SIST EN IEC 62061:2021
(Main)Safety of machinery - Functional safety of safety-related control systems (IEC 62061:2021)
Safety of machinery - Functional safety of safety-related control systems (IEC 62061:2021)
This International Standard specifies requirements and makes recommendations for the design, integration and validation of safety-related control systems (SCS) for machines. It is applicable to control systems used, either singly or in combination, to carry out safety functions on machines that are not portable by hand while working, including a group of machines working together in a co-ordinated manner.
This document is a machinery sector specific standard within the framework of IEC 61508 (all parts).
The design of complex programmable electronic subsystems or subsystem elements is not within the scope of this document. This is in the scope of IEC 61508 or standards linked to it; see Figure 1.
NOTE 1 Elements such as systems on chip or microcontroller boards are considered complex programmable electronic subsystems.
The main body of this sector standard specifies general requirements for the design, and verification of a safety-related control system intended to be used in high/continuous demand mode.
This document:
- is concerned only with functional safety requirements intended to reduce the risk of hazardous situations;
- is restricted to risks arising directly from the hazards of the machine itself or from a group of machines working together in a co-ordinated manner;
NOTE 2 Requirements to mitigate risks arising from other hazards are provided in relevant sector standards.
For example, where a machine(s) is part of a process activity, additional information is available in IEC 61511.
This document does not cover
- electrical hazards arising from the electrical control equipment itself (e.g. electric shock - see IEC 60204-1);
- other safety requirements necessary at the machine level such as safeguarding;
- specific measures for security aspects - see IEC TR 63074.
This document is not intended to limit or inhibit technological advancement.
Figure 1 illustrates the scope of this document.
[Figure 1]
Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener Steuerungssysteme (IEC 62061:2021)
Sécurité des machines - Sécurité fonctionnelle des systèmes de commande relatifs à la sécurité (IEC 62061:2021)
L'IEC 62061:2021 spécifie les exigences et donne des recommandations pour la conception, l'intégration et la validation des systèmes de commande relatifs à la sécurité (SCS) pour les machines. Elle s'applique aux systèmes de commande utilisés, séparément ou en combinaison, pour assurer les fonctions de sécurité de machines qui ne sont pas portables à la main en fonctionnement, y compris un groupe de machines fonctionnant ensemble d'une manière coordonnée.
Le présent document est spécifique au secteur des machines dans le cadre de l'IEC 61508 (toutes les parties).
La conception de sous-systèmes ou d'éléments de sous-système électroniques programmables complexes ne relève pas du domaine d'application du présent document. Ces éléments relèvent du domaine d'application de l'IEC 61508 ou de normes qui lui sont associées.
Le présent document:
– se concerne que les exigences de sécurité fonctionnelle destinées à réduire le risque de situations dangereuses;
– se limite aux risques résultant directement des phénomènes dangereux de la machine elle même ou d'un groupe de machines fonctionnant ensemble d'une manière coordonnée;
Le présent document ne concerne pas
– les phénomènes dangereux électriques provenant du matériel de commande électrique lui même (par exemple choc électrique – voir l'IEC 60204-1);
– les autres exigences relatives à la sécurité nécessaires au niveau de la machine (la protection par protecteur, par exemple);
– les mesures particulières pour les aspects liés à la sécurité – voir l'IEC TR 63074.
Le présent document n'est pas destiné à limiter ou inhiber les progrès technologiques.
L'IEC 62061:2021 annule et remplace la première édition parue en 2005, l’Amendement 1:2012 ainsi que l’Amendement 2:2015. Cette édition constitue une révision technique.
Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:
– la structure a été modifiée et le contenu a été mis à jour pour refléter le processus de conception de la fonction de sécurité,
– la norme a été étendue aux technologies non électriques,
– définitions mises à jour pour être alignées sur l'IEC 61508-4,
– plan de sécurité fonctionnelle introduit et gestion de configuration mise à jour (Article 4),
– exigences relatives au paramétrage étendues (Article 6),
– référence aux exigences relatives à la sécurité ajoutée (Paragraphe 6.8)
– exigences relatives aux essais périodiques ajoutées (Paragraphe 6.9),
– différentes améliorations et clarifications relatives aux architectures et aux calculs de fiabilité (Article 6 et Article 7),
– décalage entre le "SILCL" et le "SIL maximal" d'un sous-système (Article 7),
– cas d'utilisation pour les logiciels décrits, y compris les exigences (Article 8),
– exigences relatives à l'indépendance des activités de vérification (Article 8) et de validation (Article 9) du logiciel ajoutées,
– nouvelle annexe informative avec des exemples (Annex G),
– nouvelles annexes informatives relatives aux valeurs MTTFD, aux diagnostics et aux méthodes de calcul des architectures (Annex C, Annex D et Annex H).
