13.080.10 - Chemical characteristics of soils
ICS 13.080.10 Details
Chemical characteristics of soils
Bodenuntersuchung auf chemische Substanzen
Propriétés chimiques des sols
Kemijske značilnosti tal
General Information
Frequently Asked Questions
ICS 13.080.10 is a classification code in the International Classification for Standards (ICS) system. It covers "Chemical characteristics of soils". The ICS is a hierarchical classification system used to organize international, regional, and national standards, facilitating the search and identification of standards across different fields.
There are 400 standards classified under ICS 13.080.10 (Chemical characteristics of soils). These standards are published by international and regional standardization bodies including ISO, IEC, CEN, CENELEC, and ETSI.
The International Classification for Standards (ICS) is a hierarchical classification system maintained by ISO to organize standards and related documents. It uses a three-level structure with field (2 digits), group (3 digits), and sub-group (2 digits) codes. The ICS helps users find standards by subject area and enables statistical analysis of standards development activities.
e-Library Subscription
Create subscription and get permanent access to documents within 13.080.10 - Chemical characteristics of soils
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
This document specifies the procedure for a quantitative determination of major and trace element concentrations in homogeneous solid waste, soil, soil-like material and sludge by energy dispersive X-ray fluorescence (EDXRF) spectrometry or wavelength dispersive X-ray fluorescence (WDXRF) spectrometry using a calibration with matrix-matched standards.
This document is applicable for the following elements: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Te, I, Cs, Ba, Ta, W, Hg, Tl, Pb, Bi, Th and U. Concentration levels between a mass fraction of approximately 0,000 1 % and 100 % can be determined depending on the element and the instrument used.
An optional XRF screening method for solid and liquid material as waste, sludge and soil is added in Annex A which provides a total element characterization at a semi-quantitative level, where the calibration is based on matrix-independent calibration curves, previously set up by the manufacturer.
- Draft42 pagesEnglish languagee-Library read for1 day
This document specifies the procedure for a quantitative determination of major and trace element concentrations in homogeneous solid waste, soil, soil-like material and sludge by energy dispersive X-ray fluorescence (EDXRF) spectrometry or wavelength dispersive X-ray fluorescence (WDXRF) spectrometry using a calibration with matrix-matched standards. This document is applicable for the following elements: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Te, I, Cs, Ba, Ta, W, Hg, Tl, Pb, Bi, Th and U. Concentration levels between a mass fraction of approximately 0,000 1 % and 100 % can be determined depending on the element and the instrument used. An optional XRF screening method for solid and liquid material as waste, sludge and soil is added in REF Annex_sec_A \r \h Annex A 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000C00000041006E006E00650078005F007300650063005F0041000000 which provides a total element characterization at a semi-quantitative level, where the calibration is based on matrix-independent calibration curves, previously set up by the manufacturer.
- Standard38 pagesEnglish languagesale 15% off
- Standard40 pagesFrench languagesale 15% off
This document specifies a method for the determination of the following elements in aqua regia, nitric acid or mixture of hydrochloric (HCl), nitric (HNO3) and tetrafluoroboric (HBF4)/hydrofluoric (HF) acid digests of soil, treated biowaste, waste, sludge and sediment:
aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), caesium (Cs), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhenium (Re), rhodium (Rh), rubidium (Rb), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium (Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium (Yb), yttrium (Y), zinc (Zn), and zirconium (Zr).
NOTE 1 Details on validation are given in Annex A.
This method is also applicable for the determination of major, minor and trace elements in aqua regia and nitric acid digests and in eluates of construction products (EN 17200[7]).
NOTE 2 Construction products include e.g. mineral-based products, bituminous products, metals, wood-based products, plastics and rubbers, sealants and adhesives, paints and coatings.
- Draft25 pagesEnglish languagee-Library read for1 day
This document specifies the determination of Cr(VI) in solid waste material and soil by alkaline digestion and ion chromatography with spectrophotometric detection. This method can be used to determine Cr(VI)-mass fractions in solids higher than 0,1 mg/kg.
NOTE In case of reducing or oxidising waste matrix no valid Cr(VI) content can be reported.
- Draft30 pagesEnglish languagee-Library read for1 day
This document specifies a method for the determination of the following elements in aqua regia, nitric acid or mixture of hydrochloric (HCl), nitric (HNO3) and tetrafluoroboric (HBF4)/hydrofluoric (HF) acid digests of soil, treated biowaste, waste, sludge and sediment: aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), caesium (Cs), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhenium (Re), rhodium (Rh), rubidium (Rb), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium (Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium (Yb), yttrium (Y), zinc (Zn), and zirconium (Zr). NOTE 1 Details on validation are given in Annex A. This method is also applicable for the determination of major, minor and trace elements in aqua regia and nitric acid digests and in eluates of construction products (EN 17200[ REF Reference_ref_8 \r \h 7]). NOTE 2 Construction products include e.g. mineral-based products, bituminous products, metals, wood-based products, plastics and rubbers, sealants and adhesives, paints and coatings.
- Standard19 pagesEnglish languagesale 15% off
- Standard20 pagesFrench languagesale 15% off
This document specifies the determination of Cr(VI) in solid waste material and soil by alkaline digestion and ion chromatography with spectrophotometric detection. This method can be used to determine Cr(VI)-mass fractions in solids higher than 0,1 mg/kg. NOTE In case of reducing or oxidising waste matrix no valid Cr(VI) content can be reported.
- Standard25 pagesEnglish languagesale 15% off
- Standard27 pagesFrench languagesale 15% off
This document specifies methods for quantitative determination of seven selected polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153 and PCB180) in soil, sludge, sediment, treated biowaste, and waste using GC-MS and GC-ECD (see Table 2).
The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract.
Under the conditions specified in this document, lower limit of application from 1 μg/kg (expressed as dry matter) for soils, sludge and biowaste to 10 μg/kg (expressed as dry matter) for solid waste can be achieved. For some specific samples the limit of 10 μg/kg cannot be reached.
Sludge, waste and treated biowaste may differ in properties, as well as in the expected contamination levels of PCB and presence of interfering substances. These differences make it impossible to describe one general procedure. This document contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used.
NOTE The analysis of PCB in insulating liquids, petroleum products, used oils and aqueous samples is referred to in EN 61619, EN 12766-1 and ISO 6468 respectively.
The method can be applied to the analysis of other PCB congeners not specified in the scope, provided suitability is proven by proper in-house validation experiments.
- Standard50 pagesEnglish languagee-Library read for1 day
This document specifies methods for quantitative determination of seven selected polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153 and PCB180) in soil, sludge, sediment, treated biowaste, and waste using GC-MS and GC-ECD (see Table 2).
The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract.
Under the conditions specified in this document, lower limit of application from 1 μg/kg (expressed as dry matter) for soils, sludge and biowaste to 10 μg/kg (expressed as dry matter) for solid waste can be achieved. For some specific samples the limit of 10 μg/kg cannot be reached.
