IEC 63616:2025 relates to a conductivity measurement method of thin metal films at microwave and millimeter-wave frequencies. This method has been developed to evaluate the conductivity of a metal foil used for adhering to a substrate or the interfacial conductivity of a metal layer formed on a dielectric substrate. It uses higher-order modes of a balanced-type circular disk resonator and provides broadband conductivity measurements by using a single resonator.

  • Standard
    13 pages
    English language
    sale 15% off
  • Standard
    13 pages
    French language
    sale 15% off
  • Standard
    26 pages
    English and French language
    sale 15% off

IEC 61788-27:2025 specifies a test method for the twist pitch measurement of Nb‑Ti/Cu and Nb‑Sn/Cu composite superconductors by an untwisting method.
The test method is applicable to Nb‑Ti/Cu and Nb‑Sn/Cu composite superconducting wires with monolithic structures, which have either a round cross section with a diameter ranging from 0,2 mm to 2 mm or a rectangular cross section that is equivalent in area to the round cross‑sectional wires. These wires possess a filament diameter ranging from 6 µm to 200 µm, a twist pitch between 5 mm and 50 mm, and a matrix of copper or copper alloy. This document uses nitric acid to remove the matrix (copper or copper alloy), so the surface of the composite superconducting wire can be plated with a material that is dissolvable by nitric acid.
Though uncertainty can increase, the method can apply to Nb‑Ti/Cu or Nb‑Sn/Cu composite superconducting wires when the parameters of cross-sectional area, filament diameter and twist pitch are out of the limit.
The test method specified in this document is expected to apply to other types of composite superconducting wires after some appropriate modifications.

  • Standard
    39 pages
    English language
    e-Library read for
    1 day

IEC 61788-27:2025 specifies a test method for the twist pitch measurement of Nb‑Ti/Cu and Nb‑Sn/Cu composite superconductors by an untwisting method. The test method is applicable to Nb‑Ti/Cu and Nb‑Sn/Cu composite superconducting wires with monolithic structures, which have either a round cross section with a diameter ranging from 0,2 mm to 2 mm or a rectangular cross section that is equivalent in area to the round cross‑sectional wires. These wires possess a filament diameter ranging from 6 µm to 200 µm, a twist pitch between 5 mm and 50 mm, and a matrix of copper or copper alloy. This document uses nitric acid to remove the matrix (copper or copper alloy), so the surface of the composite superconducting wire can be plated with a material that is dissolvable by nitric acid. Though uncertainty can increase, the method can apply to Nb‑Ti/Cu or Nb‑Sn/Cu composite superconducting wires when the parameters of cross-sectional area, filament diameter and twist pitch are out of the limit. The test method specified in this document is expected to apply to other types of composite superconducting wires after some appropriate modifications.

  • Standard
    39 pages
    English language
    e-Library read for
    1 day

IEC 61788-27:2025 specifies a test method for the twist pitch measurement of Nb‑Ti/Cu and Nb‑Sn/Cu composite superconductors by an untwisting method.
The test method is applicable to Nb‑Ti/Cu and Nb‑Sn/Cu composite superconducting wires with monolithic structures, which have either a round cross section with a diameter ranging from 0,2 mm to 2 mm or a rectangular cross section that is equivalent in area to the round cross‑sectional wires. These wires possess a filament diameter ranging from 6 µm to 200 µm, a twist pitch between 5 mm and 50 mm, and a matrix of copper or copper alloy. This document uses nitric acid to remove the matrix (copper or copper alloy), so the surface of the composite superconducting wire can be plated with a material that is dissolvable by nitric acid.
Though uncertainty can increase, the method can apply to Nb‑Ti/Cu or Nb‑Sn/Cu composite superconducting wires when the parameters of cross-sectional area, filament diameter and twist pitch are out of the limit.
The test method specified in this document is expected to apply to other types of composite superconducting wires after some appropriate modifications.

  • Standard
    73 pages
    English and French language
    sale 15% off

IEC 61788-23:2024 is available as IEC 61788-23:2024 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.

IEC 61788-23:2024 addresses a test method for the determination of the residual resistance ratio (RRR), rRRR, of cavity-grade niobium. This method is intended for high-purity niobium grades with 150 < rRRR < 600. The test method is valid for specimens with rectangular or round cross-section, cross-sectional area greater than 1 mm2 but less than 20 mm2, and a length not less than 10 nor more than 25 times the width or diameter.

  • Standard
    32 pages
    English language
    e-Library read for
    1 day

IEC 61788-23:2024 is available as IEC 61788-23:2024 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61788-23:2024 addresses a test method for the determination of the residual resistance ratio (RRR), rRRR, of cavity-grade niobium. This method is intended for high-purity niobium grades with 150 < rRRR < 600. The test method is valid for specimens with rectangular or round cross-section, cross-sectional area greater than 1 mm2 but less than 20 mm2, and a length not less than 10 nor more than 25 times the width or diameter.

