77.040.10 - Mechanical testing of metals
ICS 77.040.10 Details
Mechanical testing of metals
Mechanische Prufung von Metallen
Essais mécaniques des métaux
Mehansko preskušanje kovin
General Information
Frequently Asked Questions
ICS 77.040.10 is a classification code in the International Classification for Standards (ICS) system. It covers "Mechanical testing of metals". The ICS is a hierarchical classification system used to organize international, regional, and national standards, facilitating the search and identification of standards across different fields.
There are 1399 standards classified under ICS 77.040.10 (Mechanical testing of metals). These standards are published by international and regional standardization bodies including ISO, IEC, CEN, CENELEC, and ETSI.
The International Classification for Standards (ICS) is a hierarchical classification system maintained by ISO to organize standards and related documents. It uses a three-level structure with field (2 digits), group (3 digits), and sub-group (2 digits) codes. The ICS helps users find standards by subject area and enables statistical analysis of standards development activities.
e-Library Subscription
Create subscription and get permanent access to documents within 77.040.10 - Mechanical testing of metals
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
This document specifies guidelines for testing metallic sheet materials to determine the stress-strain characteristics at high strain rates. This document covers the use of elastic-bar-type systems.
This test method covers the strain-rate range above 102 s−1.
NOTE This testing method is also applicable to tensile test-piece geometries other than the flat test pieces considered here.
- Draft36 pagesEnglish languagee-Library read for1 day
This document specifies guidelines for testing metallic sheet materials to determine the stress-strain characteristics at high strain rates. This document covers the use of elastic-bar-type systems. This test method covers the strain-rate range above 102 s−1. NOTE This testing method is also applicable to tensile test-piece geometries other than the flat test pieces considered here.
- Standard29 pagesEnglish languagesale 15% off
- Standard29 pagesFrench languagesale 15% off
This document applies to force-controlled thermo-mechanical fatigue (TMF) testing. Both forms of control, force or stress, can be applied according to this document. This document describes the equipment, specimen preparation, and presentation of the test results to determine TMF properties.
- Standard29 pagesEnglish languagesale 15% off
This document specifies the instrumented indentation method for testing at elevated temperature for determination of hardness and other materials parameters at temperatures above ambient. Elevated temperature testing is defined in this document to be when the test piece and indenter tip are heated above the ambient conditions of the instrument to a controlled and measured temperature; insulating shielding is used to enclose the hot zone to reduce heating effects so that the majority of the instrumented indentation testing machine is at ambient conditions. This document is restricted to test machines that have been traceably calibrated and pass an indirect verification according to ISO 14577-2 when operating at elevated temperature to ensure that any effects on ambient sensors caused by the presence of a hot zone are accounted for. This document covers instrumented indentation testing at elevated temperatures in air, in inert or reducing gaseous environments, or in vacuum. This document provides a method for instrumented indentation testing at elevated temperature with both the indenter tip and test piece actively heated, and with independent feedback control and temperature measurement of both the indenter tip and test piece. This document provides a method for estimation of the uncertainty of the contact temperature. The uncertainty increases as the thermal conductivity of the test piece decreases. It is left to the user to decide if that uncertainty is fit for their purpose. The test method in this document is not applicable to: - instrumented indentation testing where there is no direct measurement of the temperature of the indenter tip body itself; - instrumented indentation testing where above ambient temperatures are obtained by placing the entire instrument in a hot box to achieve iso-thermal heating of the whole system. These systems typically only achieve limited elevated temperature; - instrumented indentation testing with active heating of the test piece but only passive heating of the indenter, e.g. by proximity to the hot test piece and thermal conduction through the indentation contact, hot gas, or any combination.
- Standard20 pagesEnglish languagesale 15% off
ISO 15363:2017 specifies the ring hydraulic pressure test for metallic tubes. It is generally applied to tubes with an outside diameter greater than 120 mm and outside diameter to thickness ratio of not less than 20.
The objective of this test is to ascertain the value of the hoop stress required to produce a specified total circumferential (hoop) strain.
- Standard16 pagesEnglish languagee-Library read for1 day
- Amendment8 pagesEnglish languagee-Library read for1 day
ISO 15363:2017 specifies the ring hydraulic pressure test for metallic tubes. It is generally applied to tubes with an outside diameter greater than 120 mm and outside diameter to thickness ratio of not less than 20.
The objective of this test is to ascertain the value of the hoop stress required to produce a specified total circumferential (hoop) strain.
- Standard16 pagesEnglish languagee-Library read for1 day
- Amendment8 pagesEnglish languagee-Library read for1 day
- Standard2 pagesEnglish languagesale 15% off
- Standard2 pagesFrench languagesale 15% off
This document provides specifications for testing miniaturised metallic test pieces where not enough material is available for test pieces according to ISO 6892-1.
The guidelines in this document are not intended to replace the requirements of the standard method described in ISO 6892-1.
This document refers to conventionally manufactured materials.
NOTE 1 Additional information regarding testing of additively manufactured materials are given in ISO/ASTM 52909[5].
NOTE 2 Further information on the performance of miniaturised test pieces in tensile testing and the comparability of respective results is available in References [8] to [14].
- Technical specification15 pagesEnglish languagee-Library read for1 day
This document provides specifications for testing miniaturised metallic test pieces where not enough material is available for test pieces according to ISO 6892-1.
The guidelines in this document are not intended to replace the requirements of the standard method described in ISO 6892-1.
This document refers to conventionally manufactured materials.
NOTE 1 Additional information regarding testing of additively manufactured materials are given in ISO/ASTM 52909[5].
NOTE 2 Further information on the performance of miniaturised test pieces in tensile testing and the comparability of respective results is available in References [8] to [14].
