This document applies to water meters used to meter the volume of cold potable water and hot water flowing through a fully charged, closed conduit. These water meters incorporate devices which indicate the integrated volume.
This document specifies criteria for the selection of single, combination and concentric water meters, associated fittings, installation, special requirements for meters, and the first operation of new or repaired meters to ensure accurate constant measurement and reliable reading of the meter.
In addition to meters based on mechanical principles, this document also applies to water meters based on electrical or electronic principles, and to water meters based on mechanical principles incorporating electronic devices, used to measure the volume of cold potable water and hot water. It also applies to electronic ancillary devices. Ancillary devices are optional. However, national or international regulations may make some ancillary devices mandatory in relation to the utilization of the water meter.
The recommendations of this document apply to water meters, irrespective of technology, defined as integrating measuring instruments determining the volume of water flowing through them.
NOTE            Any national regulations apply in the country of use.

  • Standard
    19 pages
    English language
    e-Library read for
    1 day

This document specifies a method for the determination in a closed conduit of the volume rate of flow of a regular flow a) of a fluid of substantially constant density or corresponding to a Mach number not exceeding 0,25, b) with substantially uniform stagnation temperature across the measuring cross-section, c) running full in the conduit, and d) under steady flow conditions. In particular, it deals with the technology and maintenance of Pitot static tubes, with the calculation of local velocities from measured differential pressures and with the computation of the flow rate by velocity integration.

  • Standard
    63 pages
    English language
    sale 15% off
  • Standard
    63 pages
    French language
    sale 15% off
  • Standard
    63 pages
    French language
    sale 15% off

This document is applicable to the type evaluation and initial verification testing of water meters for cold potable water and hot water as defined in ISO 4064-1:2024|OIML R 49‑1:2024. OIML Certificates of conformity can be issued for water meters under the scope of the OIML Certificate System, provided that this document, ISO 4064-1:2024|OIML R 49‑1:2024 and ISO 4064-3:2024|OIML R 49‑3:2024 are used in accordance with the rules of the system.
This document sets out details of the test programme, principles, equipment and procedures to be used for the type evaluation, and initial verification of a meter type.
The provisions of this document also apply to ancillary devices, if required by national regulations.
The provisions include requirements for testing the complete water meter and for testing the measurement transducer (including the flow or volume sensor) and the calculator (including the indicating device) of a water meter as separate units.

  • Standard
    114 pages
    English language
    e-Library read for
    1 day

This document specifies the metrological and technical requirements for water meters for cold potable water and hot water flowing through a fully charged, closed conduit. These water meters incorporate devices which indicate the accumulated volume.
In addition to water meters based on mechanical principles, this document applies to devices based on electrical or electronic principles, and mechanical principles incorporating electronic devices, used to measure the volume of cold potable water and hot water.
This document also applies to electronic ancillary devices. Ancillary devices are optional. However, it is possible for national or regional regulations to render some ancillary devices mandatory in relation to the utilization of water meters.
NOTE            Any national regulations apply in the country of use.

  • Standard
    58 pages
    English language
    e-Library read for
    1 day

This document specifies a test report format to be used in conjunction with ISO 4064-1:2024|OIML R 49-1:2024 and ISO 4064-2:2024|OIML R 49-2:2024 for water meters for cold potable water and hot water.

  • Standard
    78 pages
    English language
    e-Library read for
    1 day

This document applies to water meters used to meter the volume of cold potable water and hot water flowing through a fully charged, closed conduit. These water meters incorporate devices which indicate the integrated volume.
This document specifies technical characteristics and pressure loss requirements for meters for cold potable water and hot water. It applies to water meters which can withstand:
a)       a maximum admissible pressure (MAP) equal to at least 1 MPa1) [0,6 MPa for meters for use with pipe nominal diameters (DNs) ≥500 mm];
b)       a maximum admissible temperature (MAT) for cold potable water meters of 30 °C;
c)        a MAT for hot water meters of up to 180 °C, depending on class.
In addition to meters based on mechanical principles, this document also applies to water meters based on electrical or electronic principles, and to water meters based on mechanical principles incorporating electronic devices, used to meter the volume flow of hot water and cold potable water. It also applies to electronic ancillary devices. As a rule ancillary devices are optional. However, national or international regulations may make some ancillary devices mandatory in relation to the utilization of the water meter.
1) 1 MPa = 10 bar (1 bar = 0,1 MPa =105 Pa; 1 MPa = 1 N/mm2).

  • Standard
    35 pages
    English language
    e-Library read for
    1 day

This document specifies methods for the measurement of air flow rates on site. It provides a description of the air flow rate measurement methods and how measurements are performed within the margins of stipulated method uncertainties. It gives the necessary measurement conditions (e.g. length of straight duct, uniform velocity profile) to achieve the stipulated measurement uncertainties.
The methods for measuring the air flow rate inside ducts do not apply to:
-   ducts that are not circular or rectangular (e.g. oblong ducts);
-   flexible ducts.

  • Standard
    62 pages
    English language
    e-Library read for
    1 day

This document specifies methods for the measurement of air flow rates on site. It provides a description of the air flow rate measurement methods and how measurements are performed within the margins of stipulated method uncertainties. It gives the necessary measurement conditions (e.g. length of straight duct, uniform velocity profile) to achieve the stipulated measurement uncertainties.
The methods for measuring the air flow rate inside ducts do not apply to:
-   ducts that are not circular or rectangular (e.g. oblong ducts);
-   flexible ducts.

  • Standard
    62 pages
    English language
    e-Library read for
    1 day

This document specifies requirements and recommendations for non-intrusive (clamp-on) ultrasonic flowmeters (USMs), which use the transit time of ultrasonic signals to measure the volumetric flowrate in closed conduits. Transit time flowmeters are predominantly used on single-phase fluids (liquid and gases) but can also be used where small quantities of additional phases are present. This document specifies performance, calibration, and output characteristics, and deals with installation conditions.