Varnost strojev - Funkcijska varnost nadzornih sistemov, povezanih z varnostjo (IEC 62061:2021)
Ta mednarodni standard določa zahteve in priporočila za izdelavo, vgradnjo in ovrednotenje nadzornih sistemov, povezanih z varnostjo (SCS), za stroje. Uporablja se za nadzorne sisteme, ki se samostojno ali v kombinaciji uporabljajo za izvajanje varnostnih funkcij na strojih, ki jih med delom ni mogoče prenašati v roki, vključno s skupino strojev, ki delujejo skupaj na usklajen način.
Ta dokument je standard, specifičen za področje strojev, v okviru standarda IEC 61508 (vsi deli).
Izdelava kompleksnih programirljivih elektronskih podsistemov oziroma njihovih elementov ne spada na področje uporabe tega dokumenta. To spada na področje uporabe standarda IEC 61508 in z njim povezanih standardov (glej sliko 1).
OPOMBA 1: Kompleksni programirljivi elektronski podsistemi so na primer sistemi na čipih ali plošče mikrokrmilnikov.
V glavnem delu tega področnega standarda so podane splošne zahteve za izdelavo in preverjanje nadzornih sistemov, povezanih z varnostjo, ki delujejo v načinu z visokimi zahtevami in v neprekinjenem načinu.
Ta dokument:
– obravnava samo zahteve za funkcionalno varnost, namenjene zmanjšanju tveganja nevarnih situacij;
– je omejen na tveganja, ki izhajajo neposredno iz samega stroja ali iz skupine strojev, ki delujejo skupaj in usklajeno.
OPOMBA 2: Zahteve za blažitev tveganj, ki izhajajo iz drugih nevarnosti, so podane v ustreznih področnih standardih.
Dodatne informacije za stroje, ki so del procesne dejavnosti, so na voljo v standardu IEC 61511.
Ta dokument ne zajema:
– električnih nevarnosti, ki izhajajo iz same električne nadzorne opreme (npr. električni udar – glej standard IEC 60204-1);
– drugih varnostnih zahtev, potrebnih na ravni strojev (npr. zaščitni ukrepi);
– posebnih ukrepov za varnostne vidike – glej standard IEC TR 63074.
Ta dokument ne omejuje ali preprečuje tehnološkega napredka.
Slika 1 prikazuje področje uporabe tega dokumenta.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-oktober-2021
Nadomešča:
SIST EN 62061:2005
SIST EN 62061:2005/A1:2013
SIST EN 62061:2005/A2:2016
Varnost strojev - Funkcijska varnost nadzornih sistemov, povezanih z varnostjo
(IEC 62061:2021)
Safety of machinery - Functional safety of safety-related control systems (IEC
62061:2021)
Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener
Steuerungssysteme (IEC 62061:2021)
Sécurité des machines - Sécurité fonctionnelle des systèmes de commande relatifs à la
sécurité (IEC 62061:2021)
Ta slovenski standard je istoveten z: EN IEC 62061:2021
ICS:
13.110 Varnost strojev Safety of machinery
25.040.40 Merjenje in krmiljenje Industrial process
industrijskih postopkov measurement and control
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EUROPEAN STANDARD EN IEC 62061
NORME EUROPÉENNE
EUROPÄISCHE NORM
July 2021
ICS 13.110; 25.040.99; 29.020 Supersedes EN 62061:2005 and all of its amendments
and corrigenda (if any)
English Version
Safety of machinery - Functional safety of safety-related control
systems
(IEC 62061:2021)
Sécurité des machines - Sécurité fonctionnelle des Sicherheit von Maschinen - Funktionale Sicherheit
systèmes de commande relatifs à la sécurité sicherheitsbezogener Steuerungssysteme
(IEC 62061:2021) (IEC 62061:2021)
This European Standard was approved by CENELEC on 2021-04-26. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2021 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN IEC 62061:2021 E
European foreword
The text of document 44/885/FDIS, future edition 2 of IEC 62061, prepared by IEC/TC 44 "Safety of
machinery - Electrotechnical aspects" was submitted to the IEC-CENELEC parallel vote and approved
by CENELEC as EN IEC 62061:2021.