- Technical specification15 pagesEnglish languagee-Library read for1 day
This document provides specifications for testing miniaturised metallic test pieces where not enough material is available for test pieces according to ISO 6892-1. The guidelines in this document are not intended to replace the requirements of the standard method described in ISO 6892-1. This document refers to conventionally manufactured materials. NOTE 1 Additional information regarding testing of additively manufactured materials are given in ISO/ASTM 52909[5]. NOTE 2 Further information on the performance of miniaturised test pieces in tensile testing and the comparability of respective results is available in References [8] to [14].
- Technical specification7 pagesEnglish languagesale 15% off
- Technical specification8 pagesFrench languagesale 15% off
This document specifies a method for determining the ability of metallic wire of diameter or characteristic dimension from 0,3 mm to 10 mm to undergo plastic deformation during reverse bend test. The range of applicable diameters or characteristic dimensions is more precisely specified in the relevant product standard.
- Standard9 pagesEnglish languagesale 15% off
This document specifies the geometries and proposed finishing procedures of the inner surface of hollow test piece of metallic materials, filled with a high-pressure gaseous medium. The document specifies a tensile testing procedure to evaluate the effect of high-pressure gaseous medium compared to a high-pressure inert gas or air. The document can be used for the screening of metallic materials by evaluating mechanical property changes due to the effects of various test gases, including hydrogen. NOTE Temperature range and pressure range depend on the materials to be tested and test gas to be used.
- Standard9 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 These test methods of impact testing relate specifically to the behavior of metal when subjected to a single application of a force resulting in multi-axial stresses associated with a notch, coupled with high rates of loading and in some cases with high or low temperatures. For some materials and temperatures the results of impact tests on notched specimens, when correlated with service experience, have been found to predict the likelihood of brittle fracture accurately. Further information on significance appears in Appendix X1.
SCOPE
1.1 These test methods describe notched-bar impact testing of metallic materials by the Charpy (simple-beam) test and the Izod (cantilever-beam) test. They give the requirements for: test specimens, test procedures, test reports, test machines (see Annex A1) verifying Charpy impact machines (see Annex A2), optional test specimen configurations (see Annex A3), designation of test specimen orientation (see Terminology E1823), and determining the shear fracture appearance (see Annex A4). In addition, information is provided on the significance of notched-bar impact testing (see Appendix X1), and methods of measuring the center of strike (see Appendix X2).
1.2 These test methods do not address the problems associated with impact testing at temperatures below –196 °C (77 K).
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3.1 Exception—Section 9 and Annex A4 provide inch-pound units for information only.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 6.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard27 pagesEnglish languagesale 15% off
- Standard27 pagesEnglish languagesale 15% off
This document specifies the method for Rockwell regular and Rockwell superficial hardness tests for scales A, B, C, D, E, F, G, H, K, 15N, 30N, 45N, 15T, 30T, and 45T for metallic materials and is applicable to stationary and portable hardness testing machines.
For specific materials and/or products, other specific International Standards apply (e.g. ISO 3738-1 and ISO 4498).
- Standard38 pagesEnglish languagee-Library read for1 day
This document specifies a method for the calibration of reference blocks to be used for the indirect and daily verification of Rockwell hardness testing machines and indenters, as specified in ISO 6508-2. This document also specifies requirements for Rockwell machines and indenters used for calibrating reference blocks and specifies methods for their calibration and verification.
Attention is drawn to the fact that the use of hard metal for ball indenters is considered to be the standard type of Rockwell indenter ball.
- Standard25 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
4.1 The plastic strain ratio r is a parameter that indicates the ability of a sheet metal to resist thinning or thickening when subjected to either tensile or compressive forces in the plane of the sheet. It is a measure of plastic anisotropy and is related to the preferred crystallographic orientations within a polycrystalline metal. This resistance to thinning or thickening contributes to the forming of shapes, such as cylindrical flat-bottom cups, by the deep-drawing process. The value of r , therefore, is considered a measure of sheet-metal drawability. It is particularly useful for evaluating materials intended for parts where a substantial portion of the blank is drawn from beneath the blank holder into the die opening.
4.2 For many materials the plastic strain ratio remains essentially constant over a range of plastic strains up to maximum applied force in a tension test. For materials that give different values of r at various strain levels, a superscript is used to designate the percent strain at which the value of r was measured. For example, if a 20 % elongation is used, the report would show r20.
4.3 Materials usually have different values of r when tested in different orientations relative to the rolling direction. The angle of sampling of the individual test specimen is noted by a subscript. Thus, for a test specimen whose length is aligned parallel to the rolling direction, plastic strain ratio, r , is reported as r0. If, in addition, the measurement was made at 20 % elongation and it was deemed necessary to note the percent strain at which the value was measured, the value would be reported as r020.
4.4 A material that has an upper yield strength (yield point) followed by discontinuous yielding stretches unevenly while this yielding is taking place. In steels, this is associated with the propagation of Lüders’ bands on the surface. The accuracy and reproducibility of the determination of plastic strain ratio, r , will be reduced unl...
SCOPE
1.1 This test method covers special tension testing for the measurement of the plastic strain ratio, r, of sheet metal intended for deep-drawing applications.
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard9 pagesEnglish languagesale 15% off
- Standard9 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The primary use of these test methods is testing to determine the specified mechanical properties of steel, stainless steel, and related alloy products for the evaluation of conformance of such products to a material specification under the jurisdiction of ASTM Committee A01 and its subcommittees as designated by a purchaser in a purchase order or contract.
4.1.1 These test methods may be and are used by other ASTM Committees and other standards writing bodies for the purpose of conformance testing.
4.1.2 The material condition at the time of testing, sampling frequency, specimen location and orientation, reporting requirements, and other test parameters are contained in the pertinent material specification or in a general requirement specification for the particular product form.
4.1.3 Some material specifications require the use of additional test methods not described herein; in such cases, the required test method is described in that material specification or by reference to another appropriate test method standard.
4.2 These test methods are also suitable to be used for testing of steel, stainless steel and related alloy materials for other purposes, such as incoming material acceptance testing by the purchaser or evaluation of components after service exposure.
