing laboratories in the context of qualification, accreditation and related quality checks in relation to the application of standardized measurement methods such as standard reference methods (SRM) or alternative methods (AM).
This document is applicable in combination with EN ISO/IEC 17043 only.

  • Standard
    23 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
3.1 The purpose of this terminology standard is to help users understand and apply the large number of specialized terms used in connection with the management of lead hazards by providing a single, comprehensive, and consistent terminology.  
3.1.1 This terminology standard includes some terms that may be encountered, but whose use is discouraged. They are included for clarification and in order to provide the user with preferred existing alternate terms.  
3.1.2 Architectural terms for individual building components are included to promote consistency of usage and to help ensure that sampling locations are recorded with sufficient accuracy to allow independent confirmation of lead measurements, if necessary.  
3.2 A discussion is attached to certain definitions to help make the definition clear or to show how the term and its definition are related to other terms.  
3.3 Terms and definitions in this terminology standard are based upon laws, regulations, and practices in the United States of America.  
3.3.1 Some of the definitions in this terminology standard are adopted verbatim or are adapted from definitions that are formally stated or implied in laws and regulations. They are not intended to replace the latter definitions. The user is responsible for understanding legal definitions and for ensuring that the legal obligations that are encompassed by them are fully satisfied.  
3.3.2 Users in other countries should refer to applicable national, regional, and local laws, regulations, and practices.
SCOPE
1.1 This terminology standard covers definitions for the following:  
1.1.1 Terms that are commonly used in the field of management of lead hazards in facilities;  
1.1.2 Architectural terms, particularly those associated with older wood-frame buildings; and,  
1.1.3 Specialized terms that may be encountered by users in reports and notices that are generated during lead hazard management activities.  
1.2 This terminology standard is supplementary to Terminology E631.  
1.3 Definitions adopted or derived from other documents include the following:  
1.3.1 Some of the definitions in this terminology standard are adopted as exact copies from other sources. The source is briefly identified at the right margin following the definition and fully identified in Section 2.  
1.3.2 Some of the definitions in this terminology standard are adapted from other sources. Changes in these definitions were made only to clarify the meaning, to incorporate related terms that also are defined in this terminology standard, or to ensure that the revised definition is consistent with those for related terms. The source is briefly identified with the words “adapted” at the right margin following the definition, and is fully identified in Section 2.  
1.4 Terms within the definitions that are shown in boldface are defined in this terminology standard.  
1.5 This terminology standard excludes the following:  
1.5.1 Terms with a common dictionary meaning, except in cases where there is a specialized definition within the field of lead hazard management.  
1.5.2 Terms that are used only in individual ASTM standards in which they are defined adequately, whether formally or by the context in which they appear.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    10 pages
    English language
    sale 15% off
  • Standard
    10 pages
    English language
    sale 15% off

This document specifies the framework for determining emissions to the atmosphere of Volatile Organic Compounds (VOCs). It specifies a system of methods to detect and/or identify and/or quantify VOC emissions from industrial sources. These methods include Optical Gas Imaging (OGI), Differential Absorption Lidar (DIAL), Solar Occultation Flux (SOF), Tracer Correlation (TC), and Reverse Dispersion Modelling (RDM). It specifies the methodologies for carrying out all the above, and also the performance requirements and capabilities of the direct monitoring methods, the requirements for the results and their measurement uncertainties.
This document specifically addresses, but is not restricted to, the petrochemicals, oil refining, and chemical industries receiving, processing, storing, and/or exporting of VOCs, and includes the emissions of VOCs from the natural gas processing/conditioning industry and the storage of natural gas and similar fuels. The methods specified in this document have been validated at onshore facilities.
This document is applicable to diffuse VOC emissions to atmosphere but not to the emissions of VOCs into water and into solid materials such as soils. It is complementary to EN 15446 [9], the standardized method for the detection, localization of sources (individual leaks from equipment and piping), and quantification of fugitive VOC emissions within the scope of a Leak Detection and Repair Programme (LDAR).
This document has been validated for non-methane VOCs, but the methodology is in principle applicable to methane and other gases.
This document specifies methods to determine (detect, identify and/or quantify) VOC emissions during the periods of monitoring. It does not address the extrapolation of emissions to time periods beyond the monitoring period.

  • Standard
    101 pages
    English language
    e-Library read for
    1 day

This document supplements the requirements of EN ISO/IEC 17043 by providing clarification and additional information for proficiency testing schemes for emission measurements. It gives specific requirements for:
—   competence of proficiency testing providers;
—   proficiency testing facility characteristics; and
—   design, operation and evaluation of proficiency testing schemes by means of interlaboratory comparisons.
All these aspects are necessary in order to organize and conduct proficiency testing on emission measurements.
Requirements on the competence of proficiency testing providers cover personnel, organisation, equipment and environment.
Requirements on the proficiency testing facility characteristics cover measurement sections, measurements ports and working area for the participants.
Requirements on the proficiency testing schemes cover:
—   design, including planning, preparations, homogeneity and stability of test atmospheres and statistical design;
—   operation, including handling and instruction of participants;
—   calculation and use of assigned values; and
—   testing results evaluation, including statistical data.
This document supports the application of proficiency testing schemes for checking the performance of testing laboratories in the context of qualification, accreditation and related quality checks in relation to the application of standardized measurement methods such as standard reference methods (SRM) or alternative methods (AM).
This document is applicable in combination with EN ISO/IEC 17043 only.