  • Standard
    34 pages
    English language
    sale 15% off
  • Standard
    37 pages
    French language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Cyanide and hydrogen cyanide are highly toxic. Regulations have been established to require the monitoring of cyanide in industrial and domestic wastes and surface waters.3  
5.2 This test method is applicable for natural water, saline waters, metallurgical process solutions, and wastewater effluent.  
5.3 The method may be used for process control in wastewater treatment facilities.
SCOPE
1.1 This test method is used to determine the concentration of available inorganic cyanide in an aqueous wastewater or effluent. The method detects the cyanides that are free (HCN and CN-) and metal-cyanide complexes that are easily dissociated into free cyanide ions. The method does not detect the less toxic strong metal-cyanide complexes, cyanides that are not “amenable to chlorination.”  
1.2 Total cyanide can be determined for samples that have been distilled as described in Test Methods D2036, Test Method A, Total Cyanides after Distillation. The cyanide complexes are dissociated and absorbed into the sodium hydroxide capture solution, which can be analyzed with this test method; therefore, ligand exchange reagents from 8.12 and 8.13 would not be required when determining total cyanide after distillation.  
1.3 This procedure is applicable over a range of approximately 2 μg/L to 400 μg/L (parts per billion) available cyanides. Higher concentrations can be analyzed by dilution or lower injection volume.  
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in 8.6 and Section 9.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    8 pages
    English language
    sale 15% off

This document provides guidance on estimating the flowrate when using pressure differential devices constructed or operated outside the scope of ISO 5167 series. Additional tolerances or corrections cannot necessarily compensate for the effects of deviating from ISO 5167 series. The information is given, in the first place, to indicate the degree of care necessary in the manufacture, installation and maintenance of pressure differential devices by describing some of the effects of non-conformity to the requirements; and in the second place, to permit those users who cannot comply fully with the requirements to assess, however roughly, the magnitude and direction of the resulting error in flowrate. Each variation dealt with is treated as though it were the only one present. Where more than one is known to exist, there might be unpredictable interactions and care has to be taken when combining the assessment of these errors. If there is a significant number of errors, means of eliminating some of them have to be considered. The variations included in this document are by no means complete and relate largely to examples with orifice plates. An example with Venturi tubes has been placed at the end of its section. This document does not apply to cone meters or wedge meters. There are, no doubt, many similar examples of installations not conforming to ISO 5167 series for which no comparable data have been published. Such additional information from users, manufacturers and any others can be taken into account in future revisions of this document.

  • Technical report
    35 pages
    English language
    sale 15% off
  • Technical report
    38 pages
    French language
    sale 15% off

This document defines the measurement of single phase fluid flow rate in closed conduits using radioactive tracer methods.

  • Standard
    32 pages
    English language
    sale 15% off

The objective of this document is to provide guidance on the use of ISO 5167:2022 series. ISO 5167:2022 is an International Standard for flow measurement based on the differential pressure generated by a constriction introduced into a circular conduit (see ISO 5167-1:2022, 5.1). It presents a set of rules and requirements based on theory and experimental work undertaken in the field of flow measurement. For a more detailed description of the scope, reference is made to ISO 5167-1:2022, Clause 1. Definitions and symbols applicable to this document are given in ISO 5167-1:2022, Clauses 3 and 4. Neither ISO 5167-1:2022 nor this document gives detailed theoretical background, for which reference is made to any general textbook on fluid flow.

  • Technical report
    64 pages
    English language
    sale 15% off
  • Technical report
    65 pages
    French language
    sale 15% off

This document describes the geometry and method of use for conical-entrance orifice plates, quarter-circle orifice plates, eccentric orifice plates and Venturi tubes with 10,5° convergent angles. Information is also given for square-edged orifice plates and nozzles under conditions outside the scope of ISO 5167 series. NOTE The data on which this document is based are limited in some cases.

  • Technical report
    31 pages
    English language
    sale 15% off
  • Technical report
    31 pages
    French language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This practice can be used to quantify the performance of a process stream analyzer system or its subsystem in terms of precision and bias relative to those of a primary test method for the property of interest.  
5.2 This practice provides developers or manufacturers of process stream analyzer systems with useful procedures for evaluating the capability of newly designed systems for industrial applications that require reliable prediction of measurements of a specific property by a primary test method of a flowing component or product.  
5.3 This practice provides purchasers of process stream analyzer systems with some reliable options for specifying acceptance test requirements for process stream analyzer systems at the time of commissioning to ensure the system is capable of making the desired property measurement with the appropriate precision or bias specifications, or both.  
5.4 PPTMR from Analyzer Systems validated in accordance with this practice can be used to predict, with a specified confidence, what the PTMR would be, to within a specified tolerance, if the actual primary test method was conducted on the materials that are within the validated property range and type.  
5.5 This practice provides the user of a process stream analyzer system with useful information from on-going quality control charts to monitor the variation in δ over time, and trigger update of correlation relationship between the analyzer system and primary test method in a timely manner.  
5.6 Validation information obtained in the application of this practice is applicable only to the material type and property range of the materials used to perform the validation. Selection of the property levels and the compositional characteristics of the samples must be suitable for the application of the analyzer system. This practice allows the user to write a comprehensive validation statement for the analyzer system including specific limits for the validated range of application. Th...
SCOPE
1.1 This practice describes procedures and methodologies based on the statistical principles of Practice D6708 to validate whether the degree of agreement between the results produced by a total analyzer system (or its subsystem), versus the results produced by an independent test method that purports to measure the same property, meets user-specified requirements. This is a performance-based validation, to be conducted using a set of materials that are not used a priori in the development of any correlation between the two measurement systems under investigation. A result from the independent test method is herein referred to as a Primary Test Method Result (PTMR).  
1.1.1 The degree of agreement described in 1.1 can be either for PPTMRs and PTMRs measured on the same materials, or for PPTMRs measured on basestocks and PTMRs measured on these same basestocks after constant level additivation.  
1.1.2 In some cases, a two-step procedure is employed. In the first step, the analyzer and PTM are applied to the measurement of the same blendstock material. If the analyzer employed in Step 1 is a multivariate spectrophotometric analyzer, then Practice D6122 is used to access the agreement between the PPTMRs and the PTMRs for this first step. Otherwise, this practice is used to compare the PPTMRs to the PTMRs measured for this blendstock to determine the degree of agreement. In a second step, the PPTMRs produced in Step 1 are used as inputs to a second model that predicts the results obtained when the PTM is applied to the analysis of the finished blended product. Since this second step does not use analyzer readings, the validation of the second step is done independently. Step 2 is only performed on valid Step 1 results. Note that the second model might accommodate variable levels or multiple material additions to the blendstock.  
1.2 This practice assumes any correlation necessary to mitigate systemic biases between the ...

