Eurocode 9 - Design of aluminium structures - Part 1-4: Cold-formed structural sheeting

1.1   Scope of EN 1999-1-4
(1)   EN 1999-1-4 gives design requirements for cold-formed trapezoidal aluminium sheeting. It applies to cold-formed aluminium products made from hot rolled or cold rolled sheet or strip that have been cold-formed by such processes as cold-rolled forming or press-breaking.
NOTE 1   The rules in this part complement the rules in other parts of EN 1999-1.
NOTE 2   The execution of aluminium structures made of cold-formed structures for roof, ceiling, floor and wall applications is covered in EN 1090-5.
(2)   EN 1999-1-4 gives methods for stressed-skin design using aluminium sheeting as a structural diaphragm.
(3)   EN 1999-1-4 does not apply to cold-formed aluminium profiles like C- and Z- profiles nor cold-formed and welded circular or rectangular hollow sections.
(4)   EN 1999-1-4 gives methods for design by calculation and for design assisted by testing. The methods for the design by calculation apply only within stated ranges of material properties and geometrical properties for which sufficient experience and test evidence is available. These limitations do not apply to design by testing.
(5)   EN 1999-1-4 does not cover load arrangement for loads during execution and maintenance.
1.2   Assumptions
(1) For the design of new structures, EN 1999 is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
EN 1999 is intended to be used in conjunction with:
-   European Standards for construction products relevant for aluminium structures;
-   EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components;
-   EN 1090-5, Execution of steel structures and aluminium structures - Part 5: Technical requirements for cold-formed structural aluminium elements and cold-formed structures for roof, ceiling, floor and wall applications.

Eurocode 9 - Bemessung und Konstruktion von Aluminiumtragwerken - Teil 1-4: Kaltgeformte Profiltafeln

1.1   Anwendungsbereich von EN 1999 1 4
(1) EN 1999 1 4 enthält die Anforderungen an die Bemessung von kaltgeformten Trapezprofilen. Es gilt für kaltgeformte Aluminiumprodukte, die aus kalt- oder warmgewalzten Blechen oder Bändern durch Kaltumformung wie Rollformen oder Abkanten hergestellt sind.
ANMERKUNG 1   Die in diesem Teil angegebenen Regeln ergänzen die Regeln der übrigen Teile von EN 1999 1.
ANMERKUNG 2   Die Ausführung von Aluminiumtragwerken aus tragenden, kaltgeformten Bauteilen für Dach-, Decken , Boden- und Wandanwendungen wird in EN 1090 5 behandelt.
(2) EN 1999 1 4 gibt Bemessungsregeln für die Scheibentragfähigkeit von Schubfeldern aus Aluminium-Profiltafeln an.
(3) EN 1999 1 4 gilt nicht für stabförmige Kaltprofile mit C- und Z-Profilquerschnitten sowie kaltgeformte und geschweißte Rund- oder Rechteckhohlquerschnitte aus Aluminium.
(4) EN 1999 1 4 beschreibt Verfahren für die rechnerische und die versuchsgestützte Bemessung. Die rechnerischen Bemessungsverfahren gelten nur in den angegebenen Grenzen für die Werkstoffkennwerte und geometrischen Verhältnisse, für die ausreichende Erfahrung und Versuchsergebnisse vorhanden sind. Diese Einschränkungen gelten nicht für die versuchsgestützte Bemessung.
(5) EN 1999 1 4 beinhaltet keine Lastannahmen für Montage und Gebrauch.
1.2   Voraussetzungen
(1) Bezüglich der Bemessung neuer Tragwerke ist EN 1999 zur direkten Anwendung in Verbindung mit EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 und EN 1998 vorgesehen.
EN 1999 gilt in Verbindung mit folgenden Regelwerken:
—   Europäische Normen zu Bauprodukten, die maßgebend für Aluminiumtragwerke sind;
—   EN 1090 1, Ausführung von Stahltragwerken und Aluminiumtragwerken — Teil 1: Konformitäts-nachweisverfahren für tragende Bauteile
—   EN 1090 5, Ausführung von Stahltragwerken und Aluminiumtragwerken — Teil 5: Technische Anforderungen an tragende, kaltgeformte Bauelemente aus Aluminium und tragende, kaltgeformte Bauteile für Dach-, Decken-, Boden- und Wandanwendungen

Eurocode 9 - Calcul des structures en aluminium - Partie 1-4 : Tôles de structure formées à froid

