ISO/TC 30/SC 2 - Pressure differential devices
Appareils déprimogènes
General Information
This document specifies the geometry and method of use (installation and operating conditions) of nozzles and Venturi nozzles when they are inserted in a conduit running full to determine the flowrate of the fluid flowing in the conduit. This document also provides background information for calculating the flowrate and is applicable in conjunction with the requirements given in ISO 5167‑1. This document is applicable to nozzles and Venturi nozzles in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, each of the devices can only be used within specified limits of pipe size and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of nozzles and Venturi nozzles in pipe sizes less than 50 mm or more than 630 mm, or where the pipe Reynolds numbers are below 10 000. This document deals with a) three types of standard nozzles: ISA 1932[1] nozzle; the long radius nozzle[2]; the throat-tapped nozzle b) the Venturi nozzle. The three types of standard nozzle are fundamentally different and are described separately in this document. The Venturi nozzle has the same upstream face as the ISA 1932 nozzle, but has a divergent section and, therefore, a different location for the downstream pressure tappings, and is described separately. This design has a lower pressure loss than a similar nozzle. For all of these nozzles and for the Venturi nozzle direct calibration experiments have been made, sufficient in number, spread and quality to enable coherent systems of application to be based on their results and coefficients to be given with certain predictable limits of uncertainty. [1] ISA is the abbreviation for the International Federation of the National Standardizing Associations, which was superseded by ISO in 1946. [2] The long radius nozzle differs from the ISA 1932 nozzle in shape and in the position of the pressure tappings.
- Standard43 pagesEnglish languagesale 15% off
- Standard41 pagesFrench languagesale 15% off
This document specifies the geometry and method of use (installation and operating conditions) of wedge meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit. NOTE 1 As the uncertainty of an uncalibrated wedge meter can be too large for a particular application, it could be deemed essential to calibrate the flow meter according to Clause 7. This document gives requirements for calibration which, if applied, are for use over the calibrated Reynolds number range. Clause 7 could also be useful guidance for calibration of meters of similar design but which fall outside the scope of this document. It also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1. This document is applicable only to wedge meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated wedge meters can only be used within specified limits of pipe size, roughness, beta (or wedge ratio) and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated wedge meters in pipes whose internal diameter is less than 50 mm or more than 600 mm, or where the pipe Reynolds numbers are below 1 × 104. NOTE 2 A wedge meter has a primary element which consists of a wedge-shaped restriction of a specific geometry. Alternative designs of wedge meters are available; however, at the time of writing there is insufficient data to fully characterize these devices, and therefore these meters are calibrated in accordance with Clause 7.
- Standard13 pagesEnglish languagesale 15% off
- Standard14 pagesFrench languagesale 15% off
ISO/TR 3313:2018 defines pulsating flow, compares it with steady flow, indicates how it can be detected, and describes the effects it has on orifice plates, nozzles or Venturi tubes, turbine and vortex flowmeters when these devices are being used to measure fluid flow in a pipe. These particular flowmeter types feature in this document because they are amongst those types most susceptible to pulsation effects. Methods for correcting the flowmeter output signal for errors produced by these effects are described for those flowmeter types for which this is possible. When correction is not possible, measures to avoid or reduce the problem are indicated. Such measures include the installation of pulsation damping devices and/or choice of a flowmeter type which is less susceptible to pulsation effects. ISO/TR 3313:2018 applies to flow in which the pulsations are generated at a single source which is situated either upstream or downstream of the primary element of the flowmeter. Its applicability is restricted to conditions where the flow direction does not reverse in the measuring section but there is no restriction on the waveform of the flow pulsation. The recommendations within this document apply to both liquid and gas flows although with the latter the validity might be restricted to gas flows in which the density changes in the measuring section are small as indicated for the particular type of flowmeter under discussion.