  • Standard
    18 pages
    English language
    sale 15% off
  • Standard
    18 pages
    English language
    sale 15% off

This document specifies general requirements, minimum performance requirements and test procedures for instrumentation used to measure either volumetric flow-rate and/or total volume passed of water in closed conduits. It covers all closed conduit instrument (CCI) technologies intended to operate in closed pressurized pipes and partially filled pipes. Requirements are expressed in volumetric units which may be converted to mass using the density of the water.
It is recognized that for some CCIs certain tests cannot be carried out.
The data obtained from the testing of CCIs in accordance with the requirements of the Measuring Instruments Directive [1] or EN ISO 4064-1 [2] can be used to meet, in part, the requirements specified in this document. However, for the avoidance of doubt, compliance with the requirements of this document does not equate to compliance with the requirements of the Measuring Instruments Directive or EN ISO 4064-1.

  • Standard
    46 pages
    English language
    e-Library read for
    1 day

This document specifies general requirements, minimum performance requirements and test procedures for instrumentation used to measure either volumetric flow-rate and/or total volume passed of water in closed conduits. It covers all closed conduit instrument (CCI) technologies intended to operate in closed pressurized pipes and partially filled pipes. Requirements are expressed in volumetric units which may be converted to mass using the density of the water.
It is recognized that for some CCIs certain tests cannot be carried out.
The data obtained from the testing of CCIs in accordance with the requirements of the Measuring Instruments Directive [1] or EN ISO 4064-1 [2] can be used to meet, in part, the requirements specified in this document. However, for the avoidance of doubt, compliance with the requirements of this document does not equate to compliance with the requirements of the Measuring Instruments Directive or EN ISO 4064-1.

  • Standard
    46 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
5.1 The method presented is a “short method” that may be used where contamination levels are less than 5000 ppm by weight or volume, temperatures are between 0 °C (32 °F) and 65 °C (150 °F), and the humidity is not considered. The gas is considered as standard air and the velocity is read directly from the instrument.  
5.2 This test method is useful for determining air velocities in HVAC ducts, fume hoods, vent stacks of nuclear power stations, and in performing model studies of pollution control devices.
SCOPE
1.1 This test method describes the measurement of the average velocity with a thermal anemometer for the purpose of determining gas flow in a stack, duct, or flue (1-5).2 It is limited to those applications where the gas is essentially air at ambient conditions and the temperature, moisture, and contaminant loading are insignificant as sources of error compared to the basic accuracy of the typical field situation.  
1.2 The range of the test method is from 1 to 30 m/s (3 to 100 ft/s).  
1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off

This document specifies the geometry and method of use (installation and operating conditions) of orifice plates when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable to primary devices having an orifice plate used with flange pressure tappings, or with corner pressure tappings, or with D and D/2 pressure tappings. Other pressure tappings such as “vena contracta” and pipe tappings are not covered by this document. This document is applicable only to a flow which remains subsonic throughout the measuring section and where the fluid can be considered as single phase. It is not applicable to the measurement of pulsating flow[1]. It does not cover the use of orifice plates in pipe sizes less than 50 mm or more than 1 000 mm, or where the pipe Reynolds numbers are below 5 000.

  • Standard
    62 pages
    English language
    e-Library read for
    1 day
  • Draft
    68 pages
    German language
    e-Library read for
    1 day

This document defines terms and symbols and establishes the general principles for methods of measurement and computation of the flow rate of fluid flowing in a conduit by means of pressure differential devices (orifice plates, nozzles, Venturi tubes, cone meters, and wedge meters) when they are inserted into a circular cross-section conduit running full. This document also specifies the general requirements for methods of measurement, installation and determination of the uncertainty of the measurement of flow rate.
ISO 5167 (all parts) is applicable only to flow that remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. It is not applicable to the measurement of pulsating flow.

  • Standard
    51 pages
    English language
    e-Library read for
    1 day
  • Draft
    49 pages
    German language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of Venturi tubes[1] when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167-1.
This document is applicable only to Venturi tubes in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, Venturi tubes can only be used uncalibrated in accordance with this standard within specified limits of pipe size, roughness, diameter ratio and Reynolds number, or alternatively they can be used across their calibrated range. This document is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated Venturi tubes in pipes sized less than 50 mm or more than 1 200 mm, or where the pipe Reynolds numbers are below 2 × 105.
This document deals with the three types of classical Venturi tubes:
a) “as cast”;
b) machined;
c) fabricated (also known as “rough-welded sheet-iron”).
A Venturi tube consists of a convergent inlet connected to a cylindrical throat which is in turn connected to a conical expanding section called the divergent section (or alternatively the diffuser). Venturi nozzles (and other nozzles) are dealt with in ISO 5167-3.
NOTE       In the USA the classical Venturi tube is sometimes called the Herschel Venturi tube.
[1]   In the USA the classical Venturi tube is sometimes called the Herschel Venturi tube.