1.1   Domaine d'application de l'EN 1999-1-4
(1) L’EN 1999-1-4 définit les exigences de calcul relatives aux tôles (plaques) d'aluminium trapézoïdales formées à froid. Il s'applique aux produits en aluminium formés à froid par des procédés tels que le profilage à galets ou le pliage à la presse plieuse, à partir de tôles ou bandes laminés à chaud ou à froid.
NOTE 1   Les règles de cette présente partie complètent celles des autres parties de l'EN 1999-1.
NOTE 2   L'exécution de structures en aluminium formées à froid pour des applications en toiture, plafond, paroi verticale et plancher, est couverte par l'EN 1090-5.
(2)   Le présent document fournit des méthodes de calcul pour le dimensionnement avec collaboration de paroi, en utilisant des tôles d’aluminium comme diaphragme structural.
(3)   Le présent document ne s'applique ni aux profilés d'aluminium formés à froid tels que les profilés C et Z, ni aux sections creuses, circulaires ou rectangulaires, formées à froid et soudées.
(4)   Le présent document donne des méthodes de dimensionnement par calcul et de dimensionnement assisté par des essais. Les méthodes de dimensionnement par calcul ne s'appliquent que dans des gammes bien définies de caractéristiques de matériaux et des propriétés géométriques pour lesquelles on dispose d’une expérience suffisante et d’une validation par essais. Ces limitations ne s'appliquent pas au dimensionnement assisté par des essais.
(5)   Le présent document ne couvre pas la prise en compte de chargements relatifs aux phases d'exécution et d’entretien.
1.2   Hypothèses
(1)   Pour le calcul des structures neuves, l’EN 1999 (toutes les parties) est destiné à être appliqué directement, de façon conjointe avec l'EN 1990, l'EN 1991 (toutes parties), l'EN 1992 (toutes parties), l'EN 1993 (toutes parties), l'EN 1994 (toutes parties), l'EN 1995 (toutes parties), l'EN 1997 (toutes parties) et l'EN 1998 (toutes parties).
L'EN 1999 (toutes les parties) est destinée à être utilisée avec :
-   les Normes européennes pour les produits de construction appropriés aux structures en aluminium ;
-   l'EN 1090-1 : Exécution des structures en acier et des structures en aluminium - Partie 1 : Exigences pour l'évaluation de la conformité des éléments structuraux ;
-   l'EN 1090-5 : Exécution des structures en acier et des structures en aluminium - Part5 : Exigences techniques pour éléments en aluminium formés à froid et structures formées à froid pour applications en toiture, plafond, paroi verticale et plancher.

Evrokod 9 - Projektiranje konstrukcij iz aluminijevih zlitin - 1-4. del: Hladno oblikovane konstrukcijske pločevine

1.1   Področje uporabe standarda EN 1999-1-4
(1)P   Ta dokument podaja zahteve za projektiranje hladno oblikovane trapezoidne aluminijaste pločevine. Uporablja se za hladno oblikovane aluminijaste proizvode, izdelane iz hladno ali vroče valjane pločevine ali trakov, ki so bili hladno oblikovani s postopki, kot sta hladno valjano oblikovanje ali krivljenje pločevine.
OPOMBA 1:   Pravila v tem delu dopolnjujejo pravila v drugih delih standarda EN 1999-1.
OPOMBA 2:    Izvedba jeklenih in aluminijastih konstrukcij, izdelanih iz hladno oblikovanih elementov kot del strešnih, stropnih, talnih in stenskih konstrukcij, je zajeta v standardu EN 1090-5.
(2)   Ta dokument podaja metode za projektiranje konstrukcij z obremenjeno lupino, pri katerih se aluminijasta pločevina uporablja kot zaščitna plast.
(3)   Ta dokument se ne uporablja za hladno oblikovane aluminijaste profile, kot sta profila C in Z, ali za hladno oblikovane in varjene krožne ali pravokotne votle profile.
(4)   Ta dokument podaja metode za projektiranje z izračuni in za projektiranje s pomočjo preskušanja. Metode za projektiranje z izračuni se uporabljajo samo za navedene razpone lastnosti materiala in geometričnih lastnosti, za katere je na voljo dovolj izkušenj in preskusnih rezultatov. Te omejitve ne veljajo za projektiranje s preskušanjem.
(5)   Ta dokument ne zajema obremenitev med izvedbo ali vzdrževanjem.
1.2   Predpostavke
(1) Pri projektiranju novih konstrukcij je standard prEN 1999 (vsi deli) namenjen za uporabo neposredno s standardi EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 in EN 1998.
Standard EN 1999 (vsi deli) je namenjen za uporabo v povezavi z naslednjimi standardi:
–   Evropski standardi za gradbene izdelke, ki se nanašajo na aluminijaste konstrukcije
–   EN 1090-1: Izvedba jeklenih in aluminijastih konstrukcij – 1. del: Zahteve za ugotavljanje skladnosti sestavnih delov konstrukcij
–   EN 1090-5: Tehnične zahteve za hladno oblikovane konstrukcijske aluminijaste elemente in hladno oblikovane elemente kot del strešnih, stropnih, talnih in stenskih konstrukcij

