Industrial communication networks - Fieldbus specifications - Part 6-10: Application layer protocol specification - Type 10 elements

IEC 61158-6-10:2010(E) specifies the protocol of the Type 10 fieldbus application layer, in conformance with the OSI Basic Reference Model (ISO/IEC 7498-1) and the OSI application layer structure (ISO/IEC 9545). It defines the protocol provided to define the wire-representation of the service primitives defined in IEC 61158-5-10:2010, and the externally visible behavior associated with their transfer. This second edition cancels and replaces the first edition published in 2007 and constitutes a technical revision. The main changes with respect to the previous edition are:
- corrections;
- improvements;
- optimization of the synchronization;
- optimization of the startup time from power down.

General Information

Status
Published
Publication Date
05-Aug-2010
Technical Committee
Drafting Committee
Current Stage
DELPUB - Deleted Publication
Start Date
19-Aug-2014
Completion Date
26-Oct-2025
Ref Project

Relations

Standard
IEC 61158-6-10:2010 - Industrial communication networks - Fieldbus specifications - Part 6-10: Application layer protocol specification - Type 10 elements Released:8/6/2010 Isbn:9782889121281
English language
772 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


IEC 61158-6-10 ®
Edition 2.0 2010-08
INTERNATIONAL
STANDARD
colour
inside
Industrial communication networks – Fieldbus specifications –
Part 6-10: Application layer protocol specification – Type 10 elements

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
ƒ Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
ƒ IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
ƒ Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
ƒ Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00
IEC 61158-6-10 ®
Edition 2.0 2010-08
INTERNATIONAL
STANDARD
colour
inside
Industrial communication networks – Fieldbus specifications –
Part 6-10: Application layer protocol specification – Type 10 elements

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
PRICE CODE
XH
ICS 25.04.40; 35.100.70; 35.110 ISBN 978-2-88912-128-1
– 2 – 61158-6-10 © IEC:2010(E)
CONTENTS
FOREWORD.20
INTRODUCTION.22
1 Scope.24
1.1 General .24
1.2 Specifications.24
1.3 Conformance.25
2 Normative references .25
3 Terms, definitions, abbreviations, symbols and conventions .27
3.1 Referenced terms and definitions .27
3.2 Additional terms and definitions for distributed automation .28
3.3 Additional terms and definitions for decentralized periphery .30
3.4 Additional abbreviations and symbols for distributed automation .37
3.5 Additional abbreviations and symbols for decentralized periphery .38
3.6 Additional abbreviations and symbols for media redundancy .39
3.7 Conventions .39
3.8 Conventions used in state machines .46
4 Application layer protocol specification for common protocols.49
4.1 FAL syntax description .49
4.2 Transfer syntax .52
4.3 Discovery and basic configuration .64
4.4 Precision time control.96
4.5 Media redundancy.162
4.6 Real-time cyclic.187
4.7 Real-time acyclic .206
4.8 Remote procedure call .219
4.9 Link layer discovery.236
4.10 MAC bridges .244
4.11 Virtual bridges .259
4.12 IP suite.269
4.13 Domain name system .273
4.14 Dynamic host configuration .273
4.15 Simple network management.273
4.16 Common DLL Mapping Protocol Machines.283
5 Application layer protocol specification for distributed automation . 290
5.1 FAL syntax description .290
5.2 Transfer syntax .315
5.3 FAL protocol state machines .317
5.4 AP Context State Machine.318
5.5 FAL Service Protocol Machines .319
5.6 Application Relationship Protocol Machine (ARPM) .418
5.7 DLL Mapping Protocol Machines .422
5.8 Protocol options .426
6 Application layer protocol specification for decentralized periphery. 426
6.1 FAL syntax description .426
6.2 Transfer syntax .439
6.3 FAL protocol state machines .575