  • Standard
    35 pages
    English language
    e-Library read for
    1 day
  • Draft
    34 pages
    German language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation in a system and operating conditions) of critical flow nozzles (CFNs) used to determine the mass flow rate of a gas flowing through a system basically without the need to calibrate the CFN. It also gives the information necessary for calculating the flow rate and its associated uncertainty.
This document is applicable to nozzles in which the gas flow accelerates to the critical velocity at the minimum flowing section, and only where there is steady flow of single-phase gas. When the critical velocity is attained in the nozzle, the mass flow rate of the gas flowing through the nozzle is the maximum possible for the existing inlet condition, while the CFN can only be used within specified limits, e.g. the CFN throat to inlet diameter ratio and Reynolds number. This document deals with the toroidal- and cylindrical-throat CFNs for which direct calibration experiments have been made in sufficient number to enable the resulting coefficients to be used with certain predictable limits of uncertainty.

  • Standard
    131 pages
    English language
    e-Library read for
    1 day
  • Draft
    122 pages
    German language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of nozzles and Venturi nozzles when they are inserted in a conduit running full to determine the flowrate of the fluid flowing in the conduit.
This document also provides background information for calculating the flowrate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable to nozzles and Venturi nozzles in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, each of the devices can only be used within specified limits of pipe size and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of nozzles and Venturi nozzles in pipe sizes less than 50 mm or more than 630 mm, or where the pipe Reynolds numbers are below 10 000.
This document deals with
a) three types of standard nozzles:
1)    ISA 1932[1] nozzle;
2)    the long radius nozzle[2];
3)    the throat-tapped nozzle
b) the Venturi nozzle.
The three types of standard nozzle are fundamentally different and are described separately in this document. The Venturi nozzle has the same upstream face as the ISA 1932 nozzle, but has a divergent section and, therefore, a different location for the downstream pressure tappings, and is described separately. This design has a lower pressure loss than a similar nozzle. For all of these nozzles and for the Venturi nozzle direct calibration experiments have been made, sufficient in number, spread and quality to enable coherent systems of application to be based on their results and coefficients to be given with certain predictable limits of uncertainty.
[1]   ISA is the abbreviation for the International Federation of the National Standardizing Associations, which was superseded by ISO in 1946.
[2] The long radius nozzle differs from the ISA 1932 nozzle in shape and in the position of the pressure tappings.

  • Standard
    51 pages
    English language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of cone meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
As the uncertainty of an uncalibrated cone meter might be too high for a particular application, it might be deemed essential to calibrate the flow meter in accordance with Clause 7.
This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable only to cone meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated cone meters can only be used within specified limits of pipe size, roughness, β, and Reynolds number, Re. This document is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated cone meters in pipes sized less than 50 mm or more than 500 mm, or where the pipe Reynolds numbers are below 8 × 104 or greater than 1,2 × 107.
A cone meter is a primary device which consists of a cone-shaped restriction held concentrically in the centre of the pipe with the nose of the cone upstream. The design of cone meter defined in this document has one or more upstream pressure tappings in the wall, and a downstream pressure tapping positioned in the back face of the cone with the connection to a differential pressure transmitter being a hole through the cone to the support bar, and then up through the support bar.
Alternative designs of cone meters are available; however, at the time of writing, there is insufficient data to fully characterize these devices, and therefore, these meters shall be calibrated in accordance with Clause 7.

  • Standard
    23 pages
    English language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of wedge meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
NOTE 1    As the uncertainty of an uncalibrated wedge meter can be too large for a particular application, it could be deemed essential to calibrate the flow meter according to Clause 7.
This document gives requirements for calibration which, if applied, are for use over the calibrated Reynolds number range. Clause 7 could also be useful guidance for calibration of meters of similar design but which fall outside the scope of this document.
It also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable only to wedge meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated wedge meters can only be used within specified limits of pipe size, roughness, β (or wedge ratio) and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated wedge meters in pipes whose internal diameter is less than 50 mm or more than 600 mm, or where the pipe Reynolds numbers are below 1 × 104.
NOTE 2    A wedge meter has a primary element which consists of a wedge-shaped restriction of a specific geometry. Alternative designs of wedge meters are available; however, at the time of writing there is insufficient data to fully characterize these devices, and therefore these meters are calibrated in accordance with Clause 7.

  • Standard
    21 pages
    English language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of nozzles and Venturi nozzles when they are inserted in a conduit running full to determine the flowrate of the fluid flowing in the conduit.
This document also provides background information for calculating the flowrate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable to nozzles and Venturi nozzles in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, each of the devices can only be used within specified limits of pipe size and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of nozzles and Venturi nozzles in pipe sizes less than 50 mm or more than 630 mm, or where the pipe Reynolds numbers are below 10 000.
This document deals with
a) three types of standard nozzles:
1)    ISA 1932[1] nozzle;
2)    the long radius nozzle[2];
3)    the throat-tapped nozzle
b) the Venturi nozzle.
The three types of standard nozzle are fundamentally different and are described separately in this document. The Venturi nozzle has the same upstream face as the ISA 1932 nozzle, but has a divergent section and, therefore, a different location for the downstream pressure tappings, and is described separately. This design has a lower pressure loss than a similar nozzle. For all of these nozzles and for the Venturi nozzle direct calibration experiments have been made, sufficient in number, spread and quality to enable coherent systems of application to be based on their results and coefficients to be given with certain predictable limits of uncertainty.
[1]   ISA is the abbreviation for the International Federation of the National Standardizing Associations, which was superseded by ISO in 1946.
[2] The long radius nozzle differs from the ISA 1932 nozzle in shape and in the position of the pressure tappings.