4.2.1 As with any mechanical testing, deviations from either specification limits or expected as-manufactured properties can occur for valid reasons besides deficiency of the original as-fabricated product. These reasons include, but are not limited to: subsequent service degradation from environmental exposure (for example, temperature, corrosion); static or cyclic service stress effects, mechanically-induced damage, material inhomogeneity, anisotropic structure, natural aging of select alloys, further processing not included in the specification, sampling limitations, and measuring equipment calibration uncertainty. There is statistical variation in all aspects of mechanical testin...
SCOPE
1.1 These test methods2 cover procedures and definitions for the mechanical testing of steels, stainless steels, and related alloys. The various mechanical tests herein described are used to determine properties required in the product specifications. Variations in testing methods are to be avoided, and standard methods of testing are to be followed to obtain reproducible and comparable results. In those cases in which the testing requirements for certain products are unique or at variance with these general procedures, the product specification testing requirements shall control.
1.2 The following mechanical tests are described:
Sections
Tension
7 to 14
Bend
15
Hardness
16
Brinell
17
Rockwell
18
Portable
19
Impact
20 to 30
Keywords
32
1.3 Annexes covering details peculiar to certain products are appended to these test methods as follows:
Annex
Bar Products
Annex A1
Tubular Products
Annex A2
Fasteners
Annex A3
Round Wire Products
Annex A4
Significance of Notched-Bar Impact Testing
Annex A5
Converting Percentage Elongation of Round Specimens to
Equivalents for Flat Specimens
Annex A6
Testing Multi-Wire Strand
Annex A7
Rounding of Test Data
Annex A8
Methods for Testing Steel Reinforcing Bars
Annex A9
Procedure for Use and Control of Heat-cycle Simulation
Annex A10
1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.5 When these test methods are referenced in a metric product specification, the yield and tensile values may be determined in inch-pound (ksi) units then converted into SI (MPa) units. The elongation determined in inch-pound gauge lengths of 2 in. or 8 in. may be report...
- Standard51 pagesEnglish languagesale 15% off
- Standard51 pagesEnglish languagesale 15% off
This document specifies two separate methods of verification of testing machines (direct and indirect) for determining Rockwell hardness in accordance with ISO 6508-1, together with a method for verifying Rockwell hardness indenters.
The direct verification method is used to determine whether the main parameters associated with the machine function, such as applied force, depth measurement, and testing cycle timing, fall within specified tolerances. The indirect verification method uses a number of calibrated reference hardness blocks to determine how well the machine can measure a material of known hardness.
This document is applicable to stationary and portable hardness testing machines.
Attention is drawn to the fact that the use of tungsten carbide composite for ball indenters is considered to be the standard type of Rockwell indenter ball.
- Standard30 pagesEnglish languagee-Library read for1 day
This document describes how the evaluation of uncertainties in tensile tests can be obtained from tests at room temperature (ISO 6892-1) or elevated temperature (ISO 6892-2). This document reports how it can be applied to tests performed at ambient and elevated temperatures under axial loading conditions with a digital acquisition of force and displacement. NOTE 1 As CWA 15261-2 and UNCERT CoP 07 reports, the tests are assumed to run continuously without interruptions on test pieces that have uniform gauge lengths. NOTE 2 Annex C gives for information an indication of the typical scatter in tensile test results for a variety of materials that have been reported during laboratory inter-comparison exercises.
- Technical report36 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Tension tests provide information on the strength and ductility of materials under uniaxial tensile stresses. This information may be useful in comparisons of materials, alloy development, quality control, and design.
4.2 The results of tension tests from selected portions of a part or material may not totally represent the strength and ductility of the entire end product of its in-service behavior in different environments.
4.3 These test methods are considered satisfactory for acceptance testing of commercial shipments, since the methods have been used extensively for these purposes.
4.4 Tension tests provide a means to determine the ductility of materials through the measurement of elongation or reduction of area. However, as specimen thickness is reduced, tension tests may become less useful for determining ductility. For these purposes Test Method E796 is an alternative procedure for measuring ductility.
4.5 Different industries differentiate between foil and sheet at different thicknesses.
Note 1: In 2013, to harmonize with international standards, the Aluminum Association revised its definition of foil to include thicknesses less than or equal to 0.2 mm (0.008 in.).
4.6 This standard differs from Test Methods E8/E8M in that it permits determining the specimen thickness by weighing (7.3) and determining the elongation from crosshead displacement for some specimens (7.8).
4.7 It is impossible for this standard to define the thickness range for every possible alloy where this standard should be used instead of Test Methods E8/E8M or other tensile test standards. Superior results for a specific alloy and thickness could be obtained by measuring the specimen thickness by weighing (7.3) to avoid damaging the material and to obtain sufficient accuracy. In addition, it may be acceptable for a given alloy and thickness to determine the elongation from crosshead displacement in cases where conventional extensometers that contact the specimen or...
SCOPE
1.1 These test methods cover the tension testing of metallic foil at room temperature. Exception to these methods may be necessary in individual specifications or test methods for a particular material.
1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard6 pagesEnglish languagesale 15% off
- Standard6 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Tension tests provide information on the strength and ductility of materials under uniaxial tensile stresses. This information may be useful in comparisons of materials, alloy development, quality control, and design under certain circumstances.
4.2 The results of tension tests of specimens machined to standardized dimensions from selected portions of a part or material may not totally represent the strength and ductility properties of the entire end product or its in-service behavior in different environments.
4.3 These test methods are considered satisfactory for acceptance testing of commercial shipments. The test methods have been used extensively in the trade for this purpose.
SCOPE
1.1 These test methods cover the tension testing of metallic materials in any form at room temperature, specifically, the methods of determination of yield strength, yield point elongation, tensile strength, elongation, and reduction of area.
1.2 The gauge lengths for most round specimens are required to be 4D for E8 and 5D for E8M. The gauge length is the most significant difference between E8 and E8M test specimens. Test specimens made from powder metallurgy (P/M) materials are exempt from this requirement by industry-wide agreement to keep the pressing of the material to a specific projected area and density.