- Technical report45 pagesEnglish languagesale 15% off
ISO/TR 15377:2018 describes the geometry and method of use for conical-entrance orifice plates, quarter-circle orifice plates, eccentric orifice plates and Venturi tubes with 10,5° convergent angles. Recommendations are also given for square-edged orifice plates and nozzles under conditions outside the scope of ISO 5167. NOTE The data on which this document is based are limited in some cases.
- Technical report31 pagesEnglish languagesale 15% off
- Technical report31 pagesFrench languagesale 15% off
- Technical report31 pagesFrench languagesale 15% off
ISO 5167-5:2016 specifies the geometry and method of use (installation and operating conditions) of cone meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit. As the uncertainty of an uncalibrated cone meter might be too high for a particular application, it might be deemed essential to calibrate the flow meter in accordance with Clause 7. ISO 5167-5:2016 also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1. ISO 5167-5:2016 is applicable only to cone meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated cone meters can only be used within specified limits of pipe size, roughness, β, and Reynolds number. This part of ISO 5167 is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated cone meters in pipes sized less than 50 mm or more than 500 mm, or where the pipe Reynolds numbers are below 8 × 104 or greater than 1,2 × 107. A cone meter is a primary device which consists of a cone-shaped restriction held concentrically in the centre of the pipe with the nose of the cone upstream. The design of cone meter defined in this part of ISO 5167 has one or more upstream pressure tappings in the wall, and a downstream pressure tapping positioned in the back face of the cone with the connection to a differential pressure transmitter being a hole through the cone to the support bar, and then up through the support bar. Alternative designs of cone meters are available; however, at the time of writing, there is insufficient data to fully characterize these devices, and therefore, these meters shall be calibrated in accordance with Clause 7.
- Standard15 pagesEnglish languagesale 15% off
- Standard15 pagesEnglish languagesale 15% off
- Standard16 pagesFrench languagesale 15% off
- Standard16 pagesFrench languagesale 15% off
ISO/TR 11583:2012 describes the measurement of wet gas with differential pressure meters. It applies to two-phase flows of gas and liquid in which the flowing fluid mixture consist of gas in the region of 95 % volume fraction or more. ISO/TR 11583:2012 is an extension of ISO 5167. The ranges of gases and liquids from which the equations in ISO/TR 11583:2012 were derived are given. It is possible that the equations do not apply to liquids significantly different from those tested, particularly to highly viscous liquids. Although the over-reading equations presented in ISO/TR 11583:2012 apply for a wide range of gases and liquids at appropriate gas-liquid density ratios, evaluating gas flow rates depends on information in addition to that required in single-phase flow: a measurement of the pressure loss can be sufficient; measurement of the liquid flow using tracers can be possible; the total mass flow rate may be known (this is more likely in a wet-steam flow than in a natural gas/liquid flow); in a wet-steam flow a throttling calorimeter can be used. Wet-gas measurement using Venturi tubes or orifice plates is covered in ISO/TR 11583:2012.
- Technical report26 pagesEnglish languagesale 15% off
ISO/TR 9464:2008 provides guidance on the use of ISO 5167:2003 (all parts). ISO 5167:2003 is an International Standard for flow measurement based on the differential pressure generated by a constriction introduced into a circular conduit. It presents a set of rules and requirements based on theory and experimental work undertaken in the field of flow measurement.
- Technical report68 pagesEnglish languagesale 15% off
ISO/TR 12767 provides guidance on estimating the flowrate when using pressure differential devices constructed or operated outside the scope of ISO 5167. Additional tolerances or corrections cannot necessarily compensate for the effects of deviating from ISO 5167 (all parts). The information is given, in the first place, to indicate the degree of care necessary in the manufacture, installation and maintenance of pressure differential devices by describing some of the effects of non-conformity to the requirements; and in the second place, to permit those users who cannot comply fully with the requirements to assess, however roughly, the magnitude and direction of the resulting error in flowrate. Each variation dealt with is treated as though it were the only one present. Where more than one is known to exist, there may be unpredictable interactions and care has to be taken when combining the assessment of these errors. If there is a significant number of errors, means of eliminating some of them have to be considered. The variations included in ISO/TR 12767 are by no means complete and relate largely to examples with orifice plates. An example with Venturi tubes has been placed at the end of its section. There are, no doubt, many similar examples of installations not conforming to ISO 5167 (all parts) for which no comparable data have been published. Such additional information from users, manufacturers and any others may be taken into account in future revisions of ISO/TR 12767.