  • Standard
    51 pages
    English language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of cone meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
As the uncertainty of an uncalibrated cone meter might be too high for a particular application, it might be deemed essential to calibrate the flow meter in accordance with Clause 7.
This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable only to cone meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated cone meters can only be used within specified limits of pipe size, roughness, β, and Reynolds number, Re. This document is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated cone meters in pipes sized less than 50 mm or more than 500 mm, or where the pipe Reynolds numbers are below 8 × 104 or greater than 1,2 × 107.
A cone meter is a primary device which consists of a cone-shaped restriction held concentrically in the centre of the pipe with the nose of the cone upstream. The design of cone meter defined in this document has one or more upstream pressure tappings in the wall, and a downstream pressure tapping positioned in the back face of the cone with the connection to a differential pressure transmitter being a hole through the cone to the support bar, and then up through the support bar.
Alternative designs of cone meters are available; however, at the time of writing, there is insufficient data to fully characterize these devices, and therefore, these meters shall be calibrated in accordance with Clause 7.

  • Standard
    23 pages
    English language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of wedge meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
NOTE 1    As the uncertainty of an uncalibrated wedge meter can be too large for a particular application, it could be deemed essential to calibrate the flow meter according to Clause 7.
This document gives requirements for calibration which, if applied, are for use over the calibrated Reynolds number range. Clause 7 could also be useful guidance for calibration of meters of similar design but which fall outside the scope of this document.
It also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable only to wedge meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated wedge meters can only be used within specified limits of pipe size, roughness, β (or wedge ratio) and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated wedge meters in pipes whose internal diameter is less than 50 mm or more than 600 mm, or where the pipe Reynolds numbers are below 1 × 104.
NOTE 2    A wedge meter has a primary element which consists of a wedge-shaped restriction of a specific geometry. Alternative designs of wedge meters are available; however, at the time of writing there is insufficient data to fully characterize these devices, and therefore these meters are calibrated in accordance with Clause 7.

  • Standard
    21 pages
    English language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of cone meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit. As the uncertainty of an uncalibrated cone meter might be too high for a particular application, it might be deemed essential to calibrate the flow meter in accordance with Clause 7. This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1. This document is applicable only to cone meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated cone meters can only be used within specified limits of pipe size, roughness, β, and Reynolds number, Re. This document is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated cone meters in pipes sized less than 50 mm or more than 500 mm, or where the pipe Reynolds numbers are below 8 × 104 or greater than 1,2 × 107. A cone meter is a primary device which consists of a cone-shaped restriction held concentrically in the centre of the pipe with the nose of the cone upstream. The design of cone meter defined in this document has one or more upstream pressure tappings in the wall, and a downstream pressure tapping positioned in the back face of the cone with the connection to a differential pressure transmitter being a hole through the cone to the support bar, and then up through the support bar. Alternative designs of cone meters are available; however, at the time of writing, there is insufficient data to fully characterize these devices, and therefore, these meters shall be calibrated in accordance with Clause 7.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    15 pages
    French language
    sale 15% off

This document specifies the geometry and method of use (installation and operating conditions) of wedge meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit. NOTE 1 As the uncertainty of an uncalibrated wedge meter can be too large for a particular application, it could be deemed essential to calibrate the flow meter according to Clause 7. This document gives requirements for calibration which, if applied, are for use over the calibrated Reynolds number range. Clause 7 could also be useful guidance for calibration of meters of similar design but which fall outside the scope of this document. It also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1. This document is applicable only to wedge meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated wedge meters can only be used within specified limits of pipe size, roughness, β (or wedge ratio) and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated wedge meters in pipes whose internal diameter is less than 50 mm or more than 600 mm, or where the pipe Reynolds numbers are below 1 × 104. NOTE 2 A wedge meter has a primary element which consists of a wedge-shaped restriction of a specific geometry. Alternative designs of wedge meters are available; however, at the time of writing there is insufficient data to fully characterize these devices, and therefore these meters are calibrated in accordance with Clause 7.

  • Standard
    13 pages
    English language
    sale 15% off
  • Standard
    15 pages
    French language
    sale 15% off

This document specifies the geometry and method of use (installation and operating conditions) of nozzles and Venturi nozzles when they are inserted in a conduit running full to determine the flowrate of the fluid flowing in the conduit. This document also provides background information for calculating the flowrate and is applicable in conjunction with the requirements given in ISO 5167‑1. This document is applicable to nozzles and Venturi nozzles in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, each of the devices can only be used within specified limits of pipe size and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of nozzles and Venturi nozzles in pipe sizes less than 50 mm or more than 630 mm, or where the pipe Reynolds numbers are below 10 000. This document deals with a) three types of standard nozzles: 1) ISA 1932[1] nozzle; 2) the long radius nozzle[2]; 3) the throat-tapped nozzle b) the Venturi nozzle. The three types of standard nozzle are fundamentally different and are described separately in this document. The Venturi nozzle has the same upstream face as the ISA 1932 nozzle, but has a divergent section and, therefore, a different location for the downstream pressure tappings, and is described separately. This design has a lower pressure loss than a similar nozzle. For all of these nozzles and for the Venturi nozzle direct calibration experiments have been made, sufficient in number, spread and quality to enable coherent systems of application to be based on their results and coefficients to be given with certain predictable limits of uncertainty. [1] ISA is the abbreviation for the International Federation of the National Standardizing Associations, which was superseded by ISO in 1946. [2] The long radius nozzle differs from the ISA 1932 nozzle in shape and in the position of the pressure tappings.

  • Standard
    42 pages
    English language
    sale 15% off
  • Standard
    42 pages
    French language
    sale 15% off
  • Standard
    42 pages
    French language
    sale 15% off

This document specifies the geometry and method of use (installation in a system and operating conditions) of critical flow nozzles (CFNs) used to determine the mass flow rate of a gas flowing through a system basically without the need to calibrate the CFN. It also gives the information necessary for calculating the flow rate and its associated uncertainty.
This document is applicable to nozzles in which the gas flow accelerates to the critical velocity at the minimum flowing section, and only where there is steady flow of single-phase gas. When the critical velocity is attained in the nozzle, the mass flow rate of the gas flowing through the nozzle is the maximum possible for the existing inlet condition, while the CFN can only be used within specified limits, e.g. the CFN throat to inlet diameter ratio and Reynolds number. This document deals with the toroidal- and cylindrical-throat CFNs for which direct calibration experiments have been made in sufficient number to enable the resulting coefficients to be used with certain predictable limits of uncertainty.