61158-6-10 © IEC:2010(E) – 3 –
6.4 AP-Context state machine .577
6.5 FAL Service Protocol Machines .577
6.6 Application Relationship Protocol Machines . 659
6.7 DLL Mapping Protocol Machines .739
Annex A (informative)  Filtering Data Base.740
Annex B (informative)  Establishing of a companion AR .743
Annex C (informative)  Establishing of a device access AR. 744
Annex D (informative)  Establishing of an AR (simple procedure). 745
Annex E (informative)  Establishing of an AR (accelerated procedure). 746
Annex F (informative)  Establishing of an AR (fast startup procedure). 749
Annex G (informative)  Example of the upload, storage, and retrieval procedure. 750
Annex H (informative)  Establishing of an AR using RT_CLASS_3 CRs . 753
Annex I (informative)  Overview of the AlarmCRs.754
Annex J (informative)  OSI reference model layers . 756
Annex K (informative)  Overview of the IO device state machines . 757
Annex L (informative)  Overview of the IO controller state machines . 758
Annex M (informative)  Priority regeneration .759
Annex N (informative)  Overview of the synchronization master hierarchy. 760
Annex O (informative)  Adapted baggy pants model of the IEEE 802.1D . 762
Annex P (informative)  Optimization of bandwith usage. 765
Annex Q (informative)  Time constraints for bandwidth allocation. 767
Annex R (informative) Optimization for fast startup without autonegotiation . 769
Annex S (informative)  TX-error handling .771
Bibliography.772

Figure 1 – Common structure of specific fields.43
Figure 2 – Common structure of specific fields for octet 1 (high) .44
Figure 3 – Common structure of specific fields for octet 2 (low) .44
Figure 4 – Common structure of specific fields for octet 1 (high) .45
Figure 5 – Common structure of specific fields for octet 2 .45
Figure 6 – Common structure of specific fields for octet 3 .45
Figure 7 – Common structure of specific fields for octet 4 (low) .46
Figure 8 – Coding of the data type BinaryDate.54
Figure 9 – Encoding of Time Of Day value .54
Figure 10 – Encoding of Time Difference value .55
Figure 11 – Encoding of Network Time value .55
Figure 12 – Encoding of Network Time Difference value .56
Figure 13 – Timescale correspondence between PTCP_Time and CycleCounter . 102
Figure 14 – Message timestamp point.107
Figure 15 – Four message timestamps .108
Figure 16 – Line delay protocol with follow up.109
Figure 17 – Line delay protocol without follow up .109
Figure 18 – Line delay measurement .111
Figure 19 – Model parameter for GSDML usage .112

– 4 – 61158-6-10 © IEC:2010(E)
Figure 20 – Bridge delay measurement.113
Figure 21 – Delay accumulation.113
Figure 22 – Worst case accumulated time deviation of synchronization . 114
Figure 23 – Scheme for measurement of deviation . 115
Figure 24 – Measurement of deviation .115
Figure 25 – Sending Sync-Frame without Follow Up-Frame .116
Figure 26 – Sending Sync- Frame with FollowUp-Frame .116
Figure 27 – Forwarding Sync- and FollowUp-Frame.117
Figure 28 – Transition between Synchronization Variants .118
Figure 29 – State transition diagram of delay request . 119
Figure 30 – State transition diagram of delay response.125
Figure 31 – Overview of PTCP.130
Figure 32 – State transition diagram of BMA . 131
Figure 33 – State transition diagram of MPSM . 143
Figure 34 – State transition diagram of SPSM. 149
Figure 35 – State transition diagram of SRPM . 155
Figure 36 – State transition diagram of SCHEDULER .160
Figure 37 – MRM protocol machine for MRP .166
Figure 38 – MRC protocol machine .173
Figure 39 – State transition diagram of RRT_RELAY . 184
Figure 40 – CycleCounter value range .189
Figure 41 – Structure of the CycleCounter .190
Figure 42 – Optimized CycleCounter setting .191
Figure 43 – State transition diagram for generating events . 251
Figure 44 – State transition diagram of RED RELAY .255
Figure 45 – State transition diagram of MUX. 261
Figure 46 – State transition diagram of DEMUX . 266
Figure 47 – Structuring of the protocol machines within the DMPM (bridge) . 284
Figure 48 – Error message structure.290
Figure 49 – Coding scheme of ITEMQUALITYDEF.295
Figure 50 – Relationship among protocol machines . 318
Figure 51 – State transition diagram of FSPM.333
Figure 52 – State transition diagram of ARPM . 420
Figure 53 – State transition diagram of DMPM .425
Figure 54 – FrameSendOffset vs. duration of a cycle .477
Figure 55 – Classification of diagnosis, maintenance and qualified . 511
Figure 56 – Definition of the reserved interval.531
Figure 57 – Definition of PLL window .534
Figure 58 – Detection of dropped frames — appear .542
Figure 59 – Detection of dropped frames — disappear.542
Figure 60 – Relationship among Protocol Machines . 576
Figure B.1 – Establishing of a companion AR .743
Figure C.1 – Establishing of a device access AR .744