1.3 Exceptions to the provisions of these test methods may need to be made in individual specifications or test methods for a particular material. For examples, see Test Methods and Definitions A370 and Test Methods B557, and B557M.
1.4 Room temperature shall be considered to be 10 °C to 38 °C [50 °F to 100°F] unless otherwise specified.
1.5 The values stated in SI units are to be regarded as separate from inch/pound units. The values stated in each system are not exact equivalents; therefore each system must be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard35 pagesEnglish languagesale 15% off
- Standard35 pagesEnglish languagesale 15% off
This document specifies the method for Rockwell regular and Rockwell superficial hardness tests for scales A, B, C, D, E, F, G, H, K, 15N, 30N, 45N, 15T, 30T, and 45T for metallic materials and is applicable to stationary and portable hardness testing machines.
For specific materials and/or products, other specific International Standards apply (e.g. ISO 3738-1 and ISO 4498).
- Standard38 pagesEnglish languagee-Library read for1 day
This document specifies a method for the calibration of reference blocks to be used for the indirect and daily verification of Rockwell hardness testing machines and indenters, as specified in ISO 6508-2. This document also specifies requirements for Rockwell machines and indenters used for calibrating reference blocks and specifies methods for their calibration and verification.
Attention is drawn to the fact that the use of hard metal for ball indenters is considered to be the standard type of Rockwell indenter ball.
- Standard25 pagesEnglish languagee-Library read for1 day
This document specifies two separate methods of verification of testing machines (direct and indirect) for determining Rockwell hardness in accordance with ISO 6508-1, together with a method for verifying Rockwell hardness indenters.
The direct verification method is used to determine whether the main parameters associated with the machine function, such as applied force, depth measurement, and testing cycle timing, fall within specified tolerances. The indirect verification method uses a number of calibrated reference hardness blocks to determine how well the machine can measure a material of known hardness.
This document is applicable to stationary and portable hardness testing machines.
Attention is drawn to the fact that the use of tungsten carbide composite for ball indenters is considered to be the standard type of Rockwell indenter ball.
- Standard30 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
5.1 Fracture toughness is expressed in terms of an elastic-plastic stress-intensity factor, KJc, that is derived from the J-integral calculated at fracture.
5.2 Ferritic steels are microscopically inhomogeneous with respect to the orientation of individual grains. Also, grain boundaries have properties distinct from those of the grains. Both contain carbides or nonmetallic inclusions that can act as nucleation sites for cleavage microcracks. The random location of such nucleation sites with respect to the position of the crack front manifests itself as variability of the associated fracture toughness (13). This results in a distribution of fracture toughness values that is amenable to characterization using the statistical methods in this test method.
5.3 The statistical methods in this test method assume that the data set represents a macroscopically homogeneous material, such that the test material has both the uniform tensile and toughness properties. The fracture toughness evaluation of nonuniform materials is not amenable to the statistical analysis procedures employed in this test method. For example, multi-pass weldments can create heat-affected and brittle zones with localized properties that are quite different from either the bulk or weld materials. Thick-section steels also often exhibit some variation in properties near the surfaces. Metallographic analysis can be used to identify possible nonuniform regions in a material. These regions can then be evaluated through mechanical testing such as hardness, microhardness, and tensile testing for comparison with the bulk material. It is also advisable to measure the toughness properties of these nonuniform regions distinctly from the bulk material. Section 10.6 provides a screening criterion to assess whether the data set may not be representative of a macroscopically homogeneous material, and therefore, may not be amenable to the statistical analysis procedures employed in this test method. If the data ...
SCOPE
1.1 This test method covers the determination of a reference temperature, T0, which characterizes the fracture toughness of ferritic steels that experience onset of cleavage cracking at elastic, or elastic-plastic KJc instabilities, or both. The specific types of ferritic steels (3.2.2) covered are those with yield strengths ranging from 275 MPa to 825 MPa (40 ksi to 120 ksi) and weld metals, after stress-relief annealing, that have 10 % or less strength mismatch relative to that of the base metal.
1.2 The specimens covered are fatigue precracked single-edge notched bend bars, SE(B), and standard or disk-shaped compact tension specimens, C(T) or DC(T). A range of specimen sizes with proportional dimensions is recommended. The dimension on which the proportionality is based is specimen thickness.
1.3 Median KJc values tend to vary with the specimen type at a given test temperature, presumably due to constraint differences among the allowable test specimens in 1.2. The degree of KJc variability among specimen types is analytically predicted to be a function of the material flow properties (1)2 and decreases with increasing strain hardening capacity for a given yield strength material. This KJc dependency ultimately leads to discrepancies in calculated T0 values as a function of specimen type for the same material. T0 values obtained from C(T) specimens are expected to be higher than T0 values obtained from SE(B) specimens. Best estimate comparisons of several materials indicate that the average difference between C(T) and SE(B)-derived T0 values is approximately 10°C (2). C(T) and SE(B) T0 differences up to 15 °C have also been recorded (3). However, comparisons of individual, small datasets may not necessarily reveal this average trend. Datasets which contain both C(T) and SE(B) specimens may generate T0 results which fall between the T0 values calculated using solely C(T) or SE(B) specimens. It is therefore strongl...
- Standard41 pagesEnglish languagesale 15% off
- Standard41 pagesEnglish languagesale 15% off
This document specifies the method for Rockwell regular and Rockwell superficial hardness tests for scales A, B, C, D, E, F, G, H, K, 15N, 30N, 45N, 15T, 30T, and 45T for metallic materials and is applicable to stationary and portable hardness testing machines. For specific materials and/or products, other specific International Standards apply (e.g. ISO 3738-1 and ISO 4498).