Sludge, waste and treated biowaste may differ in properties, as well as in the expected contamination levels of PCB and presence of interfering substances. These differences make it impossible to describe one general procedure. This document contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used.
NOTE The analysis of PCB in insulating liquids, petroleum products, used oils and aqueous samples is referred to in EN 61619, EN 12766-1 and ISO 6468 respectively.
The method can be applied to the analysis of other PCB congeners not specified in the scope, provided suitability is proven by proper in-house validation experiments.
- Standard50 pagesEnglish languagee-Library read for1 day
This document specifies a method for the differentiated determination of the organic carbon content (TOC400) which is released at temperatures up to 400 °C, the residual oxidizable carbon (ROC) (including e.g. lignite (brown coal), hard coal, charcoal, black carbon, soot) and the inorganic carbon (TIC900) which is released at temperatures up to 900 °C. The basis of this method is the dry combustion or decomposition of carbon to CO2 in the presence of oxygen or non-oxygen conditions using temperatures ranging from 150 °C to 900 °C in dry solid samples of sediment, soil, soil with anthropogenic admixtures and solid waste (see Table 1) with carbon contents of more than 1 g per kg (0,1 % C) (per carbon type in the test portion). NOTE TIC900’ includes the TIC measured after acid addition e.g. by ISO 10694 or EN 15936. TOC400 is a fraction of TOC measured according to e.g. ISO 10694 or EN 15936.
- Standard22 pagesEnglish languagesale 15% off
This document specifies a method for the determination of the potential cation exchange capacity (CEC) of soil buffered at pH = 8,1 and for the determination of the content of exchangeable sodium, potassium, calcium and magnesium in soil. This document is applicable to all types of air-dried soil samples.
- Standard8 pagesEnglish languagesale 15% off
This document specifies a method for the determination of the following elements in aqua regia, nitric acid or mixture of hydrochloric (HCl), nitric (HNO3) and tetrafluoroboric (HBF4)/hydrofluoric (HF) acid digests of soil, treated biowaste, waste, sludge and sediment:
Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gallium (Ga), gadolinium (Gd), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu) magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhodium (Rh), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tantalum (Ta), tellurium (Te), terbium (Tb), thallium (Tl), thulium (Tm), thorium (Th), tin (Sn), titanium (Ti), tungsten (W), vanadium (V), yttrium (Y), ytterbium (Yb), zinc (Zn) and zirconium (Zr).
The method is also applicable to other extracts or digests originating from, for example, DTPA extraction, fusion methods or total digestion methods, provided the user has verified the applicability.
The method has been validated for the elements given in Table A.1 (sludge), Table A.2 (compost) and Table A.3 (soil). The method is applicable for other solid matrices and other elements as listed above, provided the user has verified the applicability.
This method is also applicable for the determination of major, minor and trace elements in aqua regia and nitric acid digests and in eluates of construction products (EN 17200[22]).
NOTE Construction products include e.g. mineral-based products; bituminous products; metals; wood-based products; plastics and rubbers; sealants and adhesives; paints and coatings.
- Standard37 pagesEnglish languagee-Library read for1 day
This document specifies a method for the determination of potential cation exchange capacity (CEC) and the content of exchangeable cations (Ca, K, Mg, Na) in soils using a molar ammonium acetate solution buffered at pH 7 as extractant.
This document is applicable to all types of air-dry soil samples which have been prepared, for example, according to ISO 11464.
- Technical specification13 pagesEnglish languagee-Library read for1 day
- Technical specification8 pagesEnglish languagesale 15% off
- Technical specification8 pagesFrench languagesale 15% off
This European standard specifies a method for the differentiated determination of the organic carbon content (TOC400) which is released at temperatures up to 400 °C, the residual oxidizable carbon (ROC) (including e.g. lignite (brown coal), hard coal, charcoal, black carbon, soot) and the inorganic carbon (TIC900) which is released at temperatures up to 900 °C.
The basis is the dry combustion to CO2 in a in the presence of oxygen using using temperatures ranging from 150°C to 900 °C in dry solid samples of soil, soil with anthropogenic admixtures and solid waste (see Table 1) with carbon contents of more than 1 g per kg (0,1 % C) (per carbon type in the test portion).
- Standard31 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
5.1 This practice provides procedures to generate and document QC data for ensuring that an XRF is operating within acceptable tolerances throughout the testing period when being used to collect lead results during a lead-based paint (LBP) inspection for the purposes of generating lead classification results.
5.2 This practice is intended to supplement XRF instrument manufacturer protocols and PCSs4 through the use of QA and QC procedures to provide uniform lead testing practices among the wide variety of available field-portable XRF instruments.
Note 1: The United States requires that an XRF used to perform a lead-based paint inspection in housing is to be utilized according to the PCS for the particular instrument model in use.
5.3 While the QC results collected using this practice can provide assurances that an XRF instrument is operating within acceptable tolerances, this practice does not determine an actual level of confidence for a classification result obtained from an XRF measurement.
5.4 This practice does not address selection of test locations or representative sampling for leaded paint. Additional information on conducting measurements of lead in leaded paint or other coatings may be found in Guide E2115 and the HUD Guidelines, Chapter 7.
5.5 This practice involves the use of field-portable XRF instruments that may contain radioactive materials or X-ray tubes that emit X-rays or gamma rays, or both. These instruments are intended for use only by qualified, trained personnel.
5.6 The use of field-portable XRF instruments for measurement of lead may not accurately reveal low but still potentially hazardous levels of lead.
SCOPE
1.1 This practice covers the collection and documentation of quality control (QC) measurements for determining acceptable levels of instrumental performance when using field-portable energy-dispersive X-ray fluorescence spectrometry devices (XRFs) for the purposes of generating lead classification results from measurements on paint and other coating films within buildings and related structures.
1.1.1 This practice is not designed to determine the presence of a hazard as defined by authorities having jurisdiction in the United States or other jurisdictions. See Guide E2115 and the HUD Guidelines for more information.
1.2 QC procedures covered in this provisional practice include the performance of calibration checks, substrate bias checks, and specific instructions for documenting the collected data for later use in reporting the results.
1.3 No detailed operating instructions are provided because of differences among the various makes and models of suitable instruments. Instead, the analyst is to follow the instructions provided by the manufacturer of the particular XRF device or other relevant sources of information on XRF operation.
1.4 This practice contains notes which are explanatory and are not part of the mandatory requirements of this provisional practice.
1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Although this practice is intended for the collection of soil samples from bare areas in and around buildings, this practice may also be used to collect soil samples from other areas and environments.
5.2 This practice limits soil collection to approximately the top 1.5 cm (0.6 in.) of soil surface.
5.3 These samples are collected in a manner that will permit subsequent digestion using sample preparation techniques such as Practices E1726 or E1979 and determination of lead using laboratory analysis techniques such as Test Methods E3193 or E3203.
SCOPE
1.1 This practice covers the collection of bare soil samples from areas around buildings and related structures using coring and scooping methods.
1.2 This practice may not be suitable for collection of soil samples from areas that are paved or otherwise covered with grass, mulch, or the like. See Guide E2115 or Practices E2271/E2271M or E3074/E3074M.