61158-6-10 © IEC:2010(E) – 5 –
Figure D.1 – Accelerated establishing of an IOAR (simple procedure). 745
Figure E.1 – Accelerated establishing of an IOAR without error . 747
Figure E.2 – Accelerated establishing of an IOAR with “late” error . 748
Figure F.1 – Establishing of an IOAR using fast startup .749
Figure G.1 – Example of upload with storage.751
Figure G.2 – Example of retrieval with storage.752
Figure H.1 – Establishing of an AR using RT_CLASS_3 CRs . 753
Figure I.1 – Overview of an AlarmCR using high priority .754
Figure I.2 – Overview of an AlarmCR using low priority.755
Figure J.1 – Assignment of the OSI reference model layers .756
Figure K.1 – Overview of the IO device state machines . 757
Figure L.1 – Overview of the IO controller state machines .758
Figure N.1 – Level model for synchronization master hierarchy. 760
Figure N.2 – Two level variant of the synchronization master hierarchy . 761
Figure O.1 – Adapted baggy pants model of the IEEE 802.1D.762
Figure O.2 – Adapted baggy pants model of the IEEE 802.1D for a frame transmitter . 763
Figure O.3 – Adapted baggy pants model of the IEEE 802.1D for a frame receiver . 764
Figure P.1 – Devices build up in a linear structure .765
Figure P.2 – Propagation of frames in linear transmit direction . 765
Figure P.3 – Propagation of a frames in receive direction . 766
Figure Q.1 – Overview of time constraints for bandwidth allocation.767
Figure Q.2 – Caculation of the length of a period .767
Figure R.1 – Scheme of a 2-port switch .769
Figure R.2 – Scheme of 2-ports .769

Table 1 – State machine description elements .46
Table 2 – Description of state machine elements .47
Table 3 – Conventions used in state machines .47
Table 4 – IEEE 802.3 DLPDU syntax .49
Table 5 – IEEE 802.11 DLPDU syntax .50
Table 6 – IEEE 802.15.1 DLPDU syntax .50
Table 7 – SourceAddress.57
Table 8 – DCP_MulticastMACAdd.57
Table 9 – PTCP_MulticastMACAdd range 1 .57
Table 10 – PTCP_MulticastMACAdd range 2 .58
Table 11 – PTCP_MulticastMACAdd range 3 .58
Table 12 – PTCP_MulticastMACAdd range 4 .58
Table 13 – PTCP_MulticastMACAdd range 5 .58
Table 14 – PTCP_MulticastMACAdd range 6 .59
Table 15 – PTCP_MulticastMACAdd range 7 .59
Table 16 – PTCP_MulticastMACAdd range 8 .59
Table 17 – MRP Organizationally Unique Identifier (OUI).59
Table 18 – MRPMulticastMACAdd .60