  • Standard
    131 pages
    English language
    e-Library read for
    1 day
  • Draft
    122 pages
    German language
    e-Library read for
    1 day

This document defines terms and symbols and establishes the general principles for methods of measurement and computation of the flow rate of fluid flowing in a conduit by means of pressure differential devices (orifice plates, nozzles, Venturi tubes, cone meters, and wedge meters) when they are inserted into a circular cross-section conduit running full. This document also specifies the general requirements for methods of measurement, installation and determination of the uncertainty of the measurement of flow rate.
ISO 5167 (all parts) is applicable only to flow that remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. It is not applicable to the measurement of pulsating flow.

  • Standard
    51 pages
    English language
    e-Library read for
    1 day
  • Draft
    49 pages
    German language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of orifice plates when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable to primary devices having an orifice plate used with flange pressure tappings, or with corner pressure tappings, or with D and D/2 pressure tappings. Other pressure tappings such as “vena contracta” and pipe tappings are not covered by this document. This document is applicable only to a flow which remains subsonic throughout the measuring section and where the fluid can be considered as single phase. It is not applicable to the measurement of pulsating flow[1]. It does not cover the use of orifice plates in pipe sizes less than 50 mm or more than 1 000 mm, or where the pipe Reynolds numbers are below 5 000.

  • Standard
    62 pages
    English language
    e-Library read for
    1 day
  • Draft
    68 pages
    German language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of Venturi tubes[1] when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167-1.
This document is applicable only to Venturi tubes in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, Venturi tubes can only be used uncalibrated in accordance with this standard within specified limits of pipe size, roughness, diameter ratio and Reynolds number, or alternatively they can be used across their calibrated range. This document is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated Venturi tubes in pipes sized less than 50 mm or more than 1 200 mm, or where the pipe Reynolds numbers are below 2 × 105.
This document deals with the three types of classical Venturi tubes:
a) “as cast”;
b) machined;
c) fabricated (also known as “rough-welded sheet-iron”).
A Venturi tube consists of a convergent inlet connected to a cylindrical throat which is in turn connected to a conical expanding section called the divergent section (or alternatively the diffuser). Venturi nozzles (and other nozzles) are dealt with in ISO 5167-3.
NOTE       In the USA the classical Venturi tube is sometimes called the Herschel Venturi tube.
[1]   In the USA the classical Venturi tube is sometimes called the Herschel Venturi tube.

  • Standard
    35 pages
    English language
    e-Library read for
    1 day
  • Draft
    34 pages
    German language
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of Venturi tubes[1] when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit. This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167-1. This document is applicable only to Venturi tubes in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, Venturi tubes can only be used uncalibrated in accordance with this standard within specified limits of pipe size, roughness, diameter ratio and Reynolds number, or alternatively they can be used across their calibrated range. This document is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated Venturi tubes in pipes sized less than 50 mm or more than 1 200 mm, or where the pipe Reynolds numbers are below 2 × 105. This document deals with the three types of classical Venturi tubes: a) “as cast”; b) machined; c) fabricated (also known as “rough-welded sheet-iron”). A Venturi tube consists of a convergent inlet connected to a cylindrical throat which is in turn connected to a conical expanding section called the divergent section (or alternatively the diffuser). Venturi nozzles (and other nozzles) are dealt with in ISO 5167-3. NOTE In the USA the classical Venturi tube is sometimes called the Herschel Venturi tube. [1] In the USA the classical Venturi tube is sometimes called the Herschel Venturi tube.

  • Standard
    26 pages
    English language
    sale 15% off
  • Standard
    27 pages
    French language
    sale 15% off

This document defines terms and symbols and establishes the general principles for methods of measurement and computation of the flow rate of fluid flowing in a conduit by means of pressure differential devices (orifice plates, nozzles, Venturi tubes, cone meters, and wedge meters) when they are inserted into a circular cross-section conduit running full. This document also specifies the general requirements for methods of measurement, installation and determination of the uncertainty of the measurement of flow rate. ISO 5167 (all parts) is applicable only to flow that remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. It is not applicable to the measurement of pulsating flow.

  • Standard
    42 pages
    English language
    sale 15% off
  • Standard
    43 pages
    French language
    sale 15% off

This document specifies the geometry and method of use (installation in a system and operating conditions) of critical flow nozzles (CFNs) used to determine the mass flow rate of a gas flowing through a system basically without the need to calibrate the CFN. It also gives the information necessary for calculating the flow rate and its associated uncertainty. This document is applicable to nozzles in which the gas flow accelerates to the critical velocity at the minimum flowing section, and only where there is steady flow of single-phase gas. When the critical velocity is attained in the nozzle, the mass flow rate of the gas flowing through the nozzle is the maximum possible for the existing inlet condition, while the CFN can only be used within specified limits, e.g. the CFN throat to inlet diameter ratio and Reynolds number. This document deals with the toroidal- and cylindrical-throat CFNs for which direct calibration experiments have been made in sufficient number to enable the resulting coefficients to be used with certain predictable limits of uncertainty.

  • Standard
    122 pages
    English language
    sale 15% off
  • Standard
    122 pages
    French language
    sale 15% off

This document specifies the geometry and method of use (installation and operating conditions) of orifice plates when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit. This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1. This document is applicable to primary devices having an orifice plate used with flange pressure tappings, or with corner pressure tappings, or with D and D/2 pressure tappings. Other pressure tappings such as “vena contracta” and pipe tappings are not covered by this document. This document is applicable only to a flow which remains subsonic throughout the measuring section and where the fluid can be considered as single phase. It is not applicable to the measurement of pulsating flow[1]. It does not cover the use of orifice plates in pipe sizes less than 50 mm or more than 1 000 mm, or where the pipe Reynolds numbers are below 5 000.