- Standard31 pagesEnglish languagesale 15% off
- Standard30 pagesFrench languagesale 15% off
This document specifies two separate methods of verification of testing machines (direct and indirect) for determining Rockwell hardness in accordance with ISO 6508-1, together with a method for verifying Rockwell hardness indenters. The direct verification method is used to determine whether the main parameters associated with the machine function, such as applied force, depth measurement, and testing cycle timing, fall within specified tolerances. The indirect verification method uses a number of calibrated reference hardness blocks to determine how well the machine can measure a material of known hardness. This document is applicable to stationary and portable hardness testing machines. Attention is drawn to the fact that the use of tungsten carbide composite for ball indenters is considered to be the standard type of Rockwell indenter ball.
- Standard23 pagesEnglish languagesale 15% off
- Standard24 pagesFrench languagesale 15% off
This document specifies a method for the calibration of reference blocks to be used for the indirect and daily verification of Rockwell hardness testing machines and indenters, as specified in ISO 6508-2. This document also specifies requirements for Rockwell machines and indenters used for calibrating reference blocks and specifies methods for their calibration and verification. Attention is drawn to the fact that the use of hard metal for ball indenters is considered to be the standard type of Rockwell indenter ball.
- Standard18 pagesEnglish languagesale 15% off
- Standard20 pagesFrench languagesale 15% off
This document specifies the Vickers hardness test method for the three different ranges of test force for metallic materials, including hard metals and other cemented carbides (see Table 1), metallic coatings and other inorganic coatings.
The Vickers hardness test is specified in this document for lengths of indentation diagonals between 0,020 mm and 1,400 mm. Using this method to determine Vickers hardness from smaller indentations is outside the scope of this document as results would suffer from large uncertainties due to the limitations of optical measurement and imperfections in tip geometry.
The Vickers hardness specified in this document is also applicable for metallic and other inorganic coatings including electrodeposited coatings, autocatalytic coatings, sprayed coatings and anodic coatings on aluminium.
This document is applicable to measurements normal to the coated surface and to measurements on cross-sections, provided that the characteristics of the coating (smoothness, thickness, etc.) permit accurate readings of the diagonal of the indentation.
This document is not applicable for coatings with thickness less than 0,030 mm when testing normal to the coating surface. This standard is not applicable for coatings with thickness less than 0,100 mm when testing a cross-section of the coating. ISO 14577-1 can be used for the determination of hardness from smaller indentations.”
A periodic verification method is specified for routine checking of the testing machine in service by the user.
For specific materials and/or products, relevant International Standards exist.
- Standard42 pagesEnglish languagee-Library read for1 day
This document specifies the method of instrumented indentation test for evaluation of stress change between reference and target states using indentation force differences. This document primarily applies to measuring the stress change in a specific location and the stress difference between different locations.
- Technical specification19 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
6.1 Creep crack growth rate expressed as a function of the steady state C* or K characterizes the resistance of a material to crack growth under conditions of extensive creep deformation or under brittle creep conditions. Background information on the rationale for employing the fracture mechanics approach in the analyses of creep crack growth data is given in (11, 13, 30-35).
6.2 Aggressive environments at high temperatures can significantly affect the creep crack growth behavior. Attention must be given to the proper selection and control of temperature and environment in research studies and in generation of design data.
6.2.1 Expressing CCI time, t0.2 and CCG rate, da/dt as a function of an appropriate fracture mechanics related parameter generally provides results that are independent of specimen size and planar geometry for the same stress state at the crack tip for the range of geometries and sizes presented in this document (see Annex A1). Thus, the appropriate correlation will enable exchange and comparison of data obtained from a variety of specimen configurations and loading conditions. Moreover, this feature enables creep crack growth data to be utilized in the design and evaluation of engineering structures operated at elevated temperatures where creep deformation is a concern. The concept of similitude is assumed, implying that cracks of differing sizes subjected to the same nominal C*(t), Ct, or K will advance by equal increments of crack extension per unit time, provided the conditions for the validity for the specific crack growth rate relating parameter are met. See 11.7 for details.
6.2.2 The effects of crack tip constraint arising from variations in specimen size, geometry and material ductility can influence t0.2 and da/dt. For example, crack growth rates at the same value of C*(t), Ct in creep-ductile materials generally increases with increasing thickness. It is therefore necessary to keep the component dimensions in mind when selecti...
SCOPE
1.1 This test method covers the determination of creep crack initiation (CCI) and creep crack growth (CCG) in metals at elevated temperatures using pre-cracked specimens subjected to static or quasi-static loading conditions. The solutions presented in this test method are validated for base material (that is, homogenous properties) and mixed base/weld material with inhomogeneous microstructures and creep properties. The CCI time, t0.2, which is the time required to reach an initial crack extension of δai = 0.2 mm to occur from the onset of first applied force, and CCG rate, a˙ or da/dt are expressed in terms of the magnitude of creep crack growth correlated by fracture mechanics parameters, C* or K, with C* defined as the steady state determination of the crack tip stresses derived in principal from C*(t) and Ct (1-17).2 The crack growth derived in this manner is identified as a material property which can be used in modeling and life assessment methods (17-28).
1.1.1 The choice of the crack growth correlating parameter C*, C*(t), Ct, or K depends on the material creep properties, geometry and size of the specimen. Two types of material behavior are generally observed during creep crack growth tests; creep-ductile (1-17) and creep-brittle (29-44). In creep ductile materials, where creep strains dominate and creep crack growth is accompanied by substantial time-dependent creep strains at the crack tip, the crack growth rate is correlated by the steady state definitions of Ct or C*(t) , defined as C* (see 1.1.4). In creep-brittle materials, creep crack growth occurs at low creep ductility. Consequently, the time-dependent creep strains are comparable to or dominated by accompanying elastic strains local to the crack tip. Under such steady state creep-brittle conditions, Ct or K could be chosen as the correlating parameter (8-14).
1.1.2 In any one test, two regions of crack growth behavior may be present (12, 13)....
- Standard29 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The surface-crack tension (SCT) test is used to estimate the load-carrying capacity of simple sheet- or plate-like structural components having a type of flaw likely to occur in service. The test is also used for research purposes to investigate failure mechanisms of cracks under service conditions.