– 6 – 61158-6-10 © IEC:2010(E)
Table 19 – LT (Length/Type).60
Table 20 – TagControlInformation.Priority.61
Table 21 – FrameID range 1 .61
Table 22 – FrameID range 2 .61
Table 23 – FrameID range 3 .62
Table 24 – FrameID range 4 .62
Table 25 – FrameID range 5 .62
Table 26 – FrameID range 6 .62
Table 27 – FrameID range 7 .62
Table 28 – FrameID range 8 .63
Table 29 – FrameID range 9 .63
Table 30 – FrameID range 10 .63
Table 31 – FrameID range 11 .63
Table 32 – FrameID range 12 .64
Table 33 – FrameID range 13 .64
Table 34 – DCP APDU syntax.64
Table 35 – DCP substitutions.66
Table 36 – ServiceID .68
Table 37 – ServiceType for request .68
Table 38 – ServiceType for response.68
Table 39 – ResponseDelayFactor .69
Table 40 – List of options.70
Table 41 – List of suboptions for option IPOption .70
Table 42 – List of suboptions for option DevicePropertiesOption.70
Table 43 – List of suboptions for option DHCPOption.70
Table 44 – List of suboptions for option ControlOption .71
Table 45 – List of suboptions for option DeviceInitiativeOption.71
Table 46 – List of suboptions for option AllSelectorOption .71
Table 47 – List of suboptions for option ManufacturerSpecificOption.71
Table 48 – SuboptionDHCP .73
Table 49 – Coding of DCPBlocklength in conjunction with SuboptionStart.74
Table 50 – Coding of DCPBlocklength in conjunction with SuboptionStop .74
Table 51 – Coding of DCPBlocklength in conjunction with SuboptionSignal .74
Table 52 – Coding of DCPBlocklength in conjunction with SuboptionFactoryReset .75
Table 53 – Coding of DCPBlocklength in conjunction with SuboptionDeviceInitiative .75
Table 54 – BlockQualifier with option IP.76
Table 55 – BlockQualifier with option DeviceProperties, DHCP, and
ManufacturerSpecific .76
Table 56 – BlockError .77
Table 57 – BlockInfo for SuboptionIPParameter.77
Table 58 – Bit 1 and Bit 0 of BlockInfo for SuboptionIPParameter .77
Table 59 – Bit 7 of BlockInfo for SuboptionIPParameter.77
Table 60 – BlockInfo for all other suboptions .78

61158-6-10 © IEC:2010(E) – 7 –
Table 61 – DeviceInitiativeValue .78
Table 62 – SignalValue.78
Table 63 – DeviceRoleDetails .80
Table 64 – IPAddress .80
Table 65 – Subnetmask .81
Table 66 – StandardGateway.82
Table 67 – DCPUCS state table.85
Table 68 – DCPUCR state table.89
Table 69 – DCPMCS state table .91
Table 70 – DCPMCR state table .93
Table 71 – DCPHMCS state table .95
Table 72 – DCPHMCR state table.96
Table 73 – PTCP APDU syntax.96
Table 74 – PTCP substitutions.97
Table 75 – PTCP_TLVHeader.Type .98
Table 76 – PTCP_Delay10ns .98
Table 77 – PTCP_Delay1ns_Byte.Value .98
Table 78 – PTCP_Delay1ns .99
Table 79 – PTCP_Delay1ns_FUP .99
Table 80 – PTCP_SequenceID .99
Table 81 – PTCP_SubType for OUI (=00-0E-CF) . 100
Table 82 – PTCP_NanoSeconds.100
Table 83 – PTCP_Flags.LeapSecond.101
Table 84 – Timescale correspondence between MJD, UTC, and PTCP_EpochNumber .101
Table 85 – Timescale correspondence between PTCP_EpochNumber, PTCP_Second,
PTCP_Nanosecond, CycleCounter, and SendClockFactor .101
Table 86 – PTCP_MasterPriority1.Priority for SyncID == 0 and SyncProperties.Role
== 2.103
Table 87 – PTCP_MasterPriority1.Priority for SyncID == 0 and SyncProperties.Role
== 1.103
Table 88 – PTCP_MasterPriority1.Priority for SyncID == 1 and SyncProperties.Role
== 2.103
Table 89 – PTCP_MasterPriority1.Priority for SyncID == 1 and SyncProperties.Role
== 1.103
Table 90 – PTCP_MasterPriority1.Level.103
Table 91 – PTCP_MasterPriority2 .104
Table 92 – PTCP_ClockClass for SyncID == 0 (clock synchronization) . 104
Table 93 – PTCP_ClockClass for SyncID == 1 (time synchronization). 105
Table 94 – PTCP_ClockAccuracy.106
Table 95 – PTCP_ClockVariance .106
Table 96 – PTCP_T2TimeStamp.107
Table 97 – DelayRequest state table .121
Table 98 – Macros used by DelayRequest .124
Table 99 – Functions used by DelayRequest .124
Table 100 – DelayResponse state table .127