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2022-01-26
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2024-04-26
document have to be withdrawn
This document supersedes EN 62061:2005 and all of its amendments and corrigenda (if any).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
This document has been prepared under a mandate given to CENELEC by the European Commission
and the European Free Trade Association, and supports essential requirements of EU Directive(s).
For the relationship with EU Directive(s) see informative Annex ZZ, which is an integral part of this
document.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Standard IEC 62061:2021 was approved by CENELEC as a European
Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standards
indicated:
IEC 60068 (series) NOTE Harmonized as EN 60068 (series)
IEC 60364-4-41:2005 NOTE Harmonized as HD 60364-4-41:2017
IEC 60529 NOTE Harmonized as EN 60529
IEC 60721 (series) NOTE Harmonized as EN 60721-3-9:1993/A1 (series)
IEC 60812 NOTE Harmonized as EN IEC 60812
IEC 60947-4-1:2018 NOTE Harmonized as EN IEC 60947-4-1:2019 (not modified)
IEC 60947-5-1 NOTE Harmonized as EN 60947-5-1
IEC 60947-5-3 NOTE Harmonized as EN 60947-5-3
IEC 60947-5-5 NOTE Harmonized as EN 60947-5-5
IEC 60947-5-8 NOTE Harmonized as EN IEC 60947-5-8
IEC 61000-6-7 NOTE Harmonized as EN 61000-6-7
IEC 61025:2006 NOTE Harmonized as EN 61025:2007 (not modified)
IEC 61131-2:2017 NOTE Harmonized as EN 61131-2:2017 (not modified) to be published
IEC 61131-6:2012 NOTE Harmonized as EN 61131-6:2012 (not modified)
IEC 61140:2016 NOTE Harmonized as EN 61140:2016 (not modified)
IEC 61165 NOTE Harmonized as EN 61165
IEC 61204-7:2016 NOTE Harmonized as EN IEC 61204-7:2018 (not modified)
IEC 61310 (series) NOTE Harmonized as EN 61310 (series)
IEC 61326-3-1 NOTE Harmonized as EN 61326-3-1
IEC 61496 (series) NOTE Harmonized as EN IEC 61496 (series)
IEC 61508-1:2010 NOTE Harmonized as EN 61508-1:2010 (not modified)
IEC 61508-4:2010 NOTE Harmonized as EN 61508-4:2010 (not modified)
IEC 61508-5:2010 NOTE Harmonized as EN 61508-5:2010 (not modified)
IEC 61508-6:2010 NOTE Harmonized as EN 61508-6:2010 (not modified)
IEC 61508-7:2010 NOTE Harmonized as EN 61508-7:2010 (not modified)
IEC 61511 (series) NOTE Harmonized as EN 61511 (series)
IEC 61511-1:2016 NOTE Harmonized as EN 61511-1:2017 (not modified)
IEC 61511-1:2016/A1:2017 NOTE Harmonized as EN 61511-1:2017/A1:2017 (not modified)
IEC 61511-3:2016 NOTE Harmonized as EN 61511-3:2017 (not modified)
IEC 61649 NOTE Harmonized as EN 61649
IEC 61709:2017 NOTE Harmonized as EN 61709:2017 (not modified)
IEC 61784-3 (series) NOTE Harmonized as EN 61784-3 (series)
IEC 61784-3:2016 NOTE Harmonized as EN 61784-3:2016 (not modified)
IEC 61800-5-2 NOTE Harmonized as EN 61800-5-2
IEC 61810 (series) NOTE Harmonized as EN 61810 (series)
IEC 62443 (series) NOTE Harmonized as EN IEC 62443 (series)
IEC 62477 (series) NOTE Harmonized as EN IEC 62477 (series)
IEC 62502 NOTE Harmonized as EN 62502
ISO/IEC 27001:2013 NOTE Harmonized as EN ISO/IEC 27001:2017 (not modified)
ISO 4413:2010 NOTE Harmonized as EN ISO 4413:2010 (not modified)
ISO 4414:2010 NOTE Harmonized as EN ISO 4414:2010 (not modified)
ISO 11161:2007 NOTE Harmonized as EN ISO 11161:2007 (not modified)
ISO 13850:2015 NOTE Harmonized as EN ISO 13850:2015 (not modified)
ISO 13851:2019 NOTE Harmonized as EN ISO 13851:2019 (not modified)
ISO 13855:2010 NOTE Harmonized as EN ISO 13855:2010 (not modified)
ISO 14118:2017 NOTE Harmonized as EN ISO 14118:2018 (not modified)
ISO 14119:2013 NOTE Harmonized as EN ISO 14119:2013 (not modified)
ISO/TR 22100-4:2018 NOTE Harmonized as CEN ISO/TR 22100-4:2020 (not modified)
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod),
the relevant EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is
available here: www.cenelec.eu.
