Service activities relating to drinking water supply, wastewater and stormwater systems — Examples of good practices for stormwater management

This document provides examples of good practices in stormwater management related to ISO 24536 and information on standards and guidelines used in various countries.

Activités de service relatives aux réseaux d’alimentation en eau potable, aux réseaux d’assainissement et aux réseaux de gestion des eaux pluviales — Exemples de bonnes pratiques en matière de gestion des eaux pluviales

Le présent document fournit des exemples de bonnes pratiques en matière de gestion des eaux pluviales en lien avec l’ISO 24536 ainsi que des informations sur les normes et lignes directrices utilisées dans différents pays.

General Information

Status
Published
Publication Date
19-Apr-2021
Current Stage
6060 - International Standard published
Start Date
20-Apr-2021
Due Date
03-Jul-2021
Completion Date
20-Apr-2021
Ref Project
Technical report
ISO/TR 24539:2021 - Service activities relating to drinking water supply, wastewater and stormwater systems — Examples of good practices for stormwater management Released:4/20/2021
English language
80 pages
sale 15% off
Preview
sale 15% off
Preview
Technical report
ISO/TR 24539:2021 - Activités de service relatives aux réseaux d’alimentation en eau potable, aux réseaux d’assainissement et aux réseaux de gestion des eaux pluviales — Exemples de bonnes pratiques en matière de gestion des eaux pluviales Released:10/18/2021
French language
86 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


TECHNICAL ISO/TR
REPORT 24539
First edition
2021-04
Service activities relating to drinking
water supply, wastewater and
stormwater systems — Examples
of good practices for stormwater
management
Reference number
©
ISO 2021
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2021 – All rights reserved

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Format and content of the examples provided in this document . 1
Annex A (informative) Examples of stormwater management . 2
Annex B (informative) Related documents .74
Bibliography .80
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 224, Service activities relating to drinking
water supply, wastewater and stormwater systems.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2021 – All rights reserved