  • Standard
    53 pages
    English language
    sale 15% off
  • Standard
    54 pages
    French language
    sale 15% off

SIGNIFICANCE AND USE
4.1 The analyzer site precision is an estimate of the variability that can be expected in a UAR or a PPTMR produced by an analyzer when applied to the analysis of the same material over an extended time period.  
4.2 For applications where the process analyzer system results are required to agree with results produced from an independent PTM, a mathematical function is derived that relates the UARs to the PPTMRs. The application of this mathematical function to an analyzer result produces a predicted PPTMR. For analyzers where the mathematical function, that is, a correlation, is developed by D7235, the analyzer site precision of the UARs is a required input to the computation.  
4.3 After the correlation relationship between the analyzer results and primary test method results has been established, a probationary validation (see D3764 and D6122) is performed using an independent but limited set of materials that were not part of the correlation activity. This probationary validation is intended to demonstrate that the PPTMRs agree with the PTMRs to within user-specified requirements for the analyzer system application. The analyzer site precision is a required input to the probationary validation procedures.  
4.3.1 If the process stream analyzer system and the primary test method are based on the same measurement principle(s), or, if the process stream analyzer system uses a direct and well-understood measurement principle that is similar to the measurement principle of the PTM then validation is done via D3764. Practice D3764 also applies if the process stream analyzer system uses a different measurement technology from the PTM, provided that the calibration protocol for the direct output of the analyzer does not require use of the PTM.  
4.3.2 If the process stream analyzer system utilizes an indirect or mathematically modeled measurement principle such as chemometric or multivariate analysis techniques where PTMRs are required for the development of the che...
SCOPE
1.1 This practice describes a procedure to quantify the site precision of a process analyzer via repetitive measurement of a single process sample over an extended time period. The procedure may be applied to multiple process samples to obtain site precision estimates at different property levels  
1.1.1 The site precision is required for use of the statistical methodology of D6708 in establishing the correlation between analyzer results and primary test method results using Practice D7235.  
1.1.2 The site precision is also required when employing the statistical methodology of D6708 to validate a process analyzer via Practices D3764 or D6122.  
1.2 This practice is not applicable to in-line analyzers where the same quality control sample cannot be repetitively introduced.  
1.3 This practice is meant to be applied to analyzers that measure physical properties or compositions.  
1.4 This practice can be applied to any process analyzer system where the feed stream can be captured and stored in sufficient quantity with no stratification or stability concerns.  
1.4.1 The captured stream sample introduction must be able to meet the process analyzer sample conditioning requirements, feed temperature and inlet pressure.  
1.4.2 This practice is designed for use with samples that are single liquid phase, petroleum products whose vapor pressure, at sampling and sample storage conditions, is less than or equal to 110 kPa (16.0 psi) absolute and whose D86 final boiling point is less than or equal to 400 °C (752 °F).
Note 1: The general procedures described in this practice may be applicable to materials outside this range, including multiphase materials, but such application may involve special sampling and safety considerations which are outside the scope of this practice.  
1.5 The values for operating conditions are stated in SI units and are to be regarded as the standard. The values given in parentheses are the hi...

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Sample conditioning systems must be designed to accommodate a wide range of sample source temperatures and pressures. Additionally, efforts must be made to ensure that the resultant sample has not been altered during transport and conditioning and has not suffered excessive transport delay. Studies have shown that sample streams will exhibit minimal deposition of ionic and particulate matter on wetted surfaces at specific flow rates (1-5). 3  
5.1.1 To ensure that the physical and chemical properties of the sample are preserved, this flow rate must be controlled throughout the sampling process, regardless of expected changes of source temperature and pressure, for example, during startup, or changing process operating conditions.  
5.2 The need to use analyzer temperature compensation methods is dependent on the required accuracy of the measurement. Facilities dealing with ultra-pure water will require both closely controlled sample temperature and temperature compensation to ensure accurate measurements. The temperature can be controlled by adding a second or trim cooling stage. The temperature compensation must be based on the specific contaminants in the sample being analyzed. In other facilities in which some variation in water chemistry can be tolerated, the use of either trim cooling or accurate temperature compensation may provide sufficient accuracy of process measurements. This does not negate the highly recommended practice of constant temperature sampling, especially at 25°C, as the most proven method of ensuring repeatable and comparable analytical results.  
5.3 A separate class of analysis exists that does not require or, in fact, cannot use the fully conditioned sample for accurate results. For example, the collection of corrosion product samples requires that the sample remain at near full system pressure, but cooled below the flash temperature, in order to ensure a representative collection of particulates. Only some of the primary conditioni...
SCOPE
1.1 This practice covers the conditioning of a flowing water sample for the precise measurement of various chemical and physical parameters of the water, whether continuous or grab. This practice addresses the conditioning of both high- and low-temperature and pressure sample streams, whether from steam or water.  
1.2 This practice provides procedures for the precise control of sample flow rate to minimize changes of the measured variable(s) due to flow changes.  
1.3 This practice provides procedures for the precise control of sample temperature to minimize changes of the measured variable(s) due to temperature changes.  
1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 Flow conditioners are used for the conditioning of the turbulent flow profile of gases or liquids to reduce the ADD (velocity profile distortion) DEL (turbulence), swirl, or irregularities caused by the installation effects of piping elbows, length of pipe, valves, tees, and other such equipment or piping configurations that will affect the reading of flow measurement meters thus inducing measurement errors as a result of the flow profile of the gas or liquid not having a fully developed flow profile at the measurement point.4
SCOPE
1.1 This practice covers flow conditioners that produce a fully developed flow profile for liquid and gas phase fluid flow for circular duct sizes 1- to 60-in. (25.4- to 1525-mm) diameter and Reynolds Number (Re) ranges from transition (100) to 100 000 000. These flow conditioners can be used for any type of flow meter or development of a fully developed flow profile for other uses.  
1.2 The central single-hole configuration that is derived using fundamental screen theory is referenced as the flow conditioner described herein.  
1.3 Piping lengths upstream and downstream of a flow conditioner are considered a critical component of a flow conditioner and constitute the complete flow conditioner system.  
1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    16 pages
    English language
    sale 15% off