1.3 This practice does not address the sampling design criteria (that is, a sampling plan that includes the number and location of samples) that are used for risk assessment and other lead hazard activities.
1.4 This practice contains notes that are explanatory and are not part of the mandatory requirements of this practice.
1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
This document specifies a method for the determination of the following elements in aqua regia, nitric acid or mixture of hydrochloric (HCl), nitric (HNO3) and tetrafluoroboric (HBF4)/hydrofluoric (HF) acid digests of soil, treated biowaste, waste, sludge and sediment:
Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gallium (Ga), gadolinium (Gd), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu) magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhodium (Rh), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tantalum (Ta), tellurium (Te), terbium (Tb), thallium (Tl), thulium (Tm), thorium (Th), tin (Sn), titanium (Ti), tungsten (W), vanadium (V), yttrium (Y), ytterbium (Yb), zinc (Zn) and zirconium (Zr).
The method is also applicable to other extracts or digests originating from, for example, DTPA extraction, fusion methods or total digestion methods, provided the user has verified the applicability.
The method has been validated for the elements given in Table A.1 (sludge), Table A.2 (compost) and Table A.3 (soil). The method is applicable for other solid matrices and other elements as listed above, provided the user has verified the applicability.
This method is also applicable for the determination of major, minor and trace elements in aqua regia and nitric acid digests and in eluates of construction products (EN 17200[22]).
NOTE Construction products include e.g. mineral-based products; bituminous products; metals; wood-based products; plastics and rubbers; sealants and adhesives; paints and coatings.
- Standard37 pagesEnglish languagee-Library read for1 day
This document specifies a method for the determination of the following elements in aqua regia, nitric acid or mixture of hydrochloric (HCl), nitric (HNO3) and tetrafluoroboric (HBF4)/hydrofluoric (HF) acid digests of soil, treated biowaste, waste, sludge and sediment: Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gallium (Ga), gadolinium (Gd), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu) magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhodium (Rh), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tantalum (Ta), tellurium (Te), terbium (Tb), thallium (Tl), thulium (Tm), thorium (Th), tin (Sn), titanium (Ti), tungsten (W), vanadium (V), yttrium (Y), ytterbium (Yb), zinc (Zn) and zirconium (Zr). The method is also applicable to other extracts or digests originating from, for example, DTPA extraction, fusion methods or total digestion methods, provided the user has verified the applicability. The method has been validated for the elements given in Table A.1 (sludge), Table A.2 (compost) and Table A.3 (soil). The method is applicable for other solid matrices and other elements as listed above, provided the user has verified the applicability. This method is also applicable for the determination of major, minor and trace elements in aqua regia and nitric acid digests and in eluates of construction products (EN 17200[22]). NOTE Construction products include e.g. mineral-based products; bituminous products; metals; wood-based products; plastics and rubbers; sealants and adhesives; paints and coatings.
- Standard29 pagesEnglish languagesale 15% off
- Standard31 pagesFrench languagesale 15% off
SIGNIFICANCE AND USE
4.1 This guide provides an overview of analytical methods, techniques, and procedures that may be used in determination of PFAS in environmental media.
4.2 This guide provides considerations relevant to the selection and application of PFAS analytical methods, techniques, and procedures, including the limitations of published analytical methods and the potential benefits and challenges of non-standard analytical approaches.
4.3 This guide presents comparisons of published analytical methods and approaches, including tabular comparison of target analyte lists and method features, to aid users in the selection and application of analytical methods and techniques for project-specific applications.
4.4 This guide describes qualitative techniques available to determine total PFAS, including explanation of terms, discussion of preparation and analytical techniques and limitations, conceptual overview schematic, and summary comparison table.
4.5 This guide provides current information on research trends in PFAS determination techniques applied to environmental media.
4.6 This guide provides an integrated framework that results in efficient, cost-effective decision-making for timely, appropriate response actions for PFAS-impacted environmental media.
4.7 This guide is not intended to replace or supersede federal, state, local, or international regulatory requirements. Instead, this guide may be used to complement and support such requirements.
4.8 This guide may be used by various parties involved in response actions for PFAS-impacted environmental media, including regulatory agencies, project sponsors, environmental consultants and contractors, site remediation professionals, analytical testing laboratories, data reviewers, data users, academic institutions, research institutes, and other stakeholders.
4.9 The users of this guide should consider assembling a team of experienced professionals with appropriate expertise to scope, plan, and execute PFA...
SCOPE
1.1 This guide discusses the selection and application of analytical methods and techniques used to identify and quantitate per- and polyfluoroalkyl substances (PFAS) in environmental media. This guide provides a flexible, defensible framework applicable to a wide range of environmental programs. It is structured to support a tiered approach with analytical methods, procedures, and techniques of increasing complexity as the user proceeds through the evaluation process. This guide addresses key decision criteria and best practices to aid users in achieving project objectives. There are numerous technical decisions that must be made in the selection and application of analytical methods and techniques used during environmental data acquisition programs. It is not the intent of this guide to define appropriate technical decisions, but rather to provide technical support within existing decision frameworks.
1.2 This guide informs practitioners on the considerations relevant to the selection and application of analytical methods and techniques for the quantitative and qualitative determination of PFAS in a variety of environmental sample media. This guide encourages user-led collaboration with stakeholders, including analytical laboratories, data evaluation practitioners, and regulators, in the selection and application of analytical methods and techniques used to support project-specific decision criteria and objectives as applied within a particular environmental regulatory program. This guide recognizes the complexity and diversity of environmental programs and project objectives and provides technical guidance for a range of project applications.
1.3 This guide is intended to complement, not replace, existing regulatory requirements or guidance. ASTM International (ASTM) guides are not regulations; they are consensus-based standards that may be followed as needed.
1.4 This guide recognizes that PFAS can be catego...
- Guide21 pagesEnglish languagesale 15% off
- Guide21 pagesEnglish languagesale 15% off
This document specifies a method for the determination of potential cation exchange capacity (CEC) and the content of exchangeable cations (Ca, K, Mg, Na) in soils using a molar ammonium acetate solution buffered at pH 7 as extractant. This document is applicable to all types of air-dry soil samples which have been prepared, for example, according to ISO 11464.
- Technical specification13 pagesEnglish languagee-Library read for1 day
- Technical specification8 pagesEnglish languagesale 15% off
- Technical specification8 pagesFrench languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method has been developed by the U.S. EPA Region 5 Chicago Regional Laboratory (CRL).
5.2 PFAS are widely used in various industrial and commercial products; they are persistent, bio-accumulative, and ubiquitous in the environment. PFAS have been reported to exhibit developmental toxicity, hepatotoxicity, immunotoxicity, and hormone disturbance. A draft Toxicological Profile for Perfluoroalkyls from the U.S. Department of Health and Human Services is available.7 PFAS have been detected in soils, sludges, and surface and drinking waters. Hence, there is a need for a quick, easy, and robust method to determine these compounds at trace levels in various soil matrices for understanding of the sources and pathways of exposure.