  • Standard
    32 pages
    English language
    e-Library read for
    1 day

IEC 61788-23:2024 addresses a test method for the determination of the residual resistance ratio (RRR), rRRR, of cavity-grade niobium. This method is intended for high-purity niobium grades with 150 < rRRR < 600. The test method is valid for specimens with rectangular or round cross-section, cross-sectional area greater than 1 mm2 but less than 20 mm2, and a length not less than 10 nor more than 25 times the width or diameter.

  • Standard
    88 pages
    English language
    sale 15% off
  • Standard
    59 pages
    English and French language
    sale 15% off

ABSTRACT
This practice covers the procedure for sorting electrically conductive materials using the thermoelectric method, which is based on the seebeck effect. The procedure relates to the use of direct- and comparator-type thermoelectric instruments for distinguishing variations in materials which affect the thermoelectric properties of those materials. The two techniques that are primarily used in thermoelectric sorting are direct and comparative instrumentation. In the direct instruments, equipment is standardized by placing materials with known chemistry and metallurgical structure in the test system. In the comparative instruments, the thermoelectric response of the test piece is compared with that of a known standard(s) and the response indicates whether the piece is within the acceptance limits. The electronic apparatus shall be capable of maintaining a sufficient temperature differential across the electrodes to produce a suitable thermoelectric voltage. The different procedures for sorting electrically conductive materials are presented in details.
SCOPE
1.1 This practice covers the procedure for sorting materials using the thermoelectric method, which is based on the Seebeck effect. The procedure relates to the use of direct- and comparator-type thermoelectric instruments for distinguishing variations in materials which affect the thermoelectric properties of those materials.  
1.2 While the practice is most commonly applied to the sorting of metals, it may be applied to other electrically conductive materials.  
1.3 Thermoelectric sorting may also be applied to the sorting of materials on the basis of plating thickness, case depth, and hardness.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    3 pages
    English language
    sale 15% off

ABSTRACT
This specification covers round wires and ribbons with controlled electrical properties made from magnetic and nonmagnetic class 1a-11 alloys. The wires and ribbons, which may have insulated coverings or enamel coatings, are recommended for use in wire-wound resistance units like precision resistors and other similar applications, but not for use as electrical heating elements. Each bare wire should conform to the requirements for nominal resistivity, elongation, thermal electromotive force with respect to copper, and the temperature coefficient of resistance contained in this specification. The nominal resistance per unit length for a round wire is calculated from the nominal resistivity and nominal cross-sectional area.
SCOPE
1.1 This specification covers round wire and ribbon with controlled electrical properties for use in wire-wound resistance units and similar applications, but not for use as electrical heating elements.  
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    5 pages
    English language
    sale 15% off

SCOPE
1.1 This terminology standard defines abbreviations and terms specific to uninsulated electrical conductors. For terms relating to superconductors, see Terminology B713.  
1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    6 pages
    English language
    sale 15% off

IEC 61788-22-3:2022 is applicable to the measurement of the dark count rate (DCR, RD) of superconductor strip photon detectors (SSPDs). It specifies terms, definitions, symbols and the measurement method of DCR that depends on the bias current (Ib) and operating temperature (T).
NOTE The data of measurement results in Annex A are based on measurements of one institute only. The standard will be updated after the data of a complete round robin test are available.

  • Standard
    27 pages
    English language
    e-Library read for
    1 day

IEC 61788-22-3:2022 is applicable to the measurement of the dark count rate (DCR, RD) of superconductor strip photon detectors (SSPDs). It specifies terms, definitions, symbols and the measurement method of DCR that depends on the bias current (Ib) and operating temperature (T). NOTE The data of measurement results in Annex A are based on measurements of one institute only. The standard will be updated after the data of a complete round robin test are available.

  • Standard
    27 pages
    English language
    e-Library read for
    1 day

IEC 61788-22-3:2022 is applicable to the measurement of the dark count rate (DCR, RD) of superconductor strip photon detectors (SSPDs). It specifies terms, definitions, symbols and the measurement method of DCR that depends on the bias current (Ib) and operating temperature (T).
NOTE The data of measurement results in Annex A are based on measurements of one institute only. The standard will be updated after the data of a complete round robin test are available.

  • Standard
    49 pages
    English and French language
    sale 15% off

This part of IEC 61788 is applicable to high-Tc Josephson junctions. It specifies terms, definitions, symbols and the measurement and estimation method for normal state resistance (Rn) and intrinsic critical current (Ici), based on a combination of selecting a data set from measured U-I curves with a geometric mean criterion and fitting a hyperbolic function to that data set.

  • Standard
    38 pages
    English language
    e-Library read for
    1 day

This part of IEC 61788 is applicable to high-Tc Josephson junctions. It specifies terms, definitions, symbols and the measurement and estimation method for normal state resistance (Rn) and intrinsic critical current (Ici), based on a combination of selecting a data set from measured U-I curves with a geometric mean criterion and fitting a hyperbolic function to that data set.