4.2 The residual strength of an SCT specimen is a function of the crack depth and length and the specimen thickness as well as the characteristics of the material. This relationship is extremely complex and cannot be completely described or characterized at present.
4.2.1 The results of the SCT test are suitable for direct application to design only when the service conditions exactly parallel the test conditions. Some methods for further analysis are suggested in Appendix X1.
4.3 In order that SCT test data can be comparable and reproducible and can be correlated among laboratories, it is essential that uniform SCT testing practices be established.
4.4 The specimen configuration, preparation, and instrumentation described in this practice are generally suitable for cyclic- or sustained-force testing as well. However, certain constraints are peculiar to each of these tests. These are beyond the scope of this practice but are discussed in Ref. (1).
SCOPE
1.1 This practice covers the design, preparation, and testing of surface-crack tension (SCT) specimens. It relates specifically to testing under continuously increasing force and excludes cyclic and sustained loadings. The quantity determined is the residual strength of a specimen having a semielliptical or circular-segment fatigue crack in one surface. This value depends on the crack dimensions and the specimen thickness as well as the characteristics of the material.
1.2 Metallic materials that can be tested are not limited by strength, thickness, or toughness. However, tests of thick specimens of tough materials may require a tension test machine of extremely high capacity. The applicability of this practice to nonmetallic materials has not been determined.
1.3 This practice is limited to specimens having a uniform rectangular cross section in the test section. The test section width and length must be large with respect to the crack length. Crack depth and length should be chosen to suit the ultimate purpose of the test.
1.4 Residual strength may depend strongly upon temperature within a certain range depending upon the characteristics of the material. This practice is suitable for tests at any appropriate temperature.
1.5 Residual strength is believed to be relatively insensitive to loading rate within the range normally used in conventional tension tests. When very low or very high rates of loading are expected in service, the effect of loading rate should be investigated using special procedures that are beyond the scope of this practice.
Note 1: Further information on background and need for this type of test is given in the report of ASTM Task Group E24.01.05 on Part-Through-Crack Testing (1).2
1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to T...
- Standard9 pagesEnglish languagesale 15% off
- Standard9 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Fatigue crack growth rate expressed as a function of crack-tip stress-intensity factor range, da/dN versus ΔK, characterizes a material's resistance to stable crack extension under cyclic loading. Background information on the ration-ale for employing linear elastic fracture mechanics to analyze fatigue crack growth rate data is given in Refs (3) and (4).
5.1.1 In innocuous (inert) environments fatigue crack growth rates are primarily a function of ΔK and force ratio, R, or Kmax and R (Note 1). Temperature and aggressive environments can significantly affect da/dN versus ΔK, and in many cases accentuate R-effects and introduce effects of other loading variables such as cycle frequency and waveform. Attention needs to be given to the proper selection and control of these variables in research studies and in the generation of design data.
Note 1: ΔK, Kmax, and R are not independent of each other. Specification of any two of these variables is sufficient to define the loading condition. It is customary to specify one of the stress-intensity parameters (ΔK or Kmax) along with the force ratio, R.
5.1.2 Expressing da/dN as a function of ΔK provides results that are independent of planar geometry, thus enabling exchange and comparison of data obtained from a variety of specimen configurations and loading conditions. Moreover, this feature enables da/dN versus ΔK data to be utilized in the design and evaluation of engineering structures. The concept of similitude is assumed, which implies that cracks of differing lengths subjected to the same nominal ΔK will advance by equal increments of crack extension per cycle.
5.1.3 Fatigue crack growth rate data are not always geometry-independent in the strict sense since thickness effects sometimes occur. However, data on the influence of thickness on fatigue crack growth rate are mixed. Fatigue crack growth rates over a wide range of ΔK have been reported to either increase, decrease, or remain unaffected as specimen...
SCOPE
1.1 This test method2 covers the determination of fatigue crack growth rates from near-threshold (see region I in Fig. 1) to Kmax controlled instability (see region III in Fig. 1.) Results are expressed in terms of the crack-tip stress-intensity factor range (ΔK), defined by the theory of linear elasticity.
1.9 Special requirements for the various specimen configurations appear in the following order:
The Compact Specimen
Annex A1
The Middle Tension Specimen
Annex A2
The Eccentrically-Loaded Single Edge Crack Tension Specimen
Annex A3
1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard52 pagesEnglish languagesale 15% off
- Standard52 pagesEnglish languagesale 15% off
This document specifies the Knoop hardness test method for metallic materials for test forces from 0,009 807 N to 19,613 N.
This document specifies Knoop hardness tests for length of the long diagonal ≥0,020 mm. Using this method to determine the Knoop hardness from smaller indentations is outside the scope of this document as results would suffer from large uncertainties due to the limitations of optical measurement and imperfections in tip geometry.
The Knoop hardness test specified in this document is also applicable for metallic and other inorganic coatings including electrodeposited coatings, autocatalytic coatings, sprayed coatings and anodic coatings on aluminium. This document is applicable to measurements normal to the coated surface and to measurements on cross-sections, provided that the characteristics of the coating (smoothness, thickness, etc.) permit accurate readings of the diagonal of the indentation. This document is not applicable for coatings with thickness less than 0,007 mm when testing normal to the coating surface. This document is not applicable for coatings with thickness less than 0,020 mm when testing a cross-section of the coating. ISO 14577-1 can be used for the determination of hardness from smaller indentations.
A periodic verification method is specified for routine checking of the testing machine in service by the user.