5.3 This method has been used to determine selected PFAS in sand (Table 4) and four ASTM reference soils (Table 5).
SCOPE
1.1 This procedure covers the determination of selected polyfluorinated alkyl substances (PFAS) in a soil matrix using solvent extraction, filtration, followed by liquid chromatography (LC) and detection with tandem mass spectrometry (MS/MS). These analytes are qualitatively and quantitatively determined by this method. This method adheres to multiple reaction monitoring (MRM) mass spectrometry. This procedure utilizes a quick extraction and is not intended to generate an exhaustive accounting of the content of PFAS in difficult soil matrices. An exhaustive extraction procedure for PFAS, such as published by Washington et al.,2 for difficult matrices should be considered when analyzing PFAS. The approach from this standard was utilized to screen laboratory coats (textiles) to identify if PFAS would be leached from the materials.
1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 The method of detection limit3 and reporting range4 for the target analytes are listed in Table 1.
1.3.1 The reporting limit in this test method is the minimum value below which data are documented as non-detects. Analyte detections between the method detection limit and the reporting limit are estimated concentrations and are not reported following this test method. In most cases, the reporting limit is calculated from the concentration of the Level 1 calibration standard as shown in Table 2 for the PFAS after taking into account a 2 g sample weight and a final extract volume of 10 mL, 50 % water/50 % MeOH with 0.1 % acetic acid. The final extract volume is assumed to be 10 mL because 10 mL of 50 % water/50 % MeOH with 0.1 % acetic acid was added to each soil sample and only the liquid layer after extraction is filtered, leaving the solid and any residual solvent behind. It is raised above the Level 1 calibration concentration for PFOS, PFHxA, FHEA, and FOEA; these compounds can be identified at the Level 1 concentration but the standard deviation among replicates at this lower spike level resulted in a higher reporting limit.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard24 pagesEnglish languagesale 15% off
- Standard24 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Information on pH of soil is used as an aid in evaluating the corrosivity of a soil environment. Some metals are more sensitive to the pH of their environment than others, and information on the stability of a metal as a function of pH and potential is available in the literature.3
SCOPE
1.1 This test method covers a procedure for determining the pH of a soil in corrosion evaluations. The principle use of the test is to supplement soil resistivity measurements and thereby identify conditions under which the corrosion of metals in soil may be accentuated (see G57 – 78 (2012)).
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This practice is a screening procedure for determining the presence of fuels containing aromatic compounds in soils. If a sample of the contaminant fuel is available for use in calibration, the approximate concentration of the fuel in the soil can be calculated. If the fuel type is known but a sample of the contaminant fuel is not available for calibration, an estimate of the contaminant fuel concentration can be calculated using average response factors based on composition of the fuel in the soil. If the composition of the contaminant fuel is unknown, a contaminant concentration cannot be calculated, and this practice can only be used only to indicate the presence or absence of fuel contamination.
5.2 Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as crude oil, coal oil, and motor oil, can be determined by this practice. The quantitation limit for diesel fuel is about 75 mg/kg. Approximate quantitation limits for other aromatic-containing hydrocarbon materials that can be determined by this screening practice are given in Table 1. Quantitation limits for highly aliphatic materials, such as aviation gasoline and synthetic motor oil, are much higher than those for more aromatic materials, such as coal oil and diesel fuel.
Note 1: The quantitation limits listed in Table 1 are estimated values because in this practice, the quantitation limit can be influenced by the particular fuel type and soil background. For information on how the values given in Table 1 were determined, see Appendix X1. Data generated during the development of this screening practice and other information pertaining to this practice can be found in the referenced research reports (1, 2).3
5.3 When applying this practice to sites contaminated by diesel fuel, care should be taken in selecting the appropriate response factor from the list given in Table 2, with consideration given to whether or not t...
SCOPE
1.1 This practice is a screening procedure for assessing the presence of fuels containing aromatic compounds in soils. If a sample of the contaminant fuel is available, the concentration of the fuel in the soil can be determined. If the contaminant fuel type is known but a sample of the contaminant fuel is not available, an estimate of the concentration of the fuel in the soil can be made using average response factors based on composition of the fuel in the soil. If the kind of contaminant fuel is unknown, this screening method can be used to identify the presence of contamination.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard10 pagesEnglish languagesale 15% off
- Standard10 pagesEnglish languagesale 15% off
This document specifies methods for quantitative determination of seven selected polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153 and PCB180) in soil, sludge, sediment, treated biowaste, and waste using GC-MS and GC-ECD (see Table 2). The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract. Under the conditions specified in this document, lower limit of application from 1 μg/kg (expressed as dry matter) for soils, sludge and biowaste to 10 μg/kg (expressed as dry matter) for solid waste can be achieved. For some specific samples the limit of 10 μg/kg cannot be reached. Sludge, waste and treated biowaste may differ in properties, as well as in the expected contamination levels of PCB and presence of interfering substances. These differences make it impossible to describe one general procedure. This document contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used. NOTE The analysis of PCB in insulating liquids, petroleum products, used oils and aqueous samples is referred to in EN 61619, EN 12766-1 and ISO 6468 respectively. The method can be applied to the analysis of other PCB congeners not specified in the scope, provided suitability is proven by proper in-house validation experiments.
- Standard40 pagesEnglish languagesale 15% off
- Standard40 pagesFrench languagesale 15% off
- Standard40 pagesFrench languagesale 15% off
This document specifies a method for determining of perchlorate in soil and soil-like materials using liquid chromatography connected to a tandem mass spectrometry (LC-MS/MS). It defines pretreatment (including drying and sieving) of sample, extraction, clean-up, analysis using LC-MS/MS, and calculation of perchlorate content in dry soil. Under the conditions specified in this document, the limit of quantitation (LOQ) is approximately 4,6 μg/kg-dry soil.
- Standard12 pagesEnglish languagesale 15% off
This document specifies a method for quantitative determination of 17 2,3,7,8-chlorine substituted dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls in sludge, treated biowaste and soil using liquid column chromatographic clean-up methods and GC/HRMS. The analytes to be determined with this document are listed in Table 1. The limit of detection depends on the kind of sample, the congener, the equipment used and the quality of chemicals used for extraction and clean-up. Under the conditions specified in this document, limits of detection better than 1 ng/kg (expressed as dry matter) can be achieved. This method is “performance based”. The method can be modified if all performance criteria given in this method are met. NOTE In principle, this method can also be applied for sediments, mineral wastes and for vegetation. It is the responsibility of the user of this document to validate the application for these matrices. For measurement in complex matrices like fly ashes adsorbed on vegetation, it can be necessary to further improve the clean-up. This can also apply to sediments and mineral wastes.
- Standard37 pagesEnglish languagesale 15% off
- Standard40 pagesFrench languagesale 15% off
SIGNIFICANCE AND USE
5.1 Where sulfates are suspected, subgrade soils should be tested as an integral part of a geotechnical evaluation because the possibility that sulfate induced heave may occur if calcium containing stabilizers are used to improve the soils and sulfate reactions may also cause deterioration in concrete structures. When planning to treat a soil used in construction with lime, testing the soil for water soluble sulfates prior to treatment becomes very important (Note 2).