General Information

Status
Published
Publication Date
21-Mar-2023
Current Stage
6060 - Definitive text made available (DAV) - Publishing
Start Date
22-Mar-2023
Due Date
28-Jun-2022
Completion Date
22-Mar-2023

Relations

Standard
EN 1999-1-4:2023
English language
83 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
SIST EN 1999-1-4:2023
01-september-2023
Nadomešča:
SIST EN 1999-1-4:2007
SIST EN 1999-1-4:2007/A1:2012
SIST EN 1999-1-4:2007/AC:2010
Evrokod 9 - Projektiranje konstrukcij iz aluminijevih zlitin - 1-4. del: Hladno
oblikovane konstrukcijske pločevine
Eurocode 9 - Design of aluminium structures - Part 1-4: Cold-formed structural sheeting
Eurocode 9 - Bemessung und Konstruktion von Aluminiumtragwerken - Teil 1-4:
Kaltgeformte Profiltafeln
Eurocode 9 - Calcul des structures en aluminium - Partie 1-4 : Tôles de structure
formées à froid
Ta slovenski standard je istoveten z: EN 1999-1-4:2023
ICS:
91.010.30 Tehnični vidiki Technical aspects
91.080.17 Aluminijaste konstrukcije Aluminium structures
SIST EN 1999-1-4:2023 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

SIST EN 1999-1-4:2023
SIST EN 1999-1-4:2023
EN 1999-1-4
EUROPEAN STANDARD
NORME EUROPÉENNE
March 2023
EUROPÄISCHE NORM
ICS 91.010.30; 91.080.17 Supersedes EN 1999-1-4:2007
English Version
Eurocode 9 - Design of aluminium structures - Part 1-4:
Cold-formed structural sheeting
Eurocode 9 - Calcul des structures en aluminium - Eurocode 9 - Bemessung und Konstruktion von
Partie 1-4 : Tôles de structure formées à froid Aluminiumtragwerken - Teil 1-4: Kaltgeformte
Profiltafeln
This European Standard was approved by CEN on 2 January 2023.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2023 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 1999-1-4:2023 E
worldwide for CEN national Members.

SIST EN 1999-1-4:2023
Contents Page
European foreword . 5
0 Introduction . 6
1 Scope . 8
1.1 Scope of EN 1999-1-4 . 8
1.2 Assumptions . 8
2 Normative references . 8
3 Terms, definitions and symbols . 9
3.1 Terms and definitions . 9
3.2 Symbols . 10
3.3 Geometry and conventions . 12
3.3.1 Cross-sectional shapes . 12
3.3.2 Stiffener shapes . 12
3.3.3 Cross-sectional dimensions . 13
3.3.4 Convention for member axis . 13
4 Basis of design . 14
5 Materials . 15
5.1 General . 15
5.2 Structural aluminium alloys . 15
5.2.1 Material properties . 15
5.2.2 Thickness and geometrical tolerances . 18
5.3 Mechanical fasteners . 18
6 Durability . 18
7 Structural analysis . 19
7.1 Influence of rounded corners . 19
7.2 Geometrical proportions . 20
7.3 Structural modelling for analysis . 21
7.4 Flange curling . 21
7.5 Local and distortional buckling . 22
7.5.1 General . 22
7.5.2 Plane cross-section parts without stiffeners . 23
7.5.3 Plane cross-section parts with intermediate stiffeners . 24
7.5.4 Trapezoidal sheeting profiles with intermediate stiffeners . 28
7.5.5 Cold-formed members. 36
8 Ultimate limit states . 36
8.1 Resistance of cross-sections . 36
8.1.1 General . 36
8.1.2 Axial tension . 36
8.1.3 Axial compression . 37
8.1.4 Bending moment . 38
8.1.5 Shear force . 40
8.1.6 Torsion . 41
8.1.7 Local transverse forces . 41
8.1.8 Combined tension and bending . 45
8.1.9 Combined compression and bending. 45
8.1.10 Combined shear force, axial force and bending moment . 46
8.1.11 Combined bending moment and local load or support reaction . 46
SIST EN 1999-1-4:2023
8.2 Buckling resistance . 47
8.2.1 General . 47
8.2.2 Axial compression . 47
8.2.3 Bending and axial compression . 48
8.3 Trapezoidal sheeting with overlap at support . 49
8.3.1 Moment resisting overlaps . 49
8.3.2 Single overlap with overlapping lower sheeting (SOL-L). 52
8.3.3 Single overlap with overlapping upper sheeting (SOL-U) . 53
8.3.4 Double overlap (DOL) . 54
8.3.5 Local reinforcement (CR) . 55
8.3.6 Trapezoidal sheeting with side overlaps . 56
8.4 Stressed skin design . 56
8.4.1 General . 56
8.4.2 Diaphragm action . 56
8.4.3 Necessary conditions . 57
8.4.4 Profiled aluminium sheet diaphragms . 59
8.5 Perforated sheeting with the holes arranged in the shape of equilateral triangles . 61
9 Serviceability limit states . 62
9.1 General . 62
9.2 Plastic deformation . 62
9.3 Deflections. 62
10 Design of joints with mechanical fasteners . 63
10.1 General . 63
10.2 Blind rivets . 65
10.2.1 Design resistances of riveted joints loaded in shear . 65
10.2.2 General . 65
10.2.3 Design resistances for riveted joints loaded in tension . 66
10.3 Self-tapping / self-drilling screws . 66
10.3.1 General . 66
10.3.2 Design resistance of screwed joints loaded in shear . 67
10.3.3 Design resistance of screwed joints loaded in tension . 68
11 Design assisted by testing . 69
Annex A (normative) Testing procedures. 70
A.1 Use of this Annex . 70
A.2 Scope and field of application . 70
A.3 Tests on profiled sheets . 70
A.3.1 General . 70
A.3.2 Single span test . 71
A.3.3 Double span test . 71
A.3.4 Internal support test . 71
A.3.5 End support test . 74
A.4 Evaluation of test results . 74
A.4.1 General . 74
A.4.2 Adjustment of test results. 74
A.4.3 Characteristic values . 75
SIST EN 1999-1-4:2023
A.4.4 Design values . 76
A.4.5 Serviceability . 77
Annex B (informative) Durability of fasteners . 78
B.1 Use of this Informative Annex . 78
B.2 Scope and field of application . 78
B.3 Fastener material with regard to corrosion environment . 78
Bibliography . 82