- Technical report35 pagesEnglish languagesale 15% off
- Technical report38 pagesFrench languagesale 15% off
ISO 2186:2007 sets out provisions for the design, lay-out and installation of a pressure signal transmission system, whereby a pressure signal from a primary fluid flow device can be transmitted by known techniques to a secondary device safely and in such a way that the value of the signal is not distorted or modified.
- Standard20 pagesEnglish languagesale 15% off
- Standard25 pagesEnglish languagesale 10% offe-Library read for1 day
ISO 9300:2005 specifies the geometry and method of use (installation in a system and operating conditions) of critical flow Venturi nozzles (CFVN) used to determine the mass flow-rate of a gas flowing through a system. It also gives the information necessary for calculating the flow-rate and its associated uncertainty. It is applicable to Venturi nozzles in which the gas flow accelerates to the critical velocity at the throat (this being equal to the local sonic velocity), and only where there is steady flow of single-phase gases.
- Standard38 pagesEnglish languagesale 15% off
- Standard42 pagesFrench languagesale 15% off
ISO 5167-1:2003 defines terms and symbols and establishes the general principles for methods of measurement and computation of the flowrate of fluid flowing in a conduit by means of pressure differential devices (orifice plates, nozzles and Venturi tubes) when they are inserted into a circular cross-section conduit running full. ISO 5167-1:2003 also specifies the general requirements for methods of measurement, installation and determination of the uncertainty of the measurement of flowrate. It also defines the general specified limits of pipe size and Reynolds number for which these pressure differential devices are to be used. ISO 5167 (all parts) is applicable only to flow that remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. It is not applicable to the measurement of pulsating flow.
- Standard33 pagesEnglish languagesale 15% off
- Standard33 pagesFrench languagesale 15% off
ISO 5167-4:2003 specifies the geometry and method of use (installation and operating conditions) of Venturi tubes when they are inserted in a conduit running full to determine the flowrate of the fluid flowing in the conduit. ISO 5167-4:2003 also provides background information for calculating the flow-rate and is applicable in conjunction with the requirements given in ISO 5167-1. ISO 5167-4:2003 is applicable only to Venturi tubes in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, each of these devices can only be used within specified limits of pipe size, roughness, diameter ratio and Reynolds number. ISO 5167-4:2003 is not applicable to the measurement of pulsating flow. It does not cover the use of Venturi tubes in pipes sized less than 50 mm or more than 1 200 mm, or for where the pipe Reynolds numbers are below 20 000. ISO 5167-4:2003 deals with the three types of classical Venturi tubes: cast, machined and rough welded sheet-iron. A Venturi tube is a device which consists of a convergent inlet connected to a cylindrical throat which is in turn connected to a conical expanding section called the "divergent". The differences between the values of the uncertainty of the discharge coefficient for the three types of classical Venturi tube show, on the one hand, the number of results available for each type of classical Venturi tube and, on the other hand, the more or less precise definition of the geometric profile. The values are based on data collected many years ago. Venturi nozzles (and other nozzles) are dealt with in ISO 5167-3.