5.2 When sulfate containing cohesive soils are treated with calcium-based stabilizers for foundation improvements, sulfates and free alumina in natural soils react with calcium and free hydroxide to form crystalline minerals, such as ettringite and thaumasite.4 Thaumasite forms when ettringite undergoes changes in the presence of carbonates at low temperatures.5 The sulfate minerals expand considerably when they are hydrated.
Note 2: For more information on the effect of treating soils containing water soluble sulfates, refer to the following publication: Little, D.N., Stabilization of Pavement Subgrades and Base Course with Lime, Kendal/Hunt Publishing Co., Dubuque, IA, 1995.
Note 3: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 These methods determine the water soluble sulfate content of cohesive soils used in construction by using the colorimetric technique. Two methods are presented in this standard. Method A is for use in the field and Method B is for use in the laboratory. The colorimetric technique involves measuring the scattering of a light beam through a solution that contains suspended particulate matter. Measurements of sulfate concentrations in construction soils can be used to guide professionals in the selection of appropriate stabilization methods and to assist in assessment of potential deterioration in concrete structures.
Note 1: These test methods are partially based on the research conducted by Texas A & M University.
1.2 The field method, Method A, is used as a screening test for the presence of sulfates and their concentration. The laboratory method, Method B, provides better resolution than the field method.
1.3 Ion chromatography is also an acceptable alternative method that can be used to evaluate results, however, it is outside the scope of this standard.
1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.
1.5.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropri...
- Standard9 pagesEnglish languagesale 15% off
This document specifies different methods for quantitative determination of 16 polycyclic aromatic hydrocarbons (PAH) (see Table 2) in soil, sludge, treated biowaste, and waste, using GC-MS or HPLC-UV-DAD/FLD covering a wide range of PAH contamination levels (see Table 2).
NOTE The method can be applied to sediments provided that validity is demonstrated by the user.
When using fluorescence detection, acenaphthylene cannot be measured.
[Table 2 -Target analytes of this document]
The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract.
Under the conditions specified in this document, the lower limit of application from 10 μg/kg (expressed as dry matter) for soils, sludge and biowaste to 100 μg/kg (expressed as dry matter) for solid waste can be achieved. For some specific samples (e.g. bitumen) the limit of 100 μg/kg cannot be reached.
Sludge, waste and treated biowaste can differ in properties as well as in the expected contamination levels of PAH and presence of interfering substances. These differences make it impossible to describe one general procedure. This document contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used.
The method can be applied to the analysis of other PAH not specified in the scope, provided suitability is proven by proper in-house validation experiments.
Sampling is not part of this standard. In dependence of the materials, the following standards need to be considered, e.g. EN 14899, ISO 5667-12 and EN ISO 5667-13.
- Standard53 pagesEnglish languagee-Library read for1 day
This European standard specifies a method for the differentiated determination of the organic carbon content (TOC400) which is released at temperatures up to 400 °C, the residual oxidizable carbon (ROC) (including e.g. lignite (brown coal), hard coal, charcoal, black carbon, soot) and the inorganic carbon (TIC900) which is released at temperatures up to 900 °C.
The basis is the dry combustion to CO2 in a in the presence of oxygen using using temperatures ranging from 150°C to 900 °C in dry solid samples of soil, soil with anthropogenic admixtures and solid waste (see Table 1) with carbon contents of more than 1 g per kg (0,1 % C) (per carbon type in the test portion).
- Standard31 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
5.1 This guide offers several options for the determination of 99Tc in soil samples. Sample sizes of up to 200 g are possible, depending on the method chosen to extract Tc from the soil matrix. It is up to the user to determine if it is appropriate for the intended use of the final data.
SCOPE
1.1 This guide is intended to serve as a reference for laboratories wishing to perform 99Tc analyses in soil. Several options are given for selection of a tracer and for the method of extracting the Tc from the soil matrix. Separation of Tc from the sample matrix is performed using an extraction chromatography resin. Options are then given for the determination of the 99Tc activity in the original sample. It is up to the user to determine which options are appropriate for use, and to generate acceptance data to support the chosen procedure.
1.2 Due to the various extraction methods available, various tracers used, variable detection methods used, and lack of certified reference materials for 99Tc in soil, there is insufficient data to support a single method written as a standard method.
1.3 The values stated in SI units are to be regarded as standard, except where the non-SI unit of molar, M, is used for the concentration of chemicals and reagents. The values given in parentheses after SI units are provided for information only and are not considered standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Guide5 pagesEnglish languagesale 15% off
- Guide5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The specific gravity value is used in many phase relation equations to determine relative volumes of particle, water, and gas mixtures.
5.2 The term soil particle typically refers to a naturally occurring mineral grain that is not readily soluble in water. Therefore, the specific gravity of soils that contain extraneous matter (such as cement, lime, and the like) or water-soluble material (such as salt) must be corrected for the precipitate that forms on the test specimen after drying. If the precipitate has a specific gravity less than the parent soil grains, the uncorrected test result will be too low. If the precipitate has a higher specific gravity, then the uncorrected test value will be too high.
5.3 Heating during drying may diagenetically alter the structure of some clay minerals.3 Therefore caution should be exercised if the mineral composition of a clay test specimen is going to be determined after drying. It is possible to dry the test specimen at a lower temperature. However, the effect on water content4 and hence specific gravity should be investigated. In addition, some materials other than clay may be affected by drying at 110°C, such as gypsum, soils containing organics, fly ash containing residual coal, island sands. Test Method D2216 includes recommendations for drying gypsum using a lower temperature, such as 60°C.
Note 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 This test method covers the determination of the specific gravity of soil solids by means of a gas pycnometer. Particle size is limited by the dimensions of the test specimen container of the particular pycnometer being used.
1.2 Test Method D854 may be used instead of or in conjunction with this test method for performing specific gravity tests on soils. Note that Test Method D854 does not require the specialized test apparatus needed by this test method. However, Test Method D854 may not be used if the test specimen contains matter that can readily dissolve in water, whereas this test method does not have that limitation.
1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.
1.3.1 For purposes of comparing a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.
1.3.2 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.
1.4 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard.
1.4.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The converted slug unit is not given, un...
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
This document specifies an instrumental method for the routine determination of pH within the range pH 2 to pH 12 using a glass electrode in a 1:5 (volume fraction) suspension of soil, sludge and treated biowaste in either water (pH in H2O), in 1 mol/l potassium chloride solution (pH in KCl) or in 0,01 mol/l calcium chloride solution (pH in CaCl2).
This document is applicable to all types of air-dried soil and treated biowaste samples.
NOTE For example, pretreated in accordance with ISO 11464 or EN 16179 or EN 15002.
- Standard15 pagesEnglish languagee-Library read for1 day
This document specifies two methods for the determination of total organic carbon (TOC) in sludge, treated biowaste, soil and waste samples containing more than 0,1 % carbon in relation to the dry mass (dm).