  • Standard
    23 pages
    English language
    e-Library read for
    1 day

This document specifies a method for the determination of nitrogen oxides (NOx) in flue gas of stationary sources and describes the fundamental structure and the key performance characteristics of automated measuring systems. The method allows continuous monitoring with permanently installed measuring systems of NOx emissions. This document describes extractive systems and in situ (non-extractive) systems in connection with a range of analysers that operate using, for example, the following principles: - chemiluminescence (CL); - infrared absorption (NDIR); - Fourier transform infrared (FTIR) spectroscopy; - ultraviolet absorption (NDUV); - differential optical absorption spectroscopy (DOAS); Other equivalent instrumental methods such as laser spectroscopic techniques can be used provided they meet the minimum performance requirements specified in this document. The measuring system can be validated with reference materials, in accordance with this document, or comparable methods. Automated measuring system (AMS) based on the principles listed above has been used successfully in this application for the measuring ranges as shown in Annex F.

  • Standard
    52 pages
    English language
    e-Library read for
    1 day
  • Standard
    47 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This test method determines the comparative performance of filter media. The results can be used for design, manufacturing, construction and selection of filter media.  
5.2 Results obtained by this test method should not be used to predict absolute performance on full scale fabric filter (baghouse) facilities, however these results will be useful in selection of proper filter media and identification of recommended operating parameters for these full scale fabric filter facilities.  
5.3 Dust types vary greatly; therefore, the results obtained using the standard dust should not be extrapolated to other dust types.
SCOPE
1.1 This test method characterizes the operational performance of cleanable filter media under specified laboratory conditions.  
1.2 This test method determines the airflow resistance, drag, cleaning requirements, and particulate filtration performance of pulse cleaned filter media.  
1.3 This test method determines the comparative performance of cleanable filter media.  
1.4 The results obtained from this test method are useful in the design, construction, and selection of filter media.  
1.5 The results obtained by this test method should not be used to predict absolute performance of full scale fabric filter (baghouse) facilities, however these results will be useful in selection of proper filter media and identification of recommended operating parameters for these full scale fabric filter facilities.  
1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.  
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    9 pages
    English language
    sale 15% off

This document specifies the framework for determining emissions to the atmosphere of Volatile Organic Compounds (VOCs). It specifies a system of methods to detect and/or identify and/or quantify VOC emissions from industrial sources. These methods include Optical Gas Imaging (OGI), Differential Absorption Lidar (DIAL), Solar Occultation Flux (SOF), Tracer Correlation (TC), and Reverse Dispersion Modelling (RDM). It specifies the methodologies for carrying out all the above, and also the performance requirements and capabilities of the direct monitoring methods, the requirements for the results and their measurement uncertainties.
This document specifically addresses, but is not restricted to, the petrochemicals, oil refining, and chemical industries receiving, processing, storing, and/or exporting of VOCs, and includes the emissions of VOCs from the natural gas processing/conditioning industry and the storage of natural gas and similar fuels. The methods specified in this document have been validated at onshore facilities.
This document is applicable to diffuse VOC emissions to atmosphere but not to the emissions of VOCs into water and into solid materials such as soils. It is complementary to EN 15446 [9], the standardized method for the detection, localization of sources (individual leaks from equipment and piping), and quantification of fugitive VOC emissions within the scope of a Leak Detection and Repair Programme (LDAR).
This document has been validated for non-methane VOCs, but the methodology is in principle applicable to methane and other gases.
This document specifies methods to determine (detect, identify and/or quantify) VOC emissions during the periods of monitoring. It does not address the extrapolation of emissions to time periods beyond the monitoring period.