Publication Year Title EN/HD Year
IEC 60204-1 (mod) 2016 Safety of machinery - Electrical equipment EN 60204-1 2018
of machines - Part 1: General requirements
IEC 61000-1-2 2016 Electromagnetic compatibility (EMC) - Part EN 61000-1-2 2016
1-2: General - Methodology for the
achievement of functional safety of
electrical and electronic systems including
equipment with regard to electromagnetic
phenomena
IEC 61508 series Functional safety of EN 61508 series
electrical/electronic/programmable
electronic safety-related systems
IEC 61508-2 2010 Functional safety of EN 61508-2 2010
electrical/electronic/programmable
electronic safety-related systems - Part 2:
Requirements for
electrical/electronic/programmable
electronic safety-related systems
IEC 61508-3 2010 Functional safety of EN 61508-3 2010
electrical/electronic/programmable
electronic safety-related systems - Part 3:
Software requirements
ISO 12100 2010 Safety of machinery - General principles EN ISO 12100 2010
for design - Risk assessment and risk
reduction
ISO 13849 series Safety of machinery - Safety-related parts EN ISO 13849 series
of control systems
ISO 13849-1 2015 Safety of machinery - Safety-related parts EN ISO 13849-1 2015
of control systems - Part 1: General
principles for design
ISO 13849-2 2012 Safety of machinery - Safety-related parts EN ISO 13849-2 2012
of control systems - Part 2: Validation
Annex ZZ
(informative)
Relationship between this European standard and the essential
requirements of Directive 2006/42/EC [2006 OJ L 157] aimed to be
covered
This European standard has been prepared under a Commission’s standardisation request “M/396” to
provide one voluntary means of conforming to essential requirements of Directive 2006/42/EC of the
European Parliament and of the Council of 17 May 2006 on machinery, and amending Directive
95/16/EC (recast) [2006 OJ L 157].
Once this standard is cited in the Official Journal of the European Union under that Directive,
compliance with the normative clauses of this standard given in Table ZZ.1 confers, within the limits of
the scope of this standard, a presumption of conformity with the corresponding essential requirements
of that Directive, and associated EFTA regulations.
Table ZZ.1 — Correspondence between this European standard and Annex 1 of Directive]
2006/42/EC [2006 OJ L 157]
The relevant Essential
Clause(s) / sub-clause(s)
Requirements of Directive Remarks / Notes
of this EN
2006/42/EC
1.2.1 Clauses 4, 5, 6, 7, 8, 9.
1.7.4.2 (e, g, i, r, s) 10.3 This subclause only deals with
the instruction for safety
functions
WARNING 1: Presumption of conformity stays valid only as long as a reference to this European
standard is maintained in the list published in the Official Journal of the European Union. Users of this
standard should consult frequently the latest list published in the Official Journal of the European
Union.
WARNING 2: Other Union legislation may be applicable to the product(s) falling within the scope of
this standard.