SIST EN 1999-1-4:2023
European foreword
This document (EN 1999-1-4:2023) has been prepared by Technical Committee CEN/TC250 “Structural
Eurocodes”, the secretariat of which is held by BSI. CEN/TC 250 is responsible for all Structural
Eurocodes and has been assigned responsibility for structural and geotechnical design matters by CEN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by September 2027, and conflicting national standards shall
be withdrawn at the latest by March 2028.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN 1999-1-4:2007.
The main changes compared to the previous edition are listed below:
— Some reorganization of the text and its coherence with EN 1999-1-1 and the other Eurocodes;
— New general provisions for cold-formed profiles (i.e. not only profiled sheeting);
— New provisions for static overlapping system of sheeting with single or double overlap;
— New provisions for trapezoidal sheeting with side overlaps;
— Clarification of the behaviour of diaphragm at the end of a building;
— Improvement of wording.
The first generation of EN Eurocodes was published between 2002 and 2007. This document forms part
of the second generation of the Eurocodes, which have been prepared under Mandate M/515 issued to
CEN by the European Commission and the European Free Trade Association.
The Eurocodes have been drafted to be used in conjunction with relevant execution, material, product
and test standards, and to identify requirements for execution, materials, products and testing that are
relied upon by the Eurocodes.
The Eurocodes recognize the responsibility of each Member State and have safeguarded their right to
determine values related to regulatory safety matters at national level through the use of National
Annexes.
Any feedback and questions on this document should be directed to the users’ national standards body.
A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United
Kingdom.
SIST EN 1999-1-4:2023
0 Introduction
0.1 Introduction to the Eurocodes
The Structural Eurocodes comprise the following standards generally consisting of a number of Parts:
— EN 1990 Eurocode: Basis of structural and geotechnical design
— EN 1991 Eurocode 1: Actions on structures
— EN 1992 Eurocode 2: Design of concrete structures
— EN 1993 Eurocode 3: Design of steel structures
— EN 1994 Eurocode 4: Design of composite steel and concrete structures
— EN 1995 Eurocode 5: Design of timber structures
— EN 1996 Eurocode 6: Design of masonry structures
— EN 1997 Eurocode 7: Geotechnical design
— EN 1998 Eurocode 8: Design of structures for earthquake resistance
— EN 1999 Eurocode 9: Design of aluminium structures
— New parts are under development, e.g. Eurocode for design of structural glass
The Eurocodes are intended for use by designers, clients, manufacturers, constructors, relevant
authorities (in exercising their duties in accordance with national or international regulations),
educators, software developers, and committees drafting standards for related product, testing and
execution standards.
NOTE Some aspects of design are most appropriately specified by relevant authorities or, where not specified,
can be agreed on a project-specific basis between relevant parties such as designers and clients. The Eurocodes
identify such aspects making explicit reference to relevant authorities and relevant parties.
0.2 Introduction to EN 1999 (all parts)
EN 1999 (all parts) applies to the design of buildings and civil engineering and structural works made of
aluminium. It complies with the principles and requirements for the safety and serviceability of
structures, the basis of their design and verification that are given in EN 1990.
EN 1999 (all parts) is only concerned with requirements for resistance, serviceability, durability and fire
resistance of aluminium structures. Other requirements, e.g. concerning thermal or sound insulation, are
not considered.
EN 1999 (all parts) does not cover the special requirements of seismic design. Provisions related to such
requirements are given in EN 1998, which complements, and is consistent with EN 1999.
Eurocode 9 is subdivided in various parts:
— EN 1999-1-1 Eurocode 9 — Design of Aluminium Structures — Part 1-1: General rules;
— EN 1999-1-2 Eurocode 9 — Design of Aluminium Structures — Part 1-2: Structural fire design;
SIST EN 1999-1-4:2023
— EN 1999-1-3 Eurocode 9 — Design of Aluminium Structures — Part 1-3: Structures susceptible to
fatigue;
— EN 1999-1-4 Eurocode 9 — Design of Aluminium Structures — Part 1-4: Cold-formed structural
sheeting;
— EN 1999-1-5 Eurocode 9 — Design of Aluminium Structures — Part 1-5: Shell structures.
0.3 Introduction to EN 1999-1-4
This document gives design requirements for cold-formed trapezoidal aluminium sheeting made from
hot rolled or cold rolled sheet or strip.
0.4 Verbal forms used in the Eurocodes
The verb “shall” expresses a requirement strictly to be followed and from which no deviation is permitted
in order to comply with the Eurocodes.