  • Standard
    101 pages
    English language
    e-Library read for
    1 day

This document specifies a method for the objective determination of the odour concentration of a gaseous sample using dynamic olfactometry with human assessors. The standard also specifies a method for the determination of the emission rate of odours from stationary sources, in particular:
-   point sources (conveyed or ducted emissions);
-   active area sources (e.g. biofilters);
-   passive sources.
The primary application of this standard is to provide a common basis for evaluation of odour emissions.
When this document is used for the determination of the odour concentration or the odour emission rate of stationary source emissions, the other relevant European Standards concerning stationary source emissions apply, in particular EN 15259 and EN 16911-1, especially when measurements have to be in compliance with the relevant European Directives concerning industrial air emissions.
Even so, the analysis/quantification step of the measurement method described in this document (i.e. the determination of the odour concentration of an odorous gas sample, without respect to the origin of the sample itself) can be fully applied in many cases not related with industrial emission sources (e.g. the measurement of the mass concentration at the detection threshold of pure odorous substances, the determination of effectiveness of deodorizing systems for indoor air). In those latter cases, the requirements in this document concerning the measurement planning and the sampling of stationary sources  can be ignored or adapted.
This document is applicable to the measurement of odour concentration of pure substances, defined odorant compounds and undefined mixtures of odorant volatiles in air or nitrogen, using dynamic olfactometry with a panel of human assessors being the sensor. The unit of measurement is the European odour unit per cubic metre: ouE/m3. The odour concentration is measured by determining the dilution factor required to reach the detection threshold. The odour concentration at the detection threshold is by definition 1 ouE/m3. The odour concentration is then expressed in terms of multiples of the detection threshold. The range of measurement is typically from 101 ouE/m3 to 107 ouE/m3 (including pre dilution).
The field of application of this document includes:
-   the measurement of the mass concentration at the detection threshold of pure odorous substances in g/m3;
-   the determination of the EROM value of odorants, in mol;
-   the measurement of the odour concentration of mixtures of odorants in ouE/m3;
-   the measurement of the emission rate of odorous emissions from point sources, active area sources and passive area sources, including pre dilution during sampling;
-   the sampling of odorous gases from emissions of high humidity and temperature (up to 200 °C);
-   the determination of effectiveness of end-of-pipe mitigation techniques used to reduce odour emissions.
The determination of odour emissions requires measurement of gas velocityto determine the gas volume flow rate.
The field of application of this document does not include:
-   the measurement of odours potentially released by particles of odorous solids or droplets of odorous fluids suspended in emissions;
-   the measuring strategy to be applied in case of variable emission rates;
-   the measurement of the relationship between odour stimulus and assessor response above detection threshold (perceived intensity);
-   measurement of hedonic tone (or (un)pleasantness) or assessment of annoyance potential;
-   direct measurement of odour exposure in ambient air. For this measurement purpose, field panel methods exist which are the subject of CEN standard EN 16841-1, Ambient Air - Determination of odour in ambient air by using field inspection - Grid method;
-   direct olfactometry, including field olfactometry;
-   static olfactometry;
-   measurement of odour recognition thresholds;
-   measurement of odour identification thresholds.
.....

  • Standard
    124 pages
    English language
    e-Library read for
    1 day

This document specifies the performance test of data acquisition and handling systems (DAHS). This includes:
-   specification of test procedures;
-   description of laboratory tests;
-   requirements on the testing laboratory.
This document supports the requirements of EN 14181 and legislation such as the IED, MCPD and E-PRTR. It does not preclude the use of additional features and functions provided the minimum requirements of this document are met and that these features do not adversely affect data quality, clarity or access.

  • Standard
    15 pages
    English language
    e-Library read for
    1 day

This European Standard specifies general requirements for the dust measurement of electric motor-operated tools supplied from mains or from batteries. This European Standard applies to those tools with and without dust extraction unit where dust such as mineral dust containing silica or wood dust is expected.
This part of EN 50632 sets particular requirements for concrete grinders and disk-type sanders.

  • Amendment
    6 pages
    English language
    e-Library read for
    1 day

This European Standard specifies general requirements for the dust measurement of electric motor-operated tools supplied from mains or from batteries. This European Standard applies to those tools with and without dust extraction unit where dust such as mineral dust containing silica or wood dust is expected.
This part of EN 50632 sets particular requirements for jig and sabre saws.

  • Amendment
    8 pages
    English language
    e-Library read for
    1 day

This European Standard specifies general requirements for the dust measurement of electric motor-operated tools supplied from mains or from batteries. This European Standard applies to those tools with and without dust extraction unit where dust such as mineral dust containing silica or wood dust is expected.
This part of EN 50632 sets particular requirements for sanders other than disk type.

  • Amendment
    5 pages
    English language
    e-Library read for
    1 day

This European Standard specifies general requirements for the dust measurement of electric motor-operated tools supplied from mains or from batteries. This European Standard applies to those tools with and without dust extraction unit where dust such as mineral dust containing silica or wood dust is expected. This part of EN 50632 sets particular requirements for sanders other than disk type.

  • Amendment
    5 pages
    English language
    e-Library read for
    1 day

This European Standard specifies general requirements for the dust measurement of electric motor-operated tools supplied from mains or from batteries. This European Standard applies to those tools with and without dust extraction unit where dust such as mineral dust containing silica or wood dust is expected. This part of EN 50632 sets particular requirements for concrete grinders and disk-type sanders.

  • Amendment
    6 pages
    English language
    e-Library read for
    1 day

This European Standard specifies general requirements for the dust measurement of electric motor-operated tools supplied from mains or from batteries. This European Standard applies to those tools with and without dust extraction unit where dust such as mineral dust containing silica or wood dust is expected. This part of EN 50632 sets particular requirements for jig and sabre saws.

  • Amendment
    8 pages
    English language
    e-Library read for
    1 day