IEC 62061 ®
Edition 2.0 2021-03
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Safety of machinery – Functional safety of safety-related control systems
Sécurité des machines – Sécurité fonctionnelle des systèmes de commande
relatifs à la sécurité
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 13.110; 25.040.99; 29.020 ISBN 978-2-8322-9333-1
– 2 – IEC 62061:2021 IEC 2021
CONTENTS
FOREWORD . 8
INTRODUCTION . 10
1 Scope . 11
2 Normative references . 12
3 Terms, definitions and abbreviations . 13
3.1 Alphabetical list of definitions . 13
3.2 Terms and definitions . 15
3.3 Abbreviations . 28
4 Design process of an SCS and management of functional safety . 28
4.1 Objective . 28
4.2 Design process . 29
4.3 Management of functional safety using a functional safety plan . 31
4.4 Configuration management . 33
4.5 Modification . 33
5 Specification of a safety function . 34
5.1 Objective . 34
5.2 Safety requirements specification (SRS) . 34
5.2.1 General . 34
5.2.2 Information to be available . 34
5.2.3 Functional requirements specification . 35
5.2.4 Estimation of demand mode of operation . 35
5.2.5 Safety integrity requirements specification . 36
6 Design of an SCS . 37
6.1 General . 37
6.2 Subsystem architecture based on top down decomposition . 37
6.3 Basic methodology – Use of subsystem . 37
6.3.1 General . 37
6.3.2 SCS decomposition . 38
6.3.3 Sub-function allocation . 39
6.3.4 Use of a pre-designed subsystem . 39
6.4 Determination of safety integrity of the SCS . 40
6.4.1 General . 40
6.4.2 PFH . 40
6.5 Requirements for systematic safety integrity of the SCS . 41
6.5.1 Requirements for the avoidance of systematic hardware failures . 41
6.5.2 Requirements for the control of systematic faults . 42
6.6 Electromagnetic immunity . 43
6.7 Software based manual parameterization . 43
6.7.1 General . 43
6.7.2 Influences on safety-related parameters . 43
6.7.3 Requirements for software based manual parameterization . 44
6.7.4 Verification of the parameterization tool . 45
6.7.5 Performance of software based manual parameterization . 45
6.8 Security aspects . 45
6.9 Aspects of periodic testing . 46
7 Design and development of a subsystem . 46
IEC 62061:2021 IEC 2021 – 3 –
7.1 General . 46
7.2 Subsystem architecture design . 47
7.3 Requirements for the selection and design of subsystem and subsystem
elements . 48
7.3.1 General . 48
7.3.2 Systematic integrity . 48
7.3.3 Fault consideration and fault exclusion . 51
7.3.4 Failure rate of subsystem element . 52
7.4 Architectural constraints of a subsystem . 55
7.4.1 General . 55
7.4.2 Estimation of safe failure fraction (SFF) . 56
7.4.3 Behaviour (of the SCS) on detection of a fault in a subsystem . 57
7.4.4 Realization of diagnostic functions . 58
7.5 Subsystem design architectures . 59
7.5.1 General . 59
7.5.2 Basic subsystem architectures . 59
7.5.3 Basic requirements . 61
7.6 PFH of subsystems . 62
7.6.1 General . 62
7.6.2 Methods to estimate the PFH of a subsystem . 62
7.6.3 Simplified approach to estimation of contribution of common cause
failure (CCF) . 62
8 Software . 62
8.1 General . 62
8.2 Definition of software levels . 63
8.3 Software – Level 1 . 64
8.3.1 Software safety lifecycle – SW level 1 . 64
8.3.2 Software design – SW level 1 . 65
8.3.3 Module design – SW level 1 . 67
8.3.4 Coding – SW level 1 . 67
8.3.5 Module test – SW level 1 . 68
8.3.6 Software testing – SW level 1 . 68
8.3.7 Documentation – SW level 1 . 69
8.3.8 Configuration and modification management process – SW level 1 . 69
8.4 Software level 2 . 70
8.4.1 Software safety lifecycle – SW level 2 . 70
8.4.2 Software design – SW level 2 . 71
8.4.3 Software system design – SW level 2 . 73
8.4.4 Module design – SW level 2 . 73
8.4.5 Coding – SW level 2 . 74
8.4.6 Module test – SW level 2 . 75
8.4.7 Software integration testing SW level 2 . 75
8.4.8 Software testing SW level 2 . 75
8.4.9 Documentation – SW level 2 . 76
8.4.10 Configuration and modification management process – SW level 2 . 77
9 Validation . 77
9.1 Validation principles . 77
9.1.1 Validation plan . 80
9.1.2 Use of generic fault lists . 80
– 4 – IEC 62061:2021 IEC 2021
9.1.3 Specific fault lists . 80
9.1.4 Information for validation . 81
9.1.5 Validation record . 81
9.2 Analysis as part of validation . 82