The verb “should” express a highly recommended choice or course of action. Subject to national
regulation and/or any relevant contractual provisions, alternative approaches could be used/adopted
where technically justified.
The verb “may” expresses a course of action permissible within the limits of the Eurocodes.
The verb “can” expresses possibility and capability; it is used for statements of fact and clarification of
concepts.
0.5 National annex for EN 1999-1-4
National choice is allowed in this standard where explicitly stated within notes. National choice includes
the selection of values for Nationally Determined Parameters (NDPs).
The national standard implementing EN 1999-1-4 can have a National Annex containing all national
choices to be used for the design of buildings and civil engineering works to be constructed in the relevant
country.
When no national choice is given, the default choice given in this standard is to be used.
When no national choice is made and no default is given in this standard, the choice can be specified by a
relevant authority or, where not specified, agreed for a specific project by appropriate parties.
National choice is allowed in EN 1999-1-4 through the following clauses:
4(4) 5.1(3) 9.3(3) A.4.4(3)
National choice is allowed in EN 1999-1-4 on the application of the following informative annexes:
Annex B
The National Annex can contain, directly or by reference, non-contradictory complementary information
for ease of implementation, provided it does not alter any provisions of the Eurocodes.
SIST EN 1999-1-4:2023
1 Scope
1.1 Scope of EN 1999-1-4
(1) EN 1999-1-4 gives design requirements for cold-formed trapezoidal aluminium sheeting. It applies
to cold-formed aluminium products made from hot rolled or cold rolled sheet or strip that have been
cold-formed by such processes as cold-rolled forming or press-breaking.
NOTE 1 The rules in this part complement the rules in other parts of EN 1999-1.
NOTE 2 The execution of aluminium structures made of cold-formed structures for roof, ceiling, floor and wall
applications is covered in EN 1090-5.
(2) EN 1999-1-4 gives methods for stressed-skin design using aluminium sheeting as a structural
diaphragm.
(3) EN 1999-1-4 does not apply to cold-formed aluminium profiles like C- and Z- profiles nor cold-
formed and welded circular or rectangular hollow sections.
(4) EN 1999-1-4 gives methods for design by calculation and for design assisted by testing. The methods
for the design by calculation apply only within stated ranges of material properties and geometrical
properties for which sufficient experience and test evidence is available. These limitations do not apply
to design by testing.
(5) EN 1999-1-4 does not cover load arrangement for loads during execution and maintenance.
1.2 Assumptions
(1) For the design of new structures, EN 1999 is intended to be used, for direct application, together with
EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
EN 1999 is intended to be used in conjunction with:
— European Standards for construction products relevant for aluminium structures;
— EN 1090-1, Execution of steel structures and aluminium structures — Part 1: Requirements for
conformity assessment of structural components;
— EN 1090-5, Execution of steel structures and aluminium structures — Part 5: Technical requirements
for cold-formed structural aluminium elements and cold-formed structures for roof, ceiling, floor and
wall applications.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
NOTE See the Bibliography for a list of other documents cited that are not normative references, including
those referenced as recommendations (i.e. through “should” clauses) and permissions (i.e. through “may” clauses).
EN 1990, Eurocode — Basis of structural design
EN 1999-1-1, Eurocode 9 — Design of aluminium structures — Part 1-1: General rules
SIST EN 1999-1-4:2023
3 Terms, definitions and symbols
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in EN 1990, EN 1999-1-1 and the
following apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/
3.1.1
base material
flat sheet aluminium material out of which profiled sheets are made by cold forming
3.1.2
proof strength of base material
0,2 % proof strength f of the base material
o
3.1.3
diaphragm action
structural behaviour involving in-plane shear in the sheeting
3.1.4
partial restraint
restriction to some extent of the lateral or rotational displacement of a cross-section part, that increases
its buckling resistance
3.1.5
restraint
full restriction of the lateral displacement or rotational movement of a plane cross-section part, that
increases its buckling resistance
3.1.6
relative slenderness
normalised, material related slenderness ratio
3.1.7
stressed-skin design
design method that takes into account the contribution made by diaphragm action in the sheeting to the
stiffness and strength of a structure
3.1.8
support
location at which a member is able to transfer forces or moments to a foundation, or to another structural