  • Standard
    38 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
2.1 The significance of the variables set forth in this guide was proved by various laboratories using several test systems at test currents ranging from 100 to 35 000 A. These variables will be significant for any case where voltage and current are sufficient to produce arcing.
SCOPE
1.1 This guide covers the major variables which affect the rate of arc erosion of electrical contact materials and serves as a guide in developing more detailed specifications for arc-erosion tests.  
1.2 Arc erosion testing involves some vaporization of material. It is the responsibility of the user to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet for the material being tested.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Guide
    2 pages
    English language
    sale 15% off

This part of IEC 61788 addresses a test method for the determination of the residual resistance ratio (RRR), rRRR, of cavity-grade niobium. This method is intended for high-purity niobium grades with 150 < rRRR < 600. The test method is valid for specimens with rectangular or round cross-section, cross-sectional area greater than 1 mm2 but less than 20 mm2, and a length not less than 10 nor more than 25 times the width or diameter.

  • Standard
    32 pages
    English language
    e-Library read for
    1 day

IEC 61788-22-2:2021 is applicable to high-Tc Josephson junctions. It specifies terms, definitions, symbols and the measurement and estimation method for normal state resistance (Rn) and intrinsic critical current (Ici), based on a combination of selecting a data set from measured U–I curves with a geometric mean criterion and fitting a hyperbolic function to that data set.

  • Standard
    71 pages
    English and French language
    sale 15% off

IEC 61788-25:2018 specifies the test method and procedures for testing tensile mechanical properties of REBCO superconductive composite tapes at room temperature. This test is used to measure the modulus of elasticity and 0,2 % proof strength. The values for elastic limit, fracture strength and percentage elongation after fracture serve only as a reference. This document applies to samples having a rectangular cross-section with an area of 0,12 mm2 to 6,0 mm2 (corresponding to the tapes with width of 2,0 mm to 12,0 mm and thickness of 0,06 mm to 0,5 mm)

  • Standard
    30 pages
    English language
    e-Library read for
    1 day

This part of IEC 61788 addresses a test method for the determination of the residual resistance ratio (RRR), rRRR, of cavity-grade niobium. This method is intended for high-purity niobium grades with 150 < rRRR < 600. The test method is valid for specimens with rectangular or round cross-section, cross-sectional area greater than 1 mm2 but less than 20 mm2, and a length not less than 10 nor more than 25 times the width or diameter.

  • Standard
    32 pages
    English language
    e-Library read for
    1 day

IEC 61788-23:2021 addresses a test method for the determination of the residual resistance ratio (RRR), rRRR, of cavity-grade niobium. This method is intended for high-purity niobium grades with 150 < rRRR < 600. The test method is valid for specimens with rectangular or round cross-section, cross-sectional area greater than 1 mm2 but less than 20 mm2, and a length not less than 10 nor more than 25 times the width or diameter.

  • Standard
    86 pages
    English language
    sale 15% off
  • Standard
    57 pages
    English and French language
    sale 15% off

IEC 61788-24:2018 describes a test method for determining the retained critical current after double bending at room temperature of short and straight Ag- and/or Ag alloy-sheathed Bi-2223 superconducting wires that have the shape of a flat or square tape containing mono- or multicores of oxides. The wires can be laminated with copper alloy, stainless steel or Ni alloy tapes. The test method is intended for use with superconductors that have a critical current less than 300 A and an n-value larger than 5.

  • Standard
    32 pages
    English language
    e-Library read for
    1 day

IEC 61788-17:2021 is available as IEC 61788-17:2021 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.

IEC 61788-17:2021 specifies the measurements of the local critical current density (Jc) and its distribution in large-area high-temperature superconducting (HTS) films by an inductive method using third-harmonic voltages. The most important consideration for precise measurements is to determine Jc at liquid nitrogen temperatures by an electric-field criterion and obtain current-voltage characteristics from its frequency dependence. Although it is possible to measure Jc in applied DC magnetic fields [20] [21], the scope of this document is limited to the measurement without DC magnetic fields. This technique intrinsically measures the critical sheet current that is the product of Jc and the film thickness d. The range and measurement resolution for Jcd of HTS films are as follows.
- Jcd: from 200 A/m to 32 kA/m (based on results, not limitation).
- Measurement resolution: 100 A/m (based on results, not limitation).

  • Standard
    44 pages
    English language
    e-Library read for
    1 day

IEC 61788-17:2021 is available as IEC 61788-17:2021 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61788-17:2021 specifies the measurements of the local critical current density (Jc) and its distribution in large-area high-temperature superconducting (HTS) films by an inductive method using third-harmonic voltages. The most important consideration for precise measurements is to determine Jc at liquid nitrogen temperatures by an electric-field criterion and obtain current-voltage characteristics from its frequency dependence. Although it is possible to measure Jc in applied DC magnetic fields [20] [21], the scope of this document is limited to the measurement without DC magnetic fields. This technique intrinsically measures the critical sheet current that is the product of Jc and the film thickness d. The range and measurement resolution for Jcd of HTS films are as follows. - Jcd: from 200 A/m to 32 kA/m (based on results, not limitation). - Measurement resolution: 100 A/m (based on results, not limitation).