9.2.1 General . 82
9.2.2 Analysis techniques . 82
9.2.3 Verification of safety requirements specification (SRS) . 82
9.3 Testing as part of validation . 83
9.3.1 General . 83
9.3.2 Measurement accuracy . 83
9.3.3 More stringent requirements . 84
9.3.4 Test samples . 84
9.4 Validation of the safety function . 84
9.4.1 General . 84
9.4.2 Analysis and testing . 85
9.5 Validation of the safety integrity of the SCS . 85
9.5.1 General . 85
9.5.2 Validation of subsystem(s) . 85
9.5.3 Validation of measures against systematic failures . 86
9.5.4 Validation of safety-related software . 86
9.5.5 Validation of combination of subsystems . 87
10 Documentation . 87
10.1 General . 87
10.2 Technical documentation . 87
10.3 Information for use of the SCS . 89
10.3.1 General . 89
10.3.2 Information for use given by the manufacturer of subsystems . 89
10.3.3 Information for use given by the SCS integrator . 90
Annex A (informative) Determination of required safety integrity . 92
A.1 General . 92
A.2 Matrix assignment for the required SIL . 92
A.2.1 Hazard identification/indication . 92
A.2.2 Risk estimation . 92
A.2.3 Severity (Se) . 93
A.2.4 Probability of occurrence of harm . 93
A.2.5 Class of probability of harm (Cl). 96
A.2.6 SIL assignment . 96
A.3 Overlapping hazards . 98
Annex B (informative) Example of SCS design methodology . 99
B.1 General . 99
B.2 Safety requirements specification . 99
B.3 Decomposition of the safety function . 99
B.4 Design of the SCS by using subsystems . 100
B.4.1 General . 100
B.4.2 Subsystem 1 design – “guard door monitoring” . 100
B.4.3 Subsystem 2 design – “evaluation logic” . 102
B.4.4 Subsystem 3 design – “motor control” . 103
B.4.5 Evaluation of the SCS . 103
B.4.6 PFH . 104
IEC 62061:2021 IEC 2021 – 5 –
B.5 Verification. 104
B.5.1 General . 104
B.5.2 Analysis . 104
B.5.3 Tests . 105
Annex C (informative) Examples of MTTFD values for single components . 106
C.1 General . 106
C.2 Good engineering practices method . 106
C.3 Hydraulic components . 106
C.4 MTTF of pneumatic, mechanical and electromechanical components . 107
D
Annex D (informative) Examples for diagnostic coverage (DC) . 109
Annex E (informative) Methodology for the estimation of susceptibility to common
cause failures (CCF) . 111
E.1 General . 111
E.2 Methodology . 111
E.2.1 Requirements for CCF . 111
E.2.2 Estimation of effect of CCF . 111
Annex F (informative) Guideline for software level 1 . 114
F.1 Software safety requirements . 114
F.2 Coding guidelines . 115
F.3 Specification of safety functions . 116
F.4 Specification of hardware design . 117
F.5 Software system design specification . 119
F.6 Protocols . 121
Annex G (informative) Examples of safety functions. 124
Annex H (informative) Simplified approaches to evaluate the PFH value of a
subsystem . 125
H.1 Table allocation approach . 125
H.2 Simplified formulas for the estimation of PFH . 127
H.2.1 General . 127
H.2.2 Basic subsystem architecture A: single channel without a diagnostic
function . 127
H.2.3 Basic subsystem architecture B: dual channel without a diagnostic
function . 128
H.2.4 Basic subsystem architecture C: single channel with a diagnostic
function . 128
H.2.5 Basic subsystem architecture D: dual channel with a diagnostic
function(s) . 133
H.3 Parts count method . 134
Annex I (informative) The functional safety plan and design activities . 135
I.1 General . 135
I.2 Example of a machine design plan including a safety plan . 135
I.3 Example of activities, documents and roles . 135
Annex J (informative) Independence for reviews and testing/verification/validation
activities . 138
J.1 Software design . 138
J.2 Validation . 138
Bibliography . 140
Figure 1 – Scope of this document . 12
– 6 – IEC 62061:2021 IEC 2021
Figure 2 – Integration within the risk reduction process of ISO 12100 (extract) . 29
Figure 3 – Iterative process for design of the safety-related control system . 30
Figure 4 – Example of a combination of subsystems as one SCS . 31
Figure 5 – By activating a low demand safety function at least once per year it can be
assumed to be high demand . 36
Figure 6 – Examples of typical decomposition of a safety function into sub-functions
and its allocation to subsystems . 39
Figure 7 – Example of safety integrity of a safety function based on allocated