NOTE This method can also be applied to other environmental solid matrices, provided the user has verified the applicability.
- Standard23 pagesEnglish languagee-Library read for1 day
This document specifies different methods for quantitative determination of 16 polycyclic aromatic hydrocarbons (PAH) (see Table 2) in soil, sludge, treated biowaste, and waste, using GC-MS or HPLC-UV-DAD/FLD covering a wide range of PAH contamination levels (see Table 2).
NOTE The method can be applied to sediments provided that validity is demonstrated by the user.
When using fluorescence detection, acenaphthylene cannot be measured.
[Table 2 -Target analytes of this document]
The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract.
Under the conditions specified in this document, the lower limit of application from 10 μg/kg (expressed as dry matter) for soils, sludge and biowaste to 100 μg/kg (expressed as dry matter) for solid waste can be achieved. For some specific samples (e.g. bitumen) the limit of 100 μg/kg cannot be reached.
Sludge, waste and treated biowaste can differ in properties as well as in the expected contamination levels of PAH and presence of interfering substances. These differences make it impossible to describe one general procedure. This document contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used.
The method can be applied to the analysis of other PAH not specified in the scope, provided suitability is proven by proper in-house validation experiments.
Sampling is not part of this standard. In dependence of the materials, the following standards need to be considered, e.g. EN 14899, ISO 5667-12 and EN ISO 5667-13.
- Standard53 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
4.1 The soluble salt content may be used to correct the index properties of soils such as water content, void ratio, specific gravity, degree of saturation, and dry density.
Note 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 These test methods cover a rapid procedure for squeezing pore water from fine-grained soils for the purpose of determining the amount of soluble salts present in the extracted pore water.
1.2 These test methods were developed for soils having a water content equal to or greater than approximately 14 %, for example, marine soils. An extensive summary of procedures for extracting pore water from soils has been presented by Kriukov and Manheim (1).2
1.3 These test methods are not generally applicable for determining the soluble salt content of the pore water extracted from coarse-grained soils, such as clean sands and gravels.
1.4 Test Method A provides a procedure using a refractometer with a refraction index scale; Test Method B provides a procedure using a refractometer with a parts per thousand (ppt) scale.
1.5 Units—The values stated in SI units are to be regarded as the standard.
1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by these test methods.
1.6.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard6 pagesEnglish languagesale 15% off
- Standard6 pagesEnglish languagesale 15% off
This document specifies an operationally defined method for the direct determination of organically bound halogens (chlorine, bromine and iodine) adsorbed and occluded to the sample matrix. AOX being a methodologically defined parameter, it is essential that the procedure is applied without any modification.
This document is intended for analysis of sludge, treated biowaste or soil in concentrations ranging from 5 mg/kg dry matter. The upper limit and exact concentration range covered depend on the instrumentation used for determination.
NOTE This method can also be applied to other environmental solid matrices, provided the user has verified the applicability.
- Standard16 pagesEnglish languagee-Library read for1 day
This document specifies two methods for the determination of total organic carbon (TOC) in sludge, treated biowaste, soil and waste samples containing more than 0,1 % carbon in relation to the dry mass (dm).
NOTE This method can also be applied to other environmental solid matrices, provided the user has verified the applicability.
- Standard23 pagesEnglish languagee-Library read for1 day
This document specifies an instrumental method for the routine determination of pH within the range pH 2 to pH 12 using a glass electrode in a 1:5 (volume fraction) suspension of soil, sludge and treated biowaste in either water (pH in H2O), in 1 mol/l potassium chloride solution (pH in KCl) or in 0,01 mol/l calcium chloride solution (pH in CaCl2).
This document is applicable to all types of air-dried soil and treated biowaste samples.
NOTE For example, pretreated in accordance with ISO 11464 or EN 16179 or EN 15002.
- Standard15 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
4.1 Partial extraction of soils and sediments can provide information on the availability of elements to leeching, water quality changes, or other site conditions.
4.2 Rapid heating, in combination with temperatures in excess of the atmospheric boiling point of nitric acid, reduces sample preparation or reaction times.
4.3 Little or no acids are lost to boiling or evaporation in the closed digestion vessel so additional portions of acid may not be required. Increased blank corrections from trace impurities in acid are minimized.
SCOPE
1.1 This practice covers the digestion of soils and sediments for subsequent determination of acid-extractable concentrations of certain elements by such techniques as atomic absorption and atomic emission spectroscopy.
1.1.1 Concentrations of arsenic, cadmium, copper, lead, magnesium, manganese, nickel, and zinc can be extracted from the preceding materials. Other elements may be determined using this practice.
1.2 The analytical sample is arbitrarily defined as that which passes a 10-mesh (approximately 2 mm openings) screen and is prepared according to Practice D3974.
1.3 Actual element quantitation can be accomplished by following the various test methods under other appropriate ASTM standards for element(s) of interest.
1.4 The detection limit and linear concentration range for each element is dependent on the atomic absorption or emission spectrophotometric technique employed and may be found in the manual accompanying the instrument used.
1.5 Before selecting a digestion technique, the user should consult the appropriate quantitation standard(s) for any special analytical considerations, and Practice D3974 for any special preparatory considerations.
1.6 The extent of extraction of elements from soils and sediments by this method is dependent upon the physical and mineralogic characteristics of the prepared sample.
1.7 The values stated in both inch-pound and SI units are to be regarded separately as the standard. The values given in parentheses are for information purposes only.
1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 8.
1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
This document specifies the measurement of explosives and related nitrocompounds (as given in Table 1) in soil and soil materials. This document is intended for the trace analysis of explosives and related compounds by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Generally, LC-MS/MS measurement shows the lower LOQ (limit of quantification) for each compound in Table 1 than using high-performance liquid chromatography (HPLC) with UV-detection (see Annex B and Annex C).
Under the conditions specified in this document, concentrations as low as 0,005 mg/kg to 0,014 mg/kg-dry matter can be determined, depending on the substance. Similar compounds, in particular various nitroaromatics, by-products and degradation products of explosive compounds can be analysed using this method provided that the applicability is checked on a case-by-case basis.
- Standard31 pagesEnglish languagee-Library read for1 day
- Standard31 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
4.1 A clearance examination of abatement areas and other areas associated with other lead-hazard control activities, or building maintenance or modification activities in multifamily dwellings having similar units, common areas or exterior sites is performed to determine that the clearance area is adequately safe for reoccupancy.
4.2 It is the responsibility of the user of this standard to assure that all regulatory, contractual, and personnel requirements are met prior to conduct of a clearance examination. At a minimum, users of this standard shall be trained in its use and in safe practices for its conduct.
4.3 This practice is one of a set of standards developed for lead hazard management activities. The visual assessment procedures required in this standard are found in Practice E2255/E2255M and the record keeping requirements are found in Practice E2239.
4.4 Although this practice was primarily developed for multifamily dwellings, this practice may be also applied to nonresidential buildings and related structures by agreement between the client and the individual conducting the clearance examination.