component
3.1.9
effective thickness
design value of the thickness to allow for local buckling of plane cross section part
SIST EN 1999-1-4:2023
3.1.10
reduced effective thickness
design value of the thickness to allow for distortional buckling of stiffeners in a second step of the
calculation procedure for plane cross section parts, where local buckling is taken into account in the first
step
3.2 Symbols
For the purposes of this document, the symbols given in EN 1999-1-1 and the following apply.
Latin upper-case letters
A
area of the gross cross-section
g
A value of A for a cross-section with sharp corners
g,sh g
F
net section design resistance
n,Rd
F
characteristic shear resistance
v,Rk
F
characteristic tension resistance
t,Rk
I
moment of inertia of the gross cross-section
g
I value of I for a cross-section with sharp corners
g,sh g
R
0,2 % proof stress given by the product standard
p0,2
R
ultimate tensile strength in material standard
m
S , S
spring stiffness of connection of sheeting
f w
V
design value for shear resistance
b,Rd
Latin lower-case letters
a
length of overlap of trapezoidal sheeting
ol
a
spacing between the centres of the perforations in sheeting
per
b overall width of the flange
b
width of building
bu
b
notional flat width of plane cross-section part
p
b
pitch of the profile
rib
d diameter of the fastener
d
diameter of the perforations in sheeting
per
d
diameter of the washer or the sealing washer respectively or the head of the fastener
w
f
shear buckling strength
bv
f
minor ultimate tensile strength of connected parts
u,min
f
ultimate tensile strength of the supporting component into which a screw is fixed
u,sup
f
yield strength of supporting component of steel
y
h overall height of the profile
SIST EN 1999-1-4:2023
h , h
distance from compression flange to grooves measured perpendicular to the flange
a b
h
height of the columns along the building
bu
h , h
height of grooves in webs measured perpendicular to the web
sa sb
h
height of profile
w
k linear spring stiffness
k
coefficient for spring stiffness of connection of sheeting
f
k
coefficient for calculating the spring stiffness of connections at overlaps of sheeting
ol
k
buckling coefficient for compression stress
σ
k
buckling coefficient for shear stress
τ
l
effective bearing length
a
n number of tests
n number of pitches between the longitudinal edge of the sheeting to same edge of the next
c
sheeting
n number of whole pitches with double sheeting within the width n times the pitch
p c
q
vertical load per unit area acting on the roof (snow, self-weight and wind compression)
bv,Ed
q
horizontal load per length acting along the roof diaphragm
h,Ed
r internal bend radius
s , s
width of parts between grooves in webs
a b
s
total developed slant height of the web
d
s
distance from neutral axis to nearest groove on the compression side of the web
n
s
slant height of the largest plane part in the web
p
s
slant height of the perforated portion of the web, centric in the web height
per
s
bearing length
s
s , s
width of grooves in webs
sa sb
s
slant height of the web, between the midpoints of the web-to-flange corners
w
t design thickness
t
thickness of the thinner connected part or sheet
min
t
nominal thickness
nom
t
thickness of the supporting member in which the screw is fixed
sup
v maximum horizontal deformation of the roof diaphragm due to q
h h,Ed
x distance from the studied section to a hinged support or a point of counter flexure of the
s
deflection curve for elastic buckling under an axial force only
SIST EN 1999-1-4:2023
Greek upper-case letters
θ rotation
Greek lower-case letters
γ
resistance of joints
M3
λ
plateau length for plate buckling
lim
λ
plate relative slenderness
p
λ relative slenderness for stiffener
s
λ web relative slenderness
w
factor which accounts for the increase of bending moment resistance of sheeting with side
µ
so
overlaps
σ
the maximum compressive stress in a plane element or stiffener
com, Ed
σ
elastic buckling stress of stiffener
cr,sa
φ angle between two plane parts of a cross-section
φ
slope of the web relative to the flanges
ψ stress relation factor
ω
factor to allow for second order moment distribution due to axial force and deflection
x
3.3 Geometry and conventions
3.3.1 Cross-sectional shapes
(1) Cold-formed sheets have, within the permitted tolerances, a constant nominal thickness over their
entire length and have a uniform cross-section along their length.
(2) The cross-sections of cold formed profiled sheets comprise a number of plane cross-section parts
joined by curved parts.
(3) Example of typical forms of cross-sections for cold formed profiled sheets are shown in Figure 3.1.
(4) Cross-sections of cold formed sheets can either be unstiffened or incorporate longitudinal stiffeners
in their webs or flanges, or in both.
3.3.2 Stiffener shapes
(1) Typical shapes of stiffeners for cold formed sheets are shown in Figure 3.2.
SIST EN 1999-1-4:2023
Figure 3.1 — Examples of cold-formed profiled sheeting