  • Standard
    44 pages
    English language
    e-Library read for
    1 day

IEC 61788-17:2021 specifies the measurements of the local critical current density (Jc) and its distribution in large-area high-temperature superconducting (HTS) films by an inductive method using third-harmonic voltages. The most important consideration for precise measurements is to determine Jc at liquid nitrogen temperatures by an electric-field criterion and obtain current-voltage characteristics from its frequency dependence. Although it is possible to measure Jc in applied DC magnetic fields [20] [21], the scope of this document is limited to the measurement without DC magnetic fields. This technique intrinsically measures the critical sheet current that is the product of Jc and the film thickness d. The range and measurement resolution for Jcd of HTS films are as follows.
- Jcd: from 200 A/m to 32 kA/m (based on results, not limitation).
- Measurement resolution: 100 A/m (based on results, not limitation).

  • Standard
    41 pages
    English language
    sale 15% off
  • Standard
    89 pages
    English language
    sale 15% off
  • Standard
    84 pages
    English and French language
    sale 15% off

This document specifies the requirements for the test methods for joint of micro-joining of 2G HTS to fulfil the requirements of ISO 17279-1 and ISO 17279-2.
This document specifies test methods for determining the capability of joints for the production of the specified quality. It defines specific test requirements, but does not assign those requirements to any specific product group.

  • Standard
    55 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
5.1 This test method is useful for the comparison of materials, as a quality control test, and for specification purposes.  
5.2 This test method is useful in the selection and use of materials in wires, cables, bushings, high-voltage rotating machinery, and other electrical apparatus in which shielding or the distribution of voltage stress is of value.  
5.3 Commercially available “moderately conductive” materials frequently are comprised of both conductive and resistive components (that is, cellulose fibers with colloidal carbon black particles attached to portions of the surfaces of those fibers, or discrete conductive particles adhered to the surfaces of electrical insulating polymers). Such commercially available materials are often manufactured in a manner that results in anisotropy of electrical conduction. Hence, the significance of tests using this test method depends upon the orientation of the specimen tested to the direction of the electric field and the relationship between this orientation and the orientation of the material in the electrical apparatus, which uses these materials.
SCOPE
1.1 This test method covers the determination of electrical resistance and electrical resistivity of materials that are generally categorized as moderately conductive and are neither good electrical insulators nor good conductors.  
1.2 This test method applies to the materials that exhibit volume resistivity in the range of 100 to 107 Ω-cm or surface resistivity in the range of 103 to 107 Ω (per square).  
1.3 This test method is designed for measurements at standard conditions of 23 °C and 50 % relative humidity, but its principles of operation can be applied to specimens measured at lower or higher temperatures and relative humidities.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  Specific precautionary statements are given in 8.3.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off

ABSTRACT
This test method covers the determination of the electrical resistivity of metallic electrical conductor material. Weight resistivity accuracy may be adversely affected by possible inaccuracies in the assumed density of the conductor. The definition of resistivity and the equations for calculating volume resistivity and weight resistivity are given. Resistance shall be measured using an apparatus with a circuit configuration and instrumentation that has a resistance measurement capability of the prescribed accuracy. The test specimen requirements and the test procedure including: (1) determination of dimensions (such as length and cross-section), weight, and density, and (2) resistance measurement are detailed. The formula for calculating the corrected resistance, when the measurement is made at any temperature other than a reference temperature, is given. No statement of precision has been made and no work has been planned to develop such a statement. This test method has no bias because the value for resistivity is determined solely in terms of this test method.
SCOPE
1.1 This test method covers the determination of the electrical resistivity of metallic electrical conductor material. It provides for an accuracy of ±0.30 % on test specimens having a resistance of 0.00001 Ω (10 μΩ) or more. Weight resistivity accuracy may be adversely affected by possible inaccuracies in the assumed density of the conductor.  
1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 These test methods develop comparative information useful for the design of stationary contacts for wire, cable, and other conductors.  
5.2 These test methods produce results, which are free of the influence of arbitrary connection systems.  
5.3 The influence of conductor surface pretreatments and platings can be evaluated by these test methods.  
5.4 The influence of environmental factors, such as high temperature and corrosive environment can be evaluated by these test methods.  
5.5 The results obtained by these test methods provide guidance on connection system design parameters, such as contact force and gas tightness requirements.
SCOPE
1.1 These test methods define procedures for the relative characterization of conductor material connectability on the basis of measurements of parameters important to the design and performance of electrical contacts and connections to and with such conductors for both power and signal applications.  
1.2 The parameters measured are contact resistance as a function of contact force, fretting sensitivity, and compressive relaxation.  
1.3 Provision is made for measurement of the connectability parameters at elevated temperature, or corrosive ambient, or both, as may be required for evaluation for particular applications.  
1.4 These test methods, using standardized specimen geometry and procedures, are applicable to conductor materials as employed in an electrical system and may be adapted for evaluation of connectability of materials in the form of actual connection system components.  
1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    7 pages
    English language
    sale 15% off

IEC 61788-26:2020 specifies a test method for determining the DC critical current of short RE (rare earth)-Ba-Cu-O (REBCO) composite superconductor specimens that have a shape of straight flat tape. This document applies to test specimens shorter than 300 mm and having a rectangular cross section with an area of 0,03 mm2 to 7,2 mm2, which corresponds to tapes with width ranging from 1,0 mm to 12,0 mm and thickness from 0,03 mm to 0,6 mm.
This method is intended for use with superconductor specimens that have critical current less than 300 A and n-values larger than 5 under standard test conditions: the test specimen is immersed in liquid nitrogen bath at ambient pressure without external magnetic field during the testing. Deviations from this test method that are allowed for routine tests and other specific restrictions are given in this document.