subsystems as one SCS . 40
Figure 8 – Subsystem A logical representation . 60
Figure 9 – Subsystem B logical representation . 60
Figure 10 – Subsystem C logical representation . 60
Figure 11 – Subsystem D logical representation . 61
Figure 12 – V-model for SW level 1 . 64
Figure 13 – V-model for software modules customized by the designer for SW level 1 . 64
Figure 14 – V-model of software safety lifecycle for SW level 2 . 70
Figure 15 – Overview of the validation process . 79
Figure A.1 – Parameters used in risk estimation . 92
Figure A.2 – Example proforma for SIL assignment process . 98
Figure B.1 – Decomposition of the safety function. 100
Figure B.2 – Overview of design of the subsystems of the SCS . 100
Figure F.1 – Plant sketch . 116
Figure F.2 – Principal module architecture design . 119
Figure F.3 – Principal design approach of logical evaluation . 120
Figure F.4 – Example of logical representation (program sketch) . 121
Figure H.1 – Subsystem A logical representation . 127
Figure H.2 – Subsystem B logical representation . 128
Figure H.3 – Subsystem C logical representation . 128
Figure H.4 – Correlation of subsystem C and the pertinent fault handling function . 129
Figure H.5 – Subsystem C with external fault handling function . 129
Figure H.6 – Subsystem C with external fault diagnostics . 131
Figure H.7 – Subsystem C with external fault reaction . 131
Figure H.8 – Subsystem C with internal fault diagnostics and internal fault reaction . 131
Figure H.9 – Subsystem D logical representation . 133
Figure I.1 – Example of a machine design plan including a safety plan . 135
Figure I.2 – Example of activities, documents and roles . 136
Table 1 – Terms used in IEC 62061 . 13
Table 2 – Abbreviations used in IEC 62061 . 28
Table 3 – SIL and limits of PFH values . 36
Table 4 – Required SIL and PFH of pre-designed subsystem . 40
Table 5 – Relevant information for each subsystem . 47
Table 6 – Architectural constraints on a subsystem: maximum SIL that can be claimed
for an SCS using the subsystem . 56
IEC 62061:2021 IEC 2021 – 7 –
Table 7 – Overview of basic requirements and interrelation to basic subsystem
architectures . 61
Table 8 – Different levels of application software . 63
Table 9 – Documentation of an SCS . 88
Table A.1 – Severity (Se) classification . 93
Table A.2 – Frequency and duration of exposure (Fr) classification . 94
Table A.3 – Probability (Pr) classification . 95
Table A.4 – Probability of avoiding or limiting harm (Av) classification . 96
Table A.5 – Parameters used to determine class of probability of harm (Cl) . 96
Table A.6 – Matrix assignment for determining the required SIL (or PL ) for a safety
r
function . 97
Table B.1 – Safety requirements specification – example of overview . 99
Table B.2 – Systematic integrity – example of overview . 104
Table B.3 – Verification by tests. 105
Table C.1 – Standards references and MTTF or B values for components . 107
D 10D
Table D.1 – Estimates for diagnostic coverage (DC) . 109
Table E.1 – Criteria for estimation of CCF . 112
Table E.2 – Criteria for estimation of CCF . 113
Table F.1 – Example of relevant documents related to the simplified V-model . 114
Table F.2 – Examples of coding guidelines . 115
Table F.3 – Specified safety functions. 117
Table F.4 – Relevant list of input and output signals . 118
Table F.5 – Example of simplified cause and effect matrix . 121
Table F.6 – Verification of software system design specification . 122
Table F.7 – Software code review . 122
Table F.8 – Software validation . 123
Table G.1 – Examples of typical safety functions . 124
Table H.1 – Allocation of PFH value of a subsystem . 126
Table H.2 – Relationship between B , operations and MTTF . 127
10D D
Table H.3 – Minimum value of 1/λ for the applicability of PFH equation (H.4) . 132
D FH
Table J.1 – Minimum levels of independence for review, testing and verification
activities . 138
Table J.2 – Minimum levels of independence for validation activities . 138
– 8 – IEC 62061:2021 IEC 2021
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
SAFETY OF MACHINERY –
FUNCTIONAL SAFETY OF SAFETY-RELATED CONTROL SYSTEMS
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standar
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...