- Standard35 pagesEnglish languagee-Library read for1 day
SIGNIFICANCE AND USE
5.1 In structures containing gradients in either toughness or stress, a crack may initiate in a region of either low toughness or high stress, or both, and arrest in another region of either higher toughness or lower stress, or both. The value of the stress intensity factor during the short time interval in which a fast-running crack arrests is a measure of the ability of the material to arrest such a crack. Values of the stress intensity factor of this kind, which are determined using dynamic methods of analysis, provide a value for the crack-arrest fracture toughness which will be termed KA in this discussion. Static methods of analysis, which are much less complex, can often be used to determine K at a short time (1 to 2 ms) after crack arrest. The estimate of the crack-arrest fracture toughness obtained in this fashion is termed K a. When macroscopic dynamic effects are relatively small, the difference between KA and Ka is also small (1-4). For cracks propagating under conditions of crack-front plane-strain, in situations where the dynamic effects are also known to be small, KIa determinations using laboratory-sized specimens have been used successfully to estimate whether, and at what point, a crack will arrest in a structure (5, 6). Depending upon component design, loading compliance, and the crack jump length, a dynamic analysis of a fast-running crack propagation event may be necessary in order to predict whether crack arrest will occur and the arrest position. In such cases, values of K Ia determined by this test method can be used to identify those values of K below which the crack speed is zero. More details on the use of dynamic analyses can be found in Ref (4).
5.2 This test method can serve at least the following additional purposes:
5.2.1 In materials research and development, to establish in quantitative terms significant to service performance, the effects of metallurgical variables (such as composition or heat treatment) or fabrication o...
SCOPE
1.1 This test method employs a side-grooved, crack-line-wedge-loaded specimen to obtain a rapid run-arrest segment of flat-tensile separation with a nearly straight crack front. This test method provides a static analysis determination of the stress intensity factor at a short time after crack arrest. The estimate is denoted Ka. When certain size requirements are met, the test result provides an estimate, termed KIa, of the plane-strain crack-arrest toughness of the material.
1.2 The specimen size requirements, discussed later, provide for in-plane dimensions large enough to allow the specimen to be modeled by linear elastic analysis. For conditions of plane-strain, a minimum specimen thickness is also required. Both requirements depend upon the crack arrest toughness and the yield strength of the material. A range of specimen sizes may therefore be needed, as specified in this test method.
1.3 If the specimen does not exhibit rapid crack propagation and arrest, Ka cannot be determined.
1.4 The values stated in SI units are to be regarded as the standards. The values given in parentheses are provided for information only.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard20 pagesEnglish languagesale 15% off
- Standard20 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Fatigue test results may be significantly influenced by the properties and history of the parent material, the operations performed during the preparation of the fatigue specimens, and the testing machine and test procedures used during the generation of the data. The presentation of fatigue test results should include citation of basic information on the material, specimens, and testing to increase the utility of the results and to reduce to a minimum the possibility of misinterpretation or improper application of those results.
SCOPE
1.1 This practice covers the desirable and minimum information to be communicated between the originator and the user of data derived from constant-force amplitude axial, bending, or torsion fatigue tests of metallic materials tested in air and at room temperature.
Note 1: Practice E466, although not directly referenced in the text, is considered important enough to be listed in this standard.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
This document specifies the dimensions of an unnotched impact test piece of sintered metal materials. The test piece may be obtained directly by pressing and sintering or by machining a sintered part.
This document applies to all sintered metals and alloys, with the exception of hardmetals. However, for certain materials (for example, materials with low porosity or materials with high ductility), it may be more appropriate to use a notched test piece which, in this case, will give results with less scatter. (In this case, refer to ISO 148-1.)
NOTE For porous sintered materials, the results obtained from impact tests on unnotched specimens according to this standard are not fully comparable with results obtained from tests on solid metals tested on notched specimens.
- Standard9 pagesEnglish languagee-Library read for1 day
This document is applicable to all sintered metals and alloys, excluding hardmetals.
This document specifies:
— the die cavity dimensions used for making tensile test pieces by pressing and sintering, and by metal injection moulding (MIM) and sintering;
— the dimensions of tensile test pieces machined from sintered and powder forged materials.
- Standard15 pagesEnglish languagee-Library read for1 day
This document specifies the Vickers hardness test method for the three different ranges of test force for metallic materials, including hard metals and other cemented carbides (see Table 1), metallic coatings and other inorganic coatings.
The Vickers hardness test is specified in this document for lengths of indentation diagonals between 0,020 mm and 1,400 mm. Using this method to determine Vickers hardness from smaller indentations is outside the scope of this document as results would suffer from large uncertainties due to the limitations of optical measurement and imperfections in tip geometry.
The Vickers hardness specified in this document is also applicable for metallic and other inorganic coatings including electrodeposited coatings, autocatalytic coatings, sprayed coatings and anodic coatings on aluminium.
This document is applicable to measurements normal to the coated surface and to measurements on cross-sections, provided that the characteristics of the coating (smoothness, thickness, etc.) permit accurate readings of the diagonal of the indentation.
This document is not applicable for coatings with thickness less than 0,030 mm when testing normal to the coating surface. This standard is not applicable for coatings with thickness less than 0,100 mm when testing a cross-section of the coating. ISO 14577-1 can be used for the determination of hardness from smaller indentations.”
A periodic verification method is specified for routine checking of the testing machine in service by the user.
For specific materials and/or products, relevant International Standards exist.
- Standard42 pagesEnglish languagee-Library read for1 day
This document specifies the Vickers hardness test method for the three different ranges of test force for metallic materials, including hard metals and other cemented carbides (see Table 1), metallic coatings and other inorganic coatings. The Vickers hardness test is specified in this document for lengths of indentation diagonals between 0,020 mm and 1,400 mm. Using this method to determine Vickers hardness from smaller indentations is outside the scope of this document as results would suffer from large uncertainties due to the limitations of optical measurement and imperfections in tip geometry. The Vickers hardness specified in this document is also applicable for metallic and other inorganic coatings including electrodeposited coatings, autocatalytic coatings, sprayed coatings and anodic coatings on aluminium. This document is applicable to measurements normal to the coated surface and to measurements on cross-sections, provided that the characteristics of the coating (smoothness, thickness, etc.) permit accurate readings of the diagonal of the indentation. This document is not applicable for coatings with thickness less than 0,030 mm when testing normal to the coating surface. This standard is not applicable for coatings with thickness less than 0,100 mm when testing a cross-section of the coating. ISO 14577-1 can be used for the determination of hardness from smaller indentations.” A periodic verification method is specified for routine checking of the testing machine in service by the user. For specific materials and/or products, relevant International Standards exist.