  • Standard
    30 pages
    English language
    e-Library read for
    1 day

IEC 61788-22-1:2017(E) describes general items concerning the specifications for superconducting sensors and detectors, which are the basis for specifications given in other parts of IEC 61788 for various types of sensors and detectors. The sensors and detectors described are basically made of superconducting materials and depend on superconducting phenomena or related phenomena. The objects to be measured (measurands) include magnetic fields, electromagnetic waves, photons of various energies, electrons, ions, a‑particles, and others.

  • Standard
    30 pages
    English language
    e-Library read for
    1 day

IEC 61788-26:2020 specifies a test method for determining the DC critical current of short RE (rare earth)-Ba-Cu-O (REBCO) composite superconductor specimens that have a shape of straight flat tape. This document applies to test specimens shorter than 300 mm and having a rectangular cross section with an area of 0,03 mm2 to 7,2 mm2, which corresponds to tapes with width ranging from 1,0 mm to 12,0 mm and thickness from 0,03 mm to 0,6 mm. This method is intended for use with superconductor specimens that have critical current less than 300 A and n-values larger than 5 under standard test conditions: the test specimen is immersed in liquid nitrogen bath at ambient pressure without external magnetic field during the testing. Deviations from this test method that are allowed for routine tests and other specific restrictions are given in this document.

  • Standard
    30 pages
    English language
    e-Library read for
    1 day

IEC 61788-26:2020 specifies a test method for determining the DC critical current of short RE (rare earth)-Ba-Cu-O (REBCO) composite superconductor specimens that have a shape of straight flat tape. This document applies to test specimens shorter than 300 mm and having a rectangular cross section with an area of 0,03 mm2 to 7,2 mm2, which corresponds to tapes with width ranging from 1,0 mm to 12,0 mm and thickness from 0,03 mm to 0,6 mm.
This method is intended for use with superconductor specimens that have critical current less than 300 A and n-values larger than 5 under standard test conditions: the test specimen is immersed in liquid nitrogen bath at ambient pressure without external magnetic field during the testing. Deviations from this test method that are allowed for routine tests and other specific restrictions are given in this document.

  • Standard
    54 pages
    English and French language
    sale 15% off

ABSTRACT
This specification establishes the requirements for copper conductor bars, rods, and shapes for both electrical (bus) and general applications. Products shall be produced in tempers O60 (soft annealed), and H04 (hard). Products shall be sampled and prepared, then tested accordingly to examine their conformance to dimensional (mass, diameter, thickness, width, shape, specified and stock lengths, straightness, edge contour, and radius of edges or corners), mechanical (tensile, yield and bend strengths, elongation, Rockwell hardness, and embrittlement), electrical resistivity, and chemical composition requirements.
SCOPE
1.1 This specification2 establishes the requirements for copper conductor bar, rod, and shapes for electrical (bus) applications and rod, bar, and shapes for general applications.  
1.1.1 The products for electrical (bus) applications shall be made from the following coppers:3    
Copper UNS No.3  
Reference Designation  
C10100  
OFE  
C10200  
OF  
C10300  
OFXLP  
C10400, C10500, C10700  
OFS  
C10920, C10930, C10940  
—  
C11000  
ETP  
C11020  
FRHC  
C11300, C11400, C11500, C11600  
STP  
C12000  
DLP
1.1.1.1 The product may be furnished from any copper listed unless otherwise specified in the contract or purchase order.  
1.2 The product for general applications shall be made from any of the coppers in 1.1.1 or the following coppers:    
Copper UNS No.3  
Reference Designation  
C10800  
OFLP  
C12200  
DHP  
1.2.1 The product may be furnished from any copper listed above unless otherwise specified in the contract or purchase order. Other coppers may be used upon agreement between the supplier and purchaser.  
1.3 Units—The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
Note 1: Material for hot forging will be found in Specification B124/B124M.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    9 pages
    English language
    sale 15% off
  • Technical specification
    9 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Eddy current instrumentation provides timely and useful information regarding the acceptability of copper and aluminum rod for quality control purposes, as well as providing for early warning that unacceptable rod is being produced. Eddy current testing is a nondestructive method of locating surface discontinuities in a product. Signals can be produced by discontinuities located on the surface of the rod. Since the density of eddy currents decreases nearly exponentially as the distance from the surface increases, deep-seated defects may be undetected.  
5.1.1 An exception is the detection of subsurface ferromagnetic inclusions with an additional, or shared, winding enveloped in a DC magnetic field and the addition of appropriate instrumentation. The coil winding, acting as a transducer, generates a voltage as the magnetized inclusion passes through, providing an electrical signal separate from the eddy current response to surface imperfections. The rod is transparent to the DC effect allowing high sensitivity to ferromagnetic inclusions, in the absence of eddy current noise. The method is inherently speed sensitive but is enhanced by high throughput speeds enabling the detection of small subsurface ferromagnetic inclusions which are particularly detrimental to rod quality.  
5.2 Some indications obtained by this practice may not be relevant to product quality. For example, a signal may be caused by minute flaws or irregularities, by anomalies in the material, or a combination thereof, that are not detrimental to the end use of the product. Nonrelevant indications, referred to as “noise,” can mask unacceptable discontinuities. On the other hand, relevant indications are those that may result from unacceptable discontinuities and should be determined by agreement between the user and the supplier. Any indication that is believed to be irrelevant shall be regarded as unacceptable until it is demonstrated by reexamination or other means to be nonrelevant.
SCOPE
1.1 This practice covers the procedures that shall be followed in electromagnetic (eddy current) examination of copper and aluminum redraw rods for detecting discontinuities or imperfections of a severity likely to cause failure or markedly impair surface quality of the rod. These procedures are applicable for continuous lengths of redraw rod in diameters from 1/4 to 13/8 in. (6.4 to 35 mm) suitable for further fabrication into electrical conductors.  
1.2 This practice covers redraw rod made from tough-pitch or oxygen-free coppers. It can also be used for other types of copper, such as fire-refined high conductivity rod. It is also appropriate for aluminum and other nonferrous alloys used for electrical purposes.  
1.3 The procedures described in this practice are based on methods for making use of differential or absolute stationary encircling annular test coil systems.  
1.4 This practice does not establish acceptance criteria. Acceptance criteria must be established by the using parties.  
1.5 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