4.5 This practice may be used by owners and property managers, including owner-occupants, and others responsible for maintaining facilities. It may also be used by lead hazard management consultants, construction contractors, labor groups, real estate and financial professionals, insurance organizations, legislators, regulators, and legal professionals.
4.6 This standard does not address whether lead-hazard reduction activities or other building modification or maintenance work were done properly.
SCOPE
1.1 This practice covers visual assessment for the presence of deteriorated paint, surface dust, painted debris, and paint chips with environmental sampling of surface dust to determine whether a lead hazard exists at the time of sample collection, following lead-hazard reduction activities, or other building maintenance and modification activities.
1.2 This practice addresses clearance examination of multifamily dwellings having similar units, common areas or exterior sites.
1.3 This practice also addresses clearance examinations that may include soil sampling, for example when soil abatement has been performed.
1.4 This practice includes a procedure for determining whether regulatory requirements for lead clearance levels for dust and, where warranted, soil have been met, and, consequently whether a clearance area, passes or fails a clearance examination.
Note 1: This practice is based on that portion of “clearance” described in 40 CFR Part 745 for abatement, and in 24 CFR 35 for lead-hazard reduction activities other than abatement, except that composite dust sampling as described therein is not used.
1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.6 Methods described in this practice may not meet or be allowed by requirements or regulations established by local authorities having jurisdiction. It is the responsibility of the user of this standard to comply with all such requirements and regulations.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organiz...
- Standard10 pagesEnglish languagesale 15% off
- Standard10 pagesEnglish languagesale 15% off
This document specifies an operationally defined method for the direct determination of organically bound halogens (chlorine, bromine and iodine) adsorbed and occluded to the sample matrix. AOX being a methodologically defined parameter, it is essential that the procedure is applied without any modification.
This document is intended for analysis of sludge, treated biowaste or soil in concentrations ranging from 5 mg/kg dry matter. The upper limit and exact concentration range covered depend on the instrumentation used for determination.
NOTE This method can also be applied to other environmental solid matrices, provided the user has verified the applicability.
- Standard16 pagesEnglish languagee-Library read for1 day
This document specifies a method for quantitative determination of organochlorine pesticides (OCPs) and semi-volatile chlorobenzenes in soil and sediment, using GC-MS and GC-ECD. The limit of detection and the limit of application depends on the determinants, the sample intake, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract. Under the conditions specified in this document, lower limits of application from 1 μg/kg (expressed as dry matter) for soils to 10 μg/kg (expressed as dry matter) for sediments can be achieved. The necessity to achieve these lower limits of application depends on the analyses order and the current limit values. Soils and sediments can differ in properties as well as in the expected contamination levels of OCPs and the presence of interfering substances. These differences make it impossible to describe one general procedure. Based on the properties of the samples, this document contains decision tables regarding drying-, extraction- and clean-up procedures. This method is performance based. The method can be modified if all performance criteria given in this method are met. The method can be applied to the analysis of other chlorinated compounds not specified in the scope in cases where suitability has been proven by proper in-house validation experiments. NOTE The validation data are shown in Annex A. This document is validated only for α-HCH, β-HCH, γ-HCH, δ-HCH, o,p′-DDE, p,p′-DDE, o,p′-DDD, p,p′-DDD, o,p′-DDT and p,p′-DDT. For sediments, data are displayed measured using an ECD detection. The comparability of ECD and MS data in terms of the approach of this document was demonstrated on additional matrices.
- Standard30 pagesEnglish languagesale 15% off
- Standard30 pagesFrench languagesale 15% off
This document provides guidance on the selection and application of screening methods for assessing soil quality and waste characterization, including distribution of target parameters in soil and soil‑like material. The aim of this document is to set up criteria as to when the different kind of screening methods can be applied for the analysis of a certain parameter in soil, including soil‑like material, and waste, and which steps are required to prove their suitability.
This document does not recommend any particular screening method but confirms the principles of their selection and application.
- Standard32 pagesEnglish languagee-Library read for1 day
This document specifies the measurement of explosives and related nitrocompounds (as given in Table 1) in soil and soil materials. This document is intended for the trace analysis of explosives and related compounds by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Generally, LC-MS/MS measurement shows the lower LOQ (limit of quantification) for each compound in Table 1 than using high-performance liquid chromatography (HPLC) with UV-detection (see Annex B and Annex C).
Under the conditions specified in this document, concentrations as low as 0,005 mg/kg to 0,014 mg/kg-dry matter can be determined, depending on the substance. Similar compounds, in particular various nitroaromatics, by-products and degradation products of explosive compounds can be analysed using this method provided that the applicability is checked on a case-by-case basis.
- Standard31 pagesEnglish languagee-Library read for1 day
- Standard31 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
5.1 This method directly determines the concentrations of dissolved PAH concentrations in environmental sediment pore water samples. The method is important from an environmental regulatory perspective because it can achieve the analytical sensitivities to meet the goals of the USEPA narcosis model for protecting benthic organisms in PAH contaminated sediments. Regulatory methods using solvent extraction have not achieved the wide calibration ranges from nanograms to milligrams per litre and the required levels of detection in the nanogram-per-litre range. In addition, conventional solvent extraction methods require large aliquot volumes (litre or larger), use of large volumes of organic solvents, and filtration to generate the pore water. This approach entails the storage and processing of large volumes of sediment samples and loss of low molecular weight PAHs in the filtration and solvent evaporation steps.
5.2 This method can be used to determine nanogram to milligram per litre PAH concentrations in pore water. Small volumes of pore water are required for SPME extraction, only 1.5 mL per determination and virtually no solvent extraction waste is generated.
SCOPE
1.1 The U.S. Environmental Protection Agency (USEPA) narcosis model for benthic organisms in sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is based on the concentrations of dissolved PAHs in the interstitial water or “pore water” in sediment. This test method covers the separation of pore water from PAH-impacted sediment samples, the removal of colloids, and the subsequent measurement of dissolved concentrations of the required 10 parent PAHs and 14 groups of alkylated daughter PAHs in the pore water samples. The “24 PAHs” are determined using solid-phase microextraction (SPME) followed by Gas Chromatography/Mass Spectrometry (GC/MS) analysis in selected ion monitoring (SIM) mode. Isotopically labeled analogs of the target compounds are introduced prior to the extraction, and are used as quantification references.
1.2 Lower molecular weight PAHs are more water soluble than higher molecular weight PAHs. Therefore, USEPA-regulated PAH concentrations in pore water samples vary widely due to differing saturation water solubilities that range from 0.2 µg/L for indeno[1,2,3-cd]pyrene to 31 000 µg/L for naphthalene. This method can accommodate the measurement of microgram per litre concentrations for low molecular weight PAHs and nanogram per litre concentrations for high molecular weight PAHs.