This document specifies a method for the determination in a closed conduit of the volume rate of flow of a regular flow a) of a fluid of substantially constant density or corresponding to a Mach number not exceeding 0,25, b) with substantially uniform stagnation temperature across the measuring cross-section, c) running full in the conduit, and d) under steady flow conditions. In particular, it deals with the technology and maintenance of Pitot static tubes, with the calculation of local velocities from measured differential pressures and with the computation of the flow rate by velocity integration.

  • Standard
    55 pages
    English language
    sale 15% off
  • Standard
    56 pages
    French language
    sale 15% off

ISO 20456:2017 applies to industrial electromagnetic flowmeters used for the measurement of flowrate of a conductive liquid in a closed conduit running full. It covers flowmeter types utilizing both alternating current (AC) and pulsed direct current (DC) circuits to drive the field coils and meters running from a mains power supply and those operating from batteries or other sources of power.
ISO 20456:2017 is not applicable to insertion-type flowmeters or electromagnetic flowmeters designed to work in open channels or pipes running partially full, nor does it apply to the measurement of magnetically permeable slurries or liquid metal applications.
ISO 20456:2017 does not specify safety requirements in relation to hazardous environmental usage of the flowmeter.

  • Standard
    38 pages
    English language
    e-Library read for
    1 day

ISO 20456:2017 applies to industrial electromagnetic flowmeters used for the measurement of flowrate of a conductive liquid in a closed conduit running full. It covers flowmeter types utilizing both alternating current (AC) and pulsed direct current (DC) circuits to drive the field coils and meters running from a mains power supply and those operating from batteries or other sources of power.
ISO 20456:2017 is not applicable to insertion-type flowmeters or electromagnetic flowmeters designed to work in open channels or pipes running partially full, nor does it apply to the measurement of magnetically permeable slurries or liquid metal applications.
ISO 20456:2017 does not specify safety requirements in relation to hazardous environmental usage of the flowmeter.

  • Standard
    38 pages
    English language
    e-Library read for
    1 day

ISO/IEC TR 30148:2019 (E) describes: – the structure of wireless gas meter networks, and – the application protocol of wireless gas meter networks

  • Technical report
    28 pages
    English language
    sale 15% off

This document specifies requirements and recommendations for ultrasonic gas flowmeters (USMs), which utilize the transit time of acoustic signals to measure the flow of single phase homogenous gases in closed conduits. This document applies to transit time ultrasonic gas flowmeters used for custody transfer and allocation metering, such as full-bore, reduced-area, high-pressure, and low-pressure meters or any combination of these. There are no limits on the minimum or maximum sizes of the meter. This document can be applied to the measurement of almost any type of gas, such as air, natural gas, and ethane. Included are flow measurement performance requirements for meters of two accuracy classes suitable for applications such as custody transfer and allocation measurement. This document specifies construction, performance, calibration, diagnostics for meter verification, and output characteristics of ultrasonic meters for gas flow measurement and deals with installation conditions. NOTE It is possible that national or other regulations apply which can be more stringent than those in this document.

  • Standard
    114 pages
    English language
    sale 15% off
  • Standard
    121 pages
    French language
    sale 15% off

This document gives guidelines for the specification, testing, inspection, installation, operation and calibration of thermal mass gas flowmeters for the metering of gases and gas mixtures. It is not applicable to measuring liquid mass flowrates using thermal mass flowmeters. This document is not applicable to hot wire and other hot film anemometers, also used in making point velocity measurements.

  • Standard
    30 pages
    English language
    sale 15% off

ISO 20456:2017 applies to industrial electromagnetic flowmeters used for the measurement of flowrate of a conductive liquid in a closed conduit running full. It covers flowmeter types utilizing both alternating current (AC) and pulsed direct current (DC) circuits to drive the field coils and meters running from a mains power supply and those operating from batteries or other sources of power.
ISO 20456:2017 is not applicable to insertion-type flowmeters or electromagnetic flowmeters designed to work in open channels or pipes running partially full, nor does it apply to the measurement of magnetically permeable slurries or liquid metal applications.
ISO 20456:2017 does not specify safety requirements in relation to hazardous environmental usage of the flowmeter.

  • Standard
    35 pages
    English language
    e-Library read for
    1 day
  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    33 pages
    French language
    sale 15% off

ISO/TR 3313:2018 defines pulsating flow, compares it with steady flow, indicates how it can be detected, and describes the effects it has on orifice plates, nozzles or Venturi tubes, turbine and vortex flowmeters when these devices are being used to measure fluid flow in a pipe. These particular flowmeter types feature in this document because they are amongst those types most susceptible to pulsation effects. Methods for correcting the flowmeter output signal for errors produced by these effects are described for those flowmeter types for which this is possible. When correction is not possible, measures to avoid or reduce the problem are indicated. Such measures include the installation of pulsation damping devices and/or choice of a flowmeter type which is less susceptible to pulsation effects. ISO/TR 3313:2018 applies to flow in which the pulsations are generated at a single source which is situated either upstream or downstream of the primary element of the flowmeter. Its applicability is restricted to conditions where the flow direction does not reverse in the measuring section but there is no restriction on the waveform of the flow pulsation. The recommendations within this document apply to both liquid and gas flows although with the latter the validity might be restricted to gas flows in which the density changes in the measuring section are small as indicated for the particular type of flowmeter under discussion.

  • Technical report
    45 pages
    English language
    sale 15% off