IEC 61788-7:2020 is available as IEC 61788-7:2020 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.

IEC 61788-7:2020 describes measurement of the surface resistance (Rs) of superconductors at microwave frequencies by the standard two-resonator method. The object of measurement is the temperature dependence of Rs at the resonant frequency. The applicable measurement range of Rs for this method is as follows:
- Frequency: 8 GHz < f < 30 GHz
- Measurement resolution: 0,01 m Ω at 10 GHz
The Rs data at the measured frequency, and that scaled to 10 GHz, assuming the f 2 rule for comparison, is reported. This third edition cancels and replaces the second edition, published in 2006. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) informative Annex B, relative combined standard uncertainty for surface resistance measurement has been added;
b) precision and accuracy statements have been converted to uncertainty;
c) reproducibility in surface resistant measurement has been added.

  • Standard
    46 pages
    English language
    e-Library read for
    1 day

IEC 61788-4:2020 is available as IEC 61788-4:2020 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.

IEC 61788-4:2020 specifies a test method for the determination of the residual resistance ratio (RRR) of Nb-Ti and Nb3Sn composite superconductors with Cu, Cu-Ni, Cu/Cu-Ni and Al matrix in a strain-free condition and zero external magnetic field. This method is intended for use with superconductor specimens that have a monolithic structure with rectangular or round cross-section, RRR value less than 350, and cross-sectional area less than 3 mm2. In the case of Nb3Sn, the specimens have received a reaction heat-treatment. This fifth edition cancels and replaces the fourth edition published in 2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) change in the suitable distance of voltage taps on the specimen for reliable measurement,
b) new report on the result of the round robin test of the residual resistance ratio of Nb3Sn superconductors that proves the validity of the measurement method in this standard,
c) revision of the confusing definitions of the copper ratio and copper fraction.

  • Standard
    37 pages
    English language
    e-Library read for
    1 day

IEC 61788-7:2020 is available as IEC 61788-7:2020 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61788-7:2020 describes measurement of the surface resistance (Rs) of superconductors at microwave frequencies by the standard two-resonator method. The object of measurement is the temperature dependence of Rs at the resonant frequency. The applicable measurement range of Rs for this method is as follows: - Frequency: 8 GHz < f < 30 GHz - Measurement resolution: 0,01 m Ω at 10 GHz The Rs data at the measured frequency, and that scaled to 10 GHz, assuming the f 2 rule for comparison, is reported. This third edition cancels and replaces the second edition, published in 2006. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) informative Annex B, relative combined standard uncertainty for surface resistance measurement has been added; b) precision and accuracy statements have been converted to uncertainty; c) reproducibility in surface resistant measurement has been added.