Introduction
The objectives of stormwater management systems include effective control and management of
flows; protection of water quality; preservation of water quantity; protection of the built, public and
natural environments; water conservation and reuse; protection or enhancement of ecosystem health;
protection or enhancement of public health, safety and welfare; protection or enhancement of social
values; and facilitation of sustainable development and climate adaptation.
“Climate Change 2014: Synthesis Report: Summary for Policymakers, 2014, Intergovernmental Panel
on Climate Change” gives us the warning that many global risks of climate change are concentrated in
urban areas. It indicates that risks are amplified for those lacking essential infrastructure and services
or living in poor-quality housing and exposed areas. The key risks, all of which are identified with high
confidence, include those of severe ill-health and disrupted livelihoods for urban populations due to
flooding from a range of sources including pluvial, fluvial, storm surges and coastal flooding.
Pursuant to the “World Urbanization Prospects: The 2011 Revision, 2011, United Nations”, the world
urban population is expected to increase by 72 per cent by 2050, from 3,6 billion in 2011 to 6,3 billion
in 2050. i.e. the same size as the world’s total population was in 2002. Virtually all of the expected
growth in the world population will be concentrated in the urban areas of the less developed regions,
which are deemed to be vulnerable to flooding. The report states that flooding is the most frequent
and greatest hazard for the 633 largest cities or urban agglomerations analysed. Mud slides are often
associated with severe weather conditions and flooding, particularly in rural areas and commonly will
impact rural villages and small towns, or their associated transportation infrastructures.
Thus, climate change and urbanization with rapid growth in population in cities and surrounding
areas are most likely to increase flooding and the risks associated with stormwater worldwide.
Serious challenges for stormwater management are posed for an increasing number of stormwater
utilities, which are responsible for the control of pluvial flooding that is caused by rainwater entering
and surcharging stormwater systems or remaining on surfaces and flowing overland or into local
depressions and topographic lows to create temporary ponds.
The immediate impacts of urban flooding can include loss of human life, damage to property, disruption
of traffic and other services and deteriorations of limited freshwater resources, water ecosystems and
hygienic living conditions. Effective stormwater management systems can enhance the resilience of
communities by reducing the likelihood and severity of pluvial, fluvial and coastal flooding.
Planning methods for stormwater systems have been established in most developed countries but
they do not always apply directly to other countries with different conditions. In order to help deliver
the best solution to the targeted area, the framework and planning processes should be standardised,
within a local institutional and regulatory context.
Urban stormwater management is usually the responsibility of municipal water and wastewater service
providers. However, in some countries the urban stormwater system management is performed by
separate entities especially established for this purpose. Sometimes these services are not financially
supported from the municipal water and wastewater revenues but from stormwater levies applied to
flood vulnerable properties concerned and created for that purpose or a local governing authority.
While it is largely and historically true that urban stormwater management has been the responsibility
of municipal wastewater authorities, it is increasingly recognized that stormwater management may
be best or additionally served through collaboration with other relevant stakeholders such as Forestry
Commissions (for forested hill and mountain sides), Agricultural Commissions for upstream farming
properties, river authorities or Port Commissions for the management of tidal surges on both marine
and freshwater bodies or local governing authorities.
This document compiles examples of good practices in stormwater management.
These examples illustrate a wide range of measures including both asset and non-asset-related
measures for various objectives relating to stormwater management.
TECHNICAL REPORT ISO/TR 24539:2021(E)
Service activities relating to drinking water supply,
wastewater and stormwater systems — Examples of good
practices for stormwater management
1 Scope
This document provides examples of good practices in stormwater management related to
ISO 24536 and information on standards and guidelines used in various countries.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
No terms and definitions are listed in this document.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
4 Format and content of the examples provided in this document
Examples of stormwater management introduced here are classified by country and are described in
Annex A. They are also classified according to the objectives in ISO 24536:2019, Table 1, and are shown
in Table A.1. The examples were provided by country representatives and adapted to the format of this
document. In addition, although various standards and guidelines are described in Annex B, Table B.1
and Table B.2, they are shown only as a name and a reference URL.
Table 1 illustrates the structure of the examples included in Annex A.
Table 1 — The structure of the examples
Section Content
Background Provides background information on the project, such as characteristics of
the watershed, social background, issues and tasks.
Purpose Provides a description of the project objectives, such as improvements to be
achieved.
Project outline Provides a description of the project.
Organization Provides simply the identity of the organization offering its experience.
Annex A
(informative)
Examples of stormwater management
A.1 Introduction
There are many examples of good stormwater management practices that follow the procedures set by
the ISO 24536. The examples have been classified according to the stormwater management objectives
they were answering to.
Table A.1 — List of examples and their key objectives for stormwater management related to
ISO 24536
Objectives according to ISO 24536
Protection
Protec- Facilita-
of the built, Wa
Protec- tion or Protec- tion of
Effec- public ter
tion or en- tion or sustain-
tive con- and con
Protec- Preser- en- hance- en- able
Sub-
trol and natural ser
Title
tion of vation hance- ment of hance- devel-
clause
man- environ- vat
water of water ment of public ment of opment
agement ments: ion
quality quantity eco- health, public and
of flow infrastruc- and
system safety social climate
volumes ture, prop- reu
health and wel- values adapta-
erty and se
fare tion
resources
Creation of a wetland in Mount
A.2.1 X X X X X
Barker
Stormwater harvesting and
A.2.2 X X
reuse in Murray Bridge
Austria — Increasing storage
A.3 capacity and implementing X X X X
dynamic control in Vienna
Improving sediment control
A.4.1 through the implementation of a X X X X
wetland in Hamilton
Planning effective stormwa-
A.4.2 ter management measures in X X X X X X
Ottawa
Denmark — Dynamic control in
A.5 X X X X X
Kolding
Disconnecting stormwater
from the combined network in
A.6.1 X X X X X X
Killingworth and Longbenton,
North Tyneside, England
River diversion and stormwater
A.6.2 storage in Brunton Park, Gos- X X X X X
forth, Newcastle, England
France — Real-time control of
sewer systems for the reduction
A.7 X X X
of combined sewer overflows in
Biarritz
Implementation of a real-time
supervision for stormwater fa-
A.8.1 X X
cilities operation and flood risk
management in Nagoya
Implementation of the storm-
A.8.2 water management strategy of X
Niigata City
2 © ISO 2021 – All rights reserved