– 8 – 61158-6-10 © IEC:2010(E)
Table 101 – Macros used by DelayResponse.128
Table 102 – Functions used by DelayResponse .129
Table 103 – BMA state table .133
Table 104 – BMA best remote sync master (RSM) state table . 137
Table 105 – BMA get best sync master (GBSM) state table . 139
Table 106 – Macros used by BMA.141
Table 107 – Functions used by BMA.142
Table 108 – MPSM state table .144
Table 109 – Macros used by MPSM.147
Table 110 – Functions used by MPSM .148
Table 111 – SPSM state table.150
Table 112 – Macros used by SPSM .153
Table 113 – Functions used by SPSM.154
Table 114 – SRPM state table .156
Table 115 – Macros used by SRPM .157
Table 116 – Functions used by the SRPM.158
Table 117 – Truth table for one SyncID.159
Table 118 – SCHEDULER state table .161
Table 119 – Functions used by the SCHEDULER .162
Table 120 – MRP APDU syntax .162
Table 121 – MRP substitutions .163
Table 122 – MRP_TLVHeader.Type.163
Table 123 – MRP_Prio.164
Table 124 – MRP_PortRole.164
Table 125 – MRP_RingState.164
Table 126 – MRP_Interval .165
Table 127 – MRP_Transition.165
Table 128 – MRP_TimeStamp .165
Table 129 – MRP_DomainUUID.165
Table 130 – Local variables of MRM protocol machine. 167
Table 131 – MRM state machine.168
Table 132 – Local variables of MRC protocol machine .174
Table 133 – MRC state machine .175
Table 134 – Functions .180
Table 135 – FDB Clear Timer .182
Table 136 – Topology Change Timer .183
Table 137 – RRT_RELAY state table .185
Table 138 – Macros used by RRT_RELAY .187
Table 139 – RTC APDU syntax .187
Table 140 – RTC substitutions .188
Table 141 – CycleCounter Difference.189
Table 142 – DataStatus.State .191
Table 143 – DataStatus.Redundancy .192

61158-6-10 © IEC:2010(E) – 9 –
Table 144 – DataStatus.DataValid .192
Table 145 – DataStatus.ProviderState .192
Table 146 – DataStatus.StationProblemIndicator . 192
Table 147 – DataStatus.reserved_3 .192
Table 148 – DataStatus.Ignore of a frame.193
Table 149 – TransferStatus for RT_CLASS_3 .193
Table 150 – IOxS.Extension.194
Table 151 – IOCS.Instance .194
Table 152 – IOxS.DataState .194
Table 153 – PPM state table .197
Table 154 – Functions used by the PPM .200
Table 155 – CPM state table.202
Table 156 – Functions used by the CPM.206
Table 157 – RTA APDU syntax .206
Table 158 – RTA substitutions .207
Table 159 – PDUType.Type .208
Table 160 – PDUType.Version.208
Table 161 – VarPartLen .209
Table 162 – APMS state table.211
Table 163 – Functions used by the APMS and APMR .214
Table 164 – A_Timer_add.214
Table 165 – A_Timer_event .215
Table 166 – A_Timer_remove .215
Table 167 – APMR state table .217
Table 168 – RPC APDU syntax.219
Table 169 – RPC substitutions.220
Table 170 – RPCPacketType .221
Table 171 – RPCFlags.221
Table 172 – RPCFlags2 .222
Table 173 – RPCDRep.Character- and IntegerEncoding . 222
Table 174 – RPCDRep Octet 2 – Floating Point Representation . 223
Table 175 – RPCObjectUUID.Data4.223
Table 176 – RPCObjectUUID for PNIO .224
Table 177 – RPCInterfaceUUID for PNIO.224
Table 178 – RPCInterfaceUUID for the RPC end point mapper .224
Table 179 – RPCOperationNmb (IO device, controller and supervisor) . 226
Table 180 – RPCOperationNmb for endpoint mapper.226
Table 181 – RPCDataRepresentationUUID – defined values.228
Table 182 – RPCInquiryType .229
Table 183 – RPCEPMapStatus .231
Table 184 – Values of NCAFaultStatus .234
Table 185 – Values of NCARejectStatus .235
Table 186 – LLDP APDU syntax .236

– 10 – 61158-6-10 © IEC:2010(E)
Table 187 – LLDP substitutions .237
Table
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...