a) grooves in flanges b) folds in webs
Figure 3.2 — Typical intermediate longitudinal stiffeners
3.3.3 Cross-sectional dimensions
(1) Overall dimensions of cold-formed sheeting, including overall width b, overall height h, internal bend
radius r and other external dimensions denoted by symbols without subscripts, are measured to the outer
contour of the section, unless stated otherwise, see Figure 7.1.
(2) Unless stated otherwise, the other cross-sectional dimensions of cold-formed sheeting, denoted by
symbols with subscripts, such as b , h or s , are measured either to the midline of the material or the
p w w
midpoint of the corner.
(3) In the case of sloping webs of cold-formed profiled sheets, the slant height s is measured parallel to
the slope.
(4) The developed height of a web is measured along its midline, including any web stiffeners.
(5) The developed width of a flange is measured along its midline, including any intermediate stiffeners.
(6) The thickness t is an aluminium design thickness if not otherwise stated. See 5.2.2.
3.3.4 Convention for member axis
(1) For profiled sheets the following axis convention is used in this standard:
— y-y axis parallel to the plane of sheeting;
— z-z axis perpendicular to the plane of sheeting.
SIST EN 1999-1-4:2023
4 Basis of design
(1) The design of cold-formed sheeting shall be in accordance with the general rules in EN 1990 and
EN 1999-1-1.
(2) Appropriate partial factors shall be adopted for ultimate limit states and serviceability limit states.
(3) For verification by calculation at ultimate limit states the partial factor γ shall be taken as follows:
M
— resistance of cross-sections and members to instability: γ
M1
— resistance of cross-sections in tension to fracture:  γ
M2
— resistance of joints:     γ
M3
NOTE For the values of γ and γ , see EN 1999-1-1. For joints in cold-formed sheeting γ = γ .
M1 M2 M3 M2
(4) In the design of structures, a distinction should be made between various “structural classes”, based
on the level of contribution of cold-formed aluminium members or sheeting to the strength and stability
of the overall structure or that of individual structural elements. These structural classes are associated
with different requirements in the applicable product and execution standards for cold-formed
aluminium members and sheeting, and shall be determined as follows:
Structural Class I: Construction where cold-formed members or sheeting are designed to contribute
to the overall strength and stability of a structure;
Structural Class II: Construction where cold-formed members or sheeting are designed to
contribute to the strength and stability of individual structural elements;
Structural Class III: Construction where cold-formed members or sheeting are used as an element
that only transfers loads to the structure. Sheeting and sandwich panels in Structural Class III can be
differentiated in:
— structural or
— non-structural.
NOTE 1 Permitted application of non-structural cold-formed sheeting in Structural Class III can be set by the
National Annex.
NOTE 2 EN 1090-1 and EN 1090-5 cover requirements for execution of structural sheeting and of cold-formed
members. EN 14782 covers non-structural cold-formed sheeting for structural class III.
(5) Purlins designed as part of the bracing system of the main structure (e.g. compression members,
struts, tie beams) may be stiffened by sheeting of Structural Class II.
(6) The categorization in Structural Classes should be made for sheeting in their relation to the overall
structure and directly supporting members.
SIST EN 1999-1-4:2023
5 Materials
5.1 General
(1) The methods for design by calculation given in this document should be used for the structural alloys
in the tempers listed in Table 5.1.
(2) For design by calculation given in this document, the 0,2 % proof strength, f , should be at least
o
f = 135 N/mm .
o
(3) Aluminium sheet and strip used for cold-formed profile sheeting should be suitable for the specific
cross section depending on cold forming and cold forming process.
NOTE Other aluminium materials and products can be given in the National Annex.