  • Standard
    46 pages
    English language
    e-Library read for
    1 day

IEC 61788-4:2020 is available as IEC 61788-4:2020 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61788-4:2020 specifies a test method for the determination of the residual resistance ratio (RRR) of Nb-Ti and Nb3Sn composite superconductors with Cu, Cu-Ni, Cu/Cu-Ni and Al matrix in a strain-free condition and zero external magnetic field. This method is intended for use with superconductor specimens that have a monolithic structure with rectangular or round cross-section, RRR value less than 350, and cross-sectional area less than 3 mm2. In the case of Nb3Sn, the specimens have received a reaction heat-treatment. This fifth edition cancels and replaces the fourth edition published in 2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) change in the suitable distance of voltage taps on the specimen for reliable measurement, b) new report on the result of the round robin test of the residual resistance ratio of Nb3Sn superconductors that proves the validity of the measurement method in this standard, c) revision of the confusing definitions of the copper ratio and copper fraction.

  • Standard
    37 pages
    English language
    e-Library read for
    1 day

ABSTRACT
This specification covers the requirements for rod drawing stock produced from electrolytic tough-pitch or oxygen-free coppers and is suitable for further fabrication into electrical conductors. The rod shall be fabricated from copper of such quality and purity. Copper of special qualities, forms, or types, as agreed upon between the manufacturer and the purchaser and that will conform to the requirements prescribed in this specification may also be used. The specimen shall have the following chemical composition: tellurium, selenium, bismuth, antimony, arsenic, tin, lead, iron, nickel, sulfur, silver, oxygen, cadmium, phosphorus, zinc, and manganese. Embrittlement test shall be performed on the specimen to reflect propensity towards hydrogen embrittlement and shall be performed only on oxygen-free copper. The rod shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.
SCOPE
1.1 This specification covers the requirements for rod in diameters from 1/4 in. to 13/8 in. (6.4 mm to 35 mm) produced from high conductivity coppers listed in Table 1, namely, electrolytic tough-pitch, oxygen-free, or fire-refined high conductivity coppers, and are suitable for further fabrication into electrical conductors.  
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.3 The following safety hazards caveat pertains only to Section 13. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    8 pages
    English language
    sale 15% off
  • Technical specification
    8 pages
    English language
    sale 15% off

IEC 61788-7:2020 describes measurement of the surface resistance (Rs) of superconductors at microwave frequencies by the standard two-resonator method. The object of measurement is the temperature dependence of Rs at the resonant frequency. The applicable measurement range of Rs for this method is as follows:
- Frequency: 8 GHz  - Measurement resolution: 0,01 m Ω at 10 GHz
The Rs data at the measured frequency, and that scaled to 10 GHz, assuming the f 2 rule for comparison, is reported. This third edition cancels and replaces the second edition, published in 2006. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) informative Annex B, relative combined standard uncertainty for surface resistance measurement has been added;
b) precision and accuracy statements have been converted to uncertainty;
c) reproducibility in surface resistant measurement has been added.

  • Standard
    132 pages
    English language
    sale 15% off
  • Standard
    87 pages
    English and French language
    sale 15% off

IEC 61788-4:2020 specifies a test method for the determination of the residual resistance ratio (RRR) of Nb-Ti and Nb3Sn composite superconductors with Cu, Cu-Ni, Cu/Cu-Ni and Al matrix in a strain-free condition and zero external magnetic field. This method is intended for use with superconductor specimens that have a monolithic structure with rectangular or round cross-section, RRR value less than 350, and cross-sectional area less than 3 mm2. In the case of Nb3Sn, the specimens have received a reaction heat-treatment. This fifth edition cancels and replaces the fourth edition published in 2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) change in the suitable distance of voltage taps on the specimen for reliable measurement,
b) new report on the result of the round robin test of the residual resistance ratio of Nb3Sn superconductors that proves the validity of the measurement method in this standard,
c) revision of the confusing definitions of the copper ratio and copper fraction.

  • Standard
    103 pages
    English language
    sale 15% off
  • Standard
    69 pages
    English and French language
    sale 15% off

SIGNIFICANCE AND USE
2.1 The terms in this standard are used in standards and literature related to electric contacts, materials for electric contacts and test methods for evaluating electric contacts. These terms may be difficult to locate in a general purpose dictionary or the definition in such a dictionary may not cover the meaning applied in the field of electric contacts.
SCOPE
1.1 The terms included in this list are those that are peculiar to electric contacts or general terms that have a specific meaning when related to electric contacts. The definitions were prepared assuming that the reader has a general knowledge in a physical science but is unfamiliar with the terminology of the literature of electric contacts.  
1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off