- Standard35 pagesEnglish languagesale 15% off
- Standard36 pagesFrench languagesale 15% off
This document specifies the Knoop hardness test method for metallic materials for test forces from 0,009 807 N to 19,613 N.
This document specifies Knoop hardness tests for length of the long diagonal ≥0,020 mm. Using this method to determine the Knoop hardness from smaller indentations is outside the scope of this document as results would suffer from large uncertainties due to the limitations of optical measurement and imperfections in tip geometry.
The Knoop hardness test specified in this document is also applicable for metallic and other inorganic coatings including electrodeposited coatings, autocatalytic coatings, sprayed coatings and anodic coatings on aluminium. This document is applicable to measurements normal to the coated surface and to measurements on cross-sections, provided that the characteristics of the coating (smoothness, thickness, etc.) permit accurate readings of the diagonal of the indentation. This document is not applicable for coatings with thickness less than 0,007 mm when testing normal to the coating surface. This document is not applicable for coatings with thickness less than 0,020 mm when testing a cross-section of the coating. ISO 14577-1 can be used for the determination of hardness from smaller indentations.
A periodic verification method is specified for routine checking of the testing machine in service by the user.
- Standard35 pagesEnglish languagee-Library read for1 day
This document specifies the Knoop hardness test method for metallic materials for test forces from 0,009 807 N to 19,613 N. This document specifies Knoop hardness tests for length of the long diagonal ≥0,020 mm. Using this method to determine the Knoop hardness from smaller indentations is outside the scope of this document as results would suffer from large uncertainties due to the limitations of optical measurement and imperfections in tip geometry. The Knoop hardness test specified in this document is also applicable for metallic and other inorganic coatings including electrodeposited coatings, autocatalytic coatings, sprayed coatings and anodic coatings on aluminium. This document is applicable to measurements normal to the coated surface and to measurements on cross-sections, provided that the characteristics of the coating (smoothness, thickness, etc.) permit accurate readings of the diagonal of the indentation. This document is not applicable for coatings with thickness less than 0,007 mm when testing normal to the coating surface. This document is not applicable for coatings with thickness less than 0,020 mm when testing a cross-section of the coating. ISO 14577-1 can be used for the determination of hardness from smaller indentations. A periodic verification method is specified for routine checking of the testing machine in service by the user.
- Standard28 pagesEnglish languagesale 15% off
- Standard28 pagesFrench languagesale 15% off
This document specifies the dimensions of an unnotched impact test piece of sintered metal materials. The test piece may be obtained directly by pressing and sintering or by machining a sintered part.
This document applies to all sintered metals and alloys, with the exception of hardmetals. However, for certain materials (for example, materials with low porosity or materials with high ductility), it may be more appropriate to use a notched test piece which, in this case, will give results with less scatter. (In this case, refer to ISO 148-1.)
NOTE For porous sintered materials, the results obtained from impact tests on unnotched specimens according to this standard are not fully comparable with results obtained from tests on solid metals tested on notched specimens.
- Standard9 pagesEnglish languagee-Library read for1 day
This document specifies the methods for:
a) uninterrupted creep tests with continuous monitoring of extension;
b) interrupted creep tests with periodic measurement of elongation;
c) stress rupture tests where normally only the time to fracture is measured;
d) a test to verify that a predetermined time can be exceeded under a given force, with the elongation or extension not necessarily being reported.
NOTE A creep test can be continued until fracture has occurred or it can be stopped before fracture.
- Standard57 pagesEnglish languagee-Library read for1 day
This document specifies the dimensions of an unnotched impact test piece of sintered metal materials. The test piece may be obtained directly by pressing and sintering or by machining a sintered part. This document applies to all sintered metals and alloys, with the exception of hardmetals. However, for certain materials (for example, materials with low porosity or materials with high ductility), it may be more appropriate to use a notched test piece which, in this case, will give results with less scatter. (In this case, refer to ISO 148-1.) NOTE For porous sintered materials, the results obtained from impact tests on unnotched specimens according to this standard are not fully comparable with results obtained from tests on solid metals tested on notched specimens.
- Standard2 pagesEnglish languagesale 15% off
- Standard2 pagesFrench languagesale 15% off
This document is applicable to all sintered metals and alloys, excluding hardmetals.
This document specifies:
— the die cavity dimensions used for making tensile test pieces by pressing and sintering, and by metal injection moulding (MIM) and sintering;
— the dimensions of tensile test pieces machined from sintered and powder forged materials.
- Standard15 pagesEnglish languagee-Library read for1 day
This document specifies a method of instrumented Charpy V-notch pendulum impact testing on metallic materials and the requirements concerning the measurement and recording equipment.
With respect to the Charpy pendulum impact test described in ISO 148-1, this test provides further information on the fracture behaviour of the product under impact testing conditions.
The results of instrumented Charpy test analyses are not directly transferable to structures or components and shall not be directly used in design calculations or safety assessments.
NOTE General information about instrumented impact testing can be found in References [1] to [5].
- Standard27 pagesEnglish languagee-Library read for1 day
This document specifies a method for designating test specimen axes in relation to product texture by means of an X-Y-Z orthogonal coordinate system.
This document applies equally to unnotched and notched (or precracked) test specimens.
This document is intended only for metallic materials with uniform texture that can be unambiguously determined.
Test specimen orientation is decided before specimen machining, identified in accordance with the designation system specified in this document, and recorded.
- Standard17 pagesEnglish languagee-Library read for1 day