5.2 Structural aluminium alloys
5.2.1 Material properties
(1) For design verification, the material properties given in this section should be considered as
characteristic values.
NOTE The characteristic values of 0,2 % proof strength f and tensile strength f have been obtained by
o u
adopting the values for minimum R and R from the relevant product standards.
p0,2 m
(2) It may be assumed that the properties in compression are the same as those in tension.
(3) If partially plastic moment resistance is utilized, the ratio of the characteristic ultimate tensile
strength, f , to the characteristic 0,2 % proof strength, f , should be not less than 1,2.
u o
(4) The material constants (modulus of elasticity, etc.) should be taken from EN 1999-1-1.
SIST EN 1999-1-4:2023
Table 5.1 — Characteristic values of 0,2 % proof strength, f , ultimate tensile strength, f , and
o u
elongation A for sheet and strip for tempers with f ≥ 135 N/mm and thickness between
50 o
0,5 mm and 6 mm
f
f
u o
Numerical Chemical
A
Durability Thickness 50
a
a, b, c
designation designation
R R
Temper
m p0,2
e
up to mm d
rating
%
EN AW- EN AW-
N/mm
N/mm
H16 | H26 4,0 170 150 | 140 2 | 3
H18 3,0 190 170 2
3003 AlMn1Cu A
H46 3,0 165 140 3
H48 3,0 180 165 2–3
H12 | H22/H32 6,0 190 155 | 145 3–5 | 5–7
H14 | H24/H34 6 | 3 220 180 | 170 2–3 | 4
H16 | H26/H36 4 | 3 240 200 | 190 1–2 | 3
H18 | H28/H38 3 | 1,5 260 230 | 220 1–2 | 3
3004 AlMn1Mg1 A
H43 3 195 160 4–5
H44 3 210 180 4
H46 3 230 200 3
H48 3 260 220 3
H14 6,0 170 150 2–3
H16 4 195 175 2
H18 | H28 3 220 200 | 190 2 | 2–3
3005 AlMn1Mg0,5 A
H44 3 165 135 3–4
H46 3 185 160 2–3
H48 3 210 180 2
H16 | H26 8 | 4 160 145 | 135 2 | 3
H18 3 185 165 2
3103 AlMn1 A
H46 3 160 140 3
H48 3 180 160 2–3
H16 | H26 3 175 160 | 150 2 | 3
H18 | H28 3 | 1,5 195 180 | 170 1 | 2
AlMn0,5Mg0,
3105 A
H46 3 175 150 2–3
H48 3 195 170 2
H16 | H26/H36 4,0 165 145 | 135 2–3 | 3–4
H18 3 185 165 2
5005 AlMg1(B) A
H46 3 165 135 3–4
H48 3 185 160 2–3
SIST EN 1999-1-4:2023
f f
u o
Numerical Chemical
A
Durability Thickness 50
a
a, b, c
designation designation
R R
Temper
m p0,2
e
up to mm d
rating
%
EN AW- EN AW-
N/mm
N/mm
H12 6,0 210 160 5–8
H14 | H24/H34 6 230 180 | 150 3–4 | 5–7
H16 | H26/H36 6 250 210 | 180 3 | 4–6
5052 AlMg2,5 A H18 | H28/H38 3 270 240 | 210 2 | 3–4
H44 3 230 150 5–6
H46 3 250 180 4–5
H48 3 270 210 3–4
H12 6 190 150 4–8
H14 | H24/H34 6 210 170 | 140 2–4 | 5–8
H16 | H26/H36 4 230 200 | 170 2–3 | 4–7
5251 AlMg2Mn0,3 A
H18 | H28/H38 3 255 230 | 200 2 | 3
H46 3 210 165 4–5
H48 3 250 215 3
H32 5 180 135 2–4
H34 5 210 165 2–3
AlMg2,5SiMn
6025–7072
Cu-AlZn1
A H36 5 220 185 2–4
f
alclad
f
alclad
H42 3 180 135 3–4
H46 3 220 185 3–4
a
The values for temper H1x, H2x, H3x according to EN 485-2:2016+A1:2018.
b
The values for temper H4x (coil coated sheet and strip) according to EN 1396:2015.
c
If two (three) tempers are specified in one line, tempers separated by “|” have different technological
values, but separated by “/” have same values. (The tempers show differences only for f and A .)
o 50
d
A may depend on the thickness of material in the listed range, therefore sometimes also a A -range is
50 50
given.
e
Durability rating, see EN 1999-1–1.
f
EN AW-6025–7072 alclad (EN AW-AlMg , 5SiMnCu-AIZn alclad) is a composite material with core
2 1
material EN AW-6025 and a cladding on both sides with EN AW-7072. For reasons of durability the
cladding should have thickness of at least 4 % of the overall thickness of the material on each side. If the
thickness of the cladding exceeds 5 %, fact should be considered in the structural calculations, i.e. only the
core thickness of the composite sheet should be taken into account. For these reasons the minimum
cladding thickness of 4 % and the minimum core thickness should be specified in the execution
specification for the contractor to procure the corresponding constituent products with inspection
certificate 3.1.
SIST EN 1999-1-4:2023
5.2.2 Thickness and geometrical tolerances
(1) The provisions for design by calculation given in this document may be used for
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.