Table A.1 (continued)
Objectives according to ISO 24536
Protection
Protec- Facilita-
of the built, Wa
Protec- tion or Protec- tion of
Effec- public ter
tion or en- tion or sustain-
tive con- and con
Protec- Preser- en- hance- en- able
Sub-
trol and natural ser
Title
tion of vation hance- ment of hance- devel-
clause
man- environ- vat
water of water ment of public ment of opment
agement ments: ion
quality quantity eco- health, public and
of flow infrastruc- and
system safety social climate
volumes ture, prop- reu
health and wel- values adapta-
erty and se
fare tion
resources
X-band radar observation and
forecast for stormwater and
A.8.3 X X
flood risk management in Osaka
City
Implementation of a flood risk
A.8.4 X X X
protection strategy in Tokyo
Source infiltration promotion in
A.8.5 X X X
Yokohama
Implementation of the storm-
A.8.6 water management strategy in X X
Kitakyushu City
Implementation of an early
A.8.7 flood warning system in Toyama X X
City
Stormwater storage tank and
A.8.8 reuse in Hiroshima City’s new X X X
stadium
Flood risk protection scheme in
A.8.9 X X
Fukuoka
CSO reduction and flood preven-
A.8.10 X X X X X
tion in Kyoto
A.2 Australia
A.2.1 Creation of a wetland in Mt Barker
A.2.1.1 Background
A new Environmental Services Centre is planned for Mt Barker adjacent to a wastewater treatment
plant, Mt Barker Creek and a high school.
The area has a long history of disturbance being a former abattoir, tannery and now informal council
works storage area. Despite this disturbance, Lathan's snipe (an endangered migratory bird from
Siberia) and many other bird species have been sighted along the flood plain area.
A.2.1.2 Purpose
As part of planning for the Environmental Services Centre, a wetland and surrounding landscape was
built to achieve multiple objectives, including:
— creating habitat for the Lathan's snipe and other birds species;
— becoming a recreational asset with high amenity, providing links to a linear trail along Mt Barker
Creek and connecting to the school and depot;
— rehabilitating vegetation and creating a seed bank for local provenance plants in a range of
ecosystems;
— providing stormwater treatment for runoff generated by the new depot and car park;
— providing opportunities for education and awareness programs, both for the school and for a
planned community environmental centre servicing community groups, schools and the general
public.
A design response was developed that addressed these criteria and was thoroughly tested during
consultation with Birds SA, council, community groups and specialist ecologists.
The design also provides a range of ecological habitats for vegetation and bird species, encourages
visitors yet provides secluded areas where birds will not be disturbed.
A.2.1.3 Outline
This project was developed to rehabilitate a degraded area on the banks of Mt Barker Creek as part of
a planned council depot construction. The central component of the project is a constructed wetland
which will protect the creek from increased pollutants, provide habitat for rare and endangered bird
species and become a recreational node along the Mt Barker Creek linear path.
A broader objective of the project is to rehabilitate a range of ecological habitats surrounding the
wetlands, including grasslands, wet and dry woodlands and riparian areas. Much of the impetus for
the initiative is to improve habitat for a range of rare and endangered birds and therefore the design
involved close consultation with Birds SA.
The design provides a range of ecological habitats for vegetation and bird species yet provides secluded
areas where birds will not be disturbed.
Walking paths, viewing decks and a boardwalk encourage people to enjoy the wetland but manage
their access and allow a variety of habitats to be created (riparian inundation, open grassland, tussock
grassland and wet woodlands).
The 6 000 m wetland was constructed in 2014 and an extensive search was performed to source local
provenance plant species to use in the wetlands. A thorough mapping exercise was undertaken during
planting to enable the wetland to serve as a seedbank for these rare local species into the future.
The wetland also provides best practice stormwater treatment for runoff from the (future) depot thus
helping to protect Mt Barker Creek and ultimately the Bremer River from urban stormwater pollutants
(see Figure A.1).
Figure A.1 — Future plan of Mt Barker Environment Services Centre wetlands
4 © ISO 2021 – All rights reserved