1.3 The USEPA narcosis model predicts toxicity to benthic organisms if the sum of the toxic units (ΣTUc) calculated for all “34 PAHs” measured in a pore water sample is greater than or equal to 1. For this reason, the performance limit required for the individual PAH measurements was defined as the concentration of an individual PAH that would yield 1/34 of a toxic unit (TU). However, the focus of this method is the 10 parent PAHs and 14 groups of alkylated PAHs (Table 1) that contribute 95 % of the toxic units based on the analysis of 120 background and impacted sediment pore water samples.3 The primary reasons for eliminating the rest of the 5-6 ring parent PAHs are: (1) these PAHs contribute insignificantly to the pore water TU, and (2) these PAHs exhibit extremely low saturation solubilities that will make the detection of these compounds difficult in pore water. This method can achieve the required detection limits, which range from approximately 0.01 µg/L, for high molecular weight PAHs, to approximately 3 µg/L for low molecular weight PAHs.
1.4 The test method may also be applied to the determination of additional PAH compounds (for example, 5- and 6-ring PAHs as described in Hawthorne et al.).4 However, it is the responsibility of the user of this standard to establish the validity of the test method for the determination of PAHs other than those referenced in 1.1 and Table 1.
1.5 The values stated in ...
- Standard27 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method is designed specifically for emulsions of pesticide emulsifiable concentrates.
5.2 This test method provides information on the absorption/adsorption of solvents by simulated organic soil and inorganic soil impacted by pesticide EC emulsion applications.
5.3 The amount of solvent lost by volatilization at 40 °C as determined by this method is an indirect measure of the atmospheric availability of the solvent to potentially react with nitrogen oxides to form tropospheric ozone, a major air pollutant.
SCOPE
1.1 This test method simulates the application of an emulsion of a pesticide emulsifiable concentrate (EC) to soil with high organic matter (corn cob granules) and to soil with high inorganic matter (clay granules) and determines the amount of solvent retained by the granules, and withheld from the atmosphere, before and after exposure to 40 ºC in a vented oven. The granules simulate two extremes of soil composition, and the 40 ºC exposure simulates high temperature weathering. Solvent loss from organic substrates other than corn cob may also be determined by repeating the 40 °C exposure tests with the chosen substrate replacing corn cob. The results with corn cob, however, are a reference that must be reported with the alternate substrate results. The difference in solvent content of the granules before and after weathering is an indication of the emission of the solvent from soil impacted by emulsions or solutions during pesticide applications using common practices such as spraying and drip irrigating. Analysis of the granules for solvent content is by high pressure liquid chromatography (HPLC), gas chromatography (GC), or other methods tested and proven to be accurate and reproducible.
Note 1: Since it evaluates soil surface sorption, this test method will underestimate soil sorption from pesticide applications made below the soil surface. Sub-soil surface treatments may include, but are not limited to, mechanical soil injection and soil incorporation applications. In these cases, the increased depth of the sub-soil treatments reduce the soil surface exposure and facilitate increased levels of soil sorption.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
This document provides guidance on the selection and application of screening methods for assessing soil quality and waste characterization, including distribution of target parameters in soil and soil‑like material. The aim of this document is to set up criteria as to when the different kind of screening methods can be applied for the analysis of a certain parameter in soil, including soil‑like material, and waste, and which steps are required to prove their suitability.
This document does not recommend any particular screening method but confirms the principles of their selection and application.
- Standard32 pagesEnglish languagee-Library read for1 day
This document specifies the determination of Cr(VI) in solid waste material and soil by alkaline digestion and ion chromatography with spectrophotometric detection. This method can be used to determine Cr(VI)-mass fractions in solids higher than 0,1 mg/kg.
NOTE In case of reducing or oxidising waste matrix no valid Cr(VI) content can be reported.
- Standard32 pagesEnglish languagee-Library read for1 day
This document specifies the measurement of explosives and related nitrocompounds (as given in Table 1) in soil and soil materials. This document is intended for the trace analysis of explosives and related compounds by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Generally, LC-MS/MS measurement shows the lower LOQ (limit of quantification) for each compound in Table 1 than using high-performance liquid chromatography (HPLC) with UV-detection (see Annex B and Annex C). Under the conditions specified in this document, concentrations as low as 0,005 mg/kg to 0,014 mg/kg-dry matter can be determined, depending on the substance. Similar compounds, in particular various nitroaromatics, by-products and degradation products of explosive compounds can be analysed using this method provided that the applicability is checked on a case-by-case basis.
- Standard23 pagesEnglish languagesale 15% off
- Standard23 pagesFrench languagesale 15% off
SIGNIFICANCE AND USE
5.1 Exposure to beryllium can cause a potentially fatal disease, and occupational exposure limits for beryllium in air and on surfaces have been established to reduce exposure risks to potentially affected workers (1, 2).5 Measurement of beryllium in matrices such as soil and sediment is important in environmental remediation projects involving beryllium contamination (3) and for establishment of background levels of beryllium at sites where anthropogenic beryllium may have been used (2, 4-6). Sampling and analytical methods for beryllium are needed in order to meet the challenges relating to exposure assessment and risk reduction. Sampling and analysis methods, such as the procedure described in this test method, are desired in order to facilitate measurements of beryllium that can be used as a basis for management of remediation projects and protection of human health.
5.2 This test method can be used for purposes such as environmental remediation projects where beryllium is a contaminant of concern. It is also useful for characterization of levels of beryllium in soil at sites where beryllium is in mining or manufacturing applications, and for determination of background levels of beryllium in soil.
5.3 The limit of quantification of this test method varies with the dilution factor (see 13.6.1). For the detection solution containing lysine the detection limit is 0.013 mg beryllium per kilogram of sample, based on a 0.5 g sample (7) extracted in a 50 mL extraction solution and analyzed using a dilution factor of 20×. When the lysine-free detection solution is used one may use a 20× dilution factor and obtain the same detection limit or use 5× dilution factor and obtain a detection limit of 0.004 mg/kg of sample.
Note 1: Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 This test method is intended for use in the determination of beryllium in samples of soil and sediment. This test method can be used for purposes such as environmental remediation projects where beryllium is a contaminant of concern. It is also useful for characterization of levels of beryllium in soil at sites where beryllium is in mining or manufacturing applications, and for determination of background levels of beryllium in soil.
1.2 This test method assumes that samples of soil or sediment are collected using appropriate and applicable methods.
1.3 This test method includes a procedure for extraction (dissolution) of beryllium in dilute ammonium bifluoride, followed by analysis of aliquots of the extract solution using a beryllium-specific fluorescent dye.
1.4 For a 500 mg sample, the lower limit of the working range is approximately 0.04 mg Be/kg (5× dilution) or 0.1 mg Be/kg (20× dilution). The working range extends to concentrations of at least 500 mg Be/kg.
1.5 No detailed operating instructions are provided because of differences among various makes and models of suitable fluorometric instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices or the precision between instruments of the same make and model.
1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.7 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.
1.7.1 For purposes of comparing a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal of significant digits in the specified limit.
1.7.2 The procedures used to specify how data are collected/recorded, or calculated, in thi...
- Standard9 pagesEnglish languagesale 15% off
- Standard9 pagesEnglish languagesale 15% off