ABSTRACT
This specification establishes the requirements for copper alloy strips for use in the manufacture of electrical connectors or spring contacts produced from one of the following Copper Alloy UNS Nos.: C14530, C15100, C15500, C17000, C17200, C17410, C17450, C17460, C17500, C17510, C19010, C19025, C19210, C19400, C19500, C19700, C23000, C26000, C40810, C40850, C40860, C42200, C42500, C42520, C42600, C50580, C50780, C51000, C51080, C51100, C51180, C51980, C52100, C52180, C52480, C63800, C65400, C68800, C70250, C70260, C70265, C75200, and C76200. The material for manufacture shall be a cast bar, slab, cake, billet, or other form of such composition as to be suitable for processing by either hot- or cold-working to produce the products prescribed in this specification. Products shall be finished by hot working, cold working, annealing, or heat treatment as may be necessary to meet mechanical property requirements, which include tensile strength, yield strength, and elongation. Tempers shall be available in the annealed, rolled, or mill hardened conditions. Products shall also adhere to tolerances as to dimension such as thickness, width, length, straightness, and mass.
SCOPE
1.1 This specification establishes the requirements for copper alloy strip for use in the manufacture of electrical connectors or spring contacts produced from one of the following Copper Alloy UNS Nos.:2 C14530, C15100, C15500, C17000, C17200, C17410, C17450, C17460, C17500, C17510, C19002, C19010, C19015, C19025, C19210, C19400, C19500, C19700, C23000, C26000, C40810, C40850, C40860, C42200, C42500, C42520, C42600, C50580, C50780, C51000, C51080, C51100, C51180, C51980, C52100, C52180, C52480, C63800, C64725, C65400, C68800, C70250, C70260, C70265, C70310, C70350, C75200, and C76200.  
1.2 The requirements for the other copper alloys such as copper-nickel-tin spinodal, UNS C72650, C72700, and C72900, shall be as prescribed in the current edition of Specification B740.  
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    14 pages
    English language
    sale 15% off
  • Technical specification
    14 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
2.1 Procedure A covers the determination of the equation of the curve relating resistance and temperature where the curve approximates a parabola. This test method may be used for wire of any metal or alloy over the temperature interval appropriate to the material.  
2.2 Procedure B covers the determination of the mean temperature coefficient of resistance for wire of any metal or alloy over the temperature interval appropriate to the material.
SCOPE
1.1 This test method covers determination of the change of resistance with temperature of alloy wires used for resistance standards and precision resistors for electrical apparatus.  
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off

This document specifies the qualification requirements for personnel performing micro-joining and oxygenation anneling, and testing the 2G HTS test joints.

  • Standard
    28 pages
    English language
    e-Library read for
    1 day

This document provides concepts, specification and qualification of 2G HTS joining procedure. A welding procedure specification (WPS) is needed to provide a basis for planning joining operations and for quality control during joining. Joining is considered as a special process in the terminology of standards for quality systems. Standards for quality systems usually require that special processes be carried out in accordance with written procedure specifications. This has resulted in the establishment of a set of rules for qualification of the joining procedure prior to the release of the WPS to actual production. This document defines these rules.
This document does not cover soldering, brazing or any fillers, which are currently available in the industry. It can be applied for joining of all kinds of 2G HTSs.
This document does not apply to 1st Generation Bismuth Strontium Calcium Copper Oxide (1G BSCCO) type HTS and Low Temperature Superconductor (LTS) Joining.

  • Standard
    49 pages
    English language
    e-Library read for
    1 day

IEC 61788-25:2018 specifies the test method and procedures for testing tensile mechanical properties of REBCO superconductive composite tapes at room temperature. This test is used to measure the modulus of elasticity and 0,2 % proof strength. The values for elastic limit, fracture strength and percentage elongation after fracture serve only as a reference. This document applies to samples having a rectangular cross-section with an area of 0,12 mm2 to 6,0 mm2 (corresponding to the tapes with width of 2,0 mm to 12,0 mm and thickness of 0,06 mm to 0,5 mm)

  • Standard
    30 pages
    English language
    e-Library read for
    1 day

ABSTRACT
This specification deals with bare fine-wire bunch-stranded and rope-lay bunch-stranded copper conductors made from round copper wires finer than No. 40 AWG, either coated or uncoated with tin or silver, for use as electrical conductors. The conductor types covered in this specification are designated Type B for bunch-stranded conductors, and Type R for rope-lay bunch-stranded conductors. On the other hand, the wire classifications are assigned as: Class R, stranded conductors using wire 42 AWG; Class S, stranded conductors using wire 44 AWG; Class T, stranded conductors using wire 46 AWG; Class U, stranded conductors using wire 48 AWG; and Class V, stranded conductors using wire 50 AWG. Wires shall undergo tests that shall evaluated their conformance to physical and electrical properties such as wire cross-sectional area and diameter, coating thickness, tensile strength, elongation, and DC resistance.
SCOPE
1.1 This specification covers bare bunch-stranded and rope-lay bunch-stranded conductors made from round copper wires finer than No. 40 AWG with diameters less than 0.0031 in. (.078 mm), either coated or uncoated with tin or silver, for use as electrical conductors. (Explanatory Note 1).  
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.  
1.2.1 Exceptions—The SI values for density and temperature are to be regarded as standard.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    6 pages
    English language
    sale 15% off

IEC 61788-24:2018 describes a test method for determining the retained critical current after double bending at room temperature of short and straight Ag- and/or Ag alloy-sheathed Bi-2223 superconducting wires that have the shape of a flat or square tape containing mono- or multicores of oxides. The wires can be laminated with copper alloy, stainless steel or Ni alloy tapes.
The test method is intended for use with superconductors that have a critical current less than 300 A and an n-value larger than 5.

  • Standard
    32 pages
    English language
    e-Library read for
    1 day