- Standard24 pagesEnglish languagesale 15% off
- Standard24 pagesFrench languagesale 15% off
ISO 5167-2:2003 specifies the geometry and method of use (installation and operating conditions) of orifice plates when they are inserted in a conduit running full to determine the flow-rate of the fluid flowing in the conduit. It also provides background information for calculating the flow-rate and is applicable in conjunction with the requirements given in ISO 5167-1. ISO 5167-2:2003 is applicable to primary devices having an orifice plate used with flange pressure tappings, or with corner pressure tappings, or with D and D/2 pressure tappings. Other pressure tappings such as vena contracta and pipe tappings have been used with orifice plates but are not covered by ISO 5167-2:2003. ISO 5167-2:2003 is applicable only to a flow which remains subsonic throughout the measuring section and where the fluid can be considered as single phase. It is not applicable to the measurement of pulsating flow. It does not cover the use of orifice plates in pipe sizes less than 50 mm or more than 1 000 mm, or for pipe Reynolds numbers below 5 000.
- Standard47 pagesEnglish languagesale 15% off
- Standard50 pagesFrench languagesale 15% off
ISO/TR 15377:2007 describes the geometry and method of use for conical-entrance orifice plates, quarter-circle orifice plates, eccentric orifice plates and Venturi tubes with 10,5 degree convergent angles. Recommendations are also given for square-edged orifice plates and nozzles under conditions outside the scope of ISO 5167.
- Technical report26 pagesEnglish languagesale 15% off
ISO 5167-3:2003 specifies the geometry and method of use (installation and operating conditions) of nozzles and Venturi nozzles when they are inserted in a conduit running full to determine the flow-rate of the fluid flowing in the conduit. ISO 5167-3:2003 also provides background information for calculating the flow-rate and is applicable in conjunction with the requirements given in ISO 5167-1. ISO 5167-3:2003 is applicable to nozzles and Venturi nozzles in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, each of the devices can only be used within specified limits of pipe size and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of nozzles and Venturi nozzles in pipe sizes less than 50 mm or more than 630 mm, or for pipe Reynolds numbers below 10 000. ISO 5167-3:2003 deals with two types of standard nozzles, the ISA 1932 nozzle and the long radius nozzle, as well as the Venturi nozzle. The two types of standard nozzle are fundamentally different and are described separately in ISO 5167-3:2003. The Venturi nozzle has the same upstream face as the ISA 1932 nozzle, but has a divergent section and, therefore, a different location for the downstream pressure tappings, and is described separately. This design has a lower pressure loss than a similar nozzle. For both of these nozzles and for the Venturi nozzle direct calibration experiments have been made, sufficient in number, spread and quality to enable coherent systems of application to be based on their results and coefficients to be given with certain predictable limits of uncertainty.
- Standard30 pagesEnglish languagesale 15% off
- Standard31 pagesFrench languagesale 15% off
- Technical report40 pagesEnglish languagesale 15% off
- Technical report40 pagesEnglish languagesale 10% offe-Library read for1 day
- Technical report31 pagesEnglish languagesale 15% off
- Technical report21 pagesEnglish languagesale 15% off
- Technical report74 pagesEnglish languagesale 15% off
- Standard16 pagesEnglish languagesale 15% off
- Standard16 pagesFrench languagesale 15% off
- Standard1 pageFrench languagesale 15% off
- Standard1 pageFrench languagesale 15% off
- Technical report21 pagesEnglish languagesale 15% off
- Technical report24 pagesEnglish languagesale 10% offe-Library read for1 day
Specifies the geometry and method of use (installation and operating conditions). Gives necessary information for calculating the flow-rate and its associated uncertainty. Applies only to devices in which the flow remains subsonic.
- Standard61 pagesEnglish languagesale 15% off
- Standard65 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard61 pagesFrench languagesale 15% off
- Standard61 pagesFrench languagesale 15% off
- Standard16 pagesEnglish languagesale 15% off
- Standard16 pagesFrench languagesale 15% off
- Standard16 pagesFrench languagesale 15% off
Describes means whereby a pressure signal from a primary element can be transmitted by known techniques to a secondary device in such a way that the value of the signal is not distorted or modified even though it may be changed into a signal of a different nature. Is concerned only with the pressure difference techniques of flow measurement.
- Standard34 pagesEnglish languagesale 15% off
- Standard34 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard34 pagesFrench languagesale 15% off
- Standard34 pagesFrench languagesale 15% off