A.2.1.4 Organization
Mount Barker District Council
A.2.2 Stormwater harvesting and reuse in Murray Bridge
A.2.2.1 Background
Murray Bridge, South Australia, is situated on the banks of the River Murray and is one of the larger
regional centres at the lower end of the Murray Darling Basin and an important hub for regional
industries in the Lower Murrayland and Mallee Regions. Residential and industrial developments are a
sign of the city’s growing urban populations. Sustaining the city’s many open spaces – parks, reserves
and sporting facilities – is vital to the region and its local community.
In addition, major subdivisions are planned at the Newbridge (Old Racecourse) site and Gifford Hill,
which are proposed to include in excess of 3 000 dwellings, and will constitute a major proportion of the
proposed expansion of Murray Bridge over the next 20 years. A challenge for Council is the provision of
infrastructure that can appropriately manage the increases in stormwater runoff associated with infill
and greenfield developments.
A.2.2.2 Purpose
The Murray Bridge stormwater management and reuse scheme was built to provide an alternative,
secure and sustainable source of non-drinking water supply to the Rural City of Murray Bridge. The
Scheme harvests stormwater from eight basins and wetlands across Murray Bridge and transports it
to a lined lagoon at Gifford Hill for long-term storage. When needed for irrigation, raw stormwater is
pumped from the lagoon to the new treatment plant on Old Swanport Road, from which the treated
stormwater is transported via distribution pumps and pipelines to the city’s irrigation system.
The scheme was delivered by the Rural City of Murray Bridge, in partnership with the Australian
Government and two private contributors. The total budget of $14,23 million was supported through
$7,115 million of funding from the Australian Government’s National Urban Water and Desalination
Plan, to match the co-contribution from Council and in-kind works from the Gifford Hill Joint Venture.
The scheme was completed on time and within budget, and with an impeccable safety record.
The Australian Government funding agreement required the scheme to decrease reliance on the River
Murray and reduce potable water demand by up to 172 ML annually.
A.2.2.3 Outline
A.2.2.3.1 Scheme overview
The Rural City of Murray Bridge (Council) has a current water allocation of 250 million litres/year from
the River Murray, and this allocation is subject to restrictions depending on flow conditions in the river.
Council’s allocation was significantly restricted during the drought years of 2006 through to 2010,
dropping as low as 45 million litres/year (18 %) in 2008/09. These restrictions resulted in significant
“browning off” and degradation of Council’s reserves and sporting fields.
In response to the drought, Council identified stormwater as a valuable, untapped resource that can
provide a secure, sustainable and diverse water supply to meet the future needs of the community. A
strategy was soon developed for how stormwater can be harvested and reused across Murray Bridge to
prevent a repeat of the devastating impacts of the drought, reduce reliance on mains and River Murray
water, improve amenity of the many parks and reserves, improve drainage performance and flood
protection, and improve water quality.
A.2.2.3.2 Design
In 2014 the Rural City of Murray Bridge entered into an Early Contractor Involvement (ECI) process
with construction and design partners to optimize the previous concept design of the scheme. The
ECI process was facilitated by the scheme’s project manager, with input from the scheme’s Technical
Advisor.
Due to a delay in the planned housing developments at the Old Racecourse (Newbridge) and Gifford
Hill development sites, which were originally proposed to be the source of a significant portion of the
harvestable volume of stormwater in the previous concept design, a comprehensive optioneering phase
was undertaken to identify alternative harvesting sites that can meet or exceed the yield targets.
Through careful planning, design and management the yield (irrigation demand met) from the eight
harvesting sites currently connected to the scheme is expected to be approximately 230 ML annually,
based on average rainfall in Murray Bridge. The scheme has also made provision for the connection of
future pump stations at the Newbridge (Old Racecourse) and Gifford Hill development sites. Once these
pump stations are installed and the developments are completed, the total harvestable volume for the
scheme may exceed 700 ML annually.
The ECI process also identified a parcel of vacant land on Old Swanport Rd that was ideally located to
become the hub of the scheme (Figure A.2). Located between the existing and Rural Avenue Wetland
and the Gifford Hill Lagoon, with existing power supply available from Old Swanport Rd and only a
short drive to the Council Depot, the site was ideal for the construction of the new treatment plant.
Figure A.2 — The ‘hub’ of the scheme; Rural Avenue Wetland, the treatment plant and Gifford
Hill Lagoon
A route for the new pipelines along Rural Avenue, Prosperity Grove and Maurice Road was selected to
provide a link between the treatment plant and the existing Council irrigation network on Adelaide
Road. This route also enabled stormwater to be harvested from the existing Council wetlands and
basins using parallel pipelines to reduce construction cost (i.e. one set of pipelines for harvesting, and
another set of pipelines for distribution, within the same road reserve).
The planning and design of the scheme included consideration of opportunities for future expansion to
include additional harvesting sites, increased demand for treated stormwater, and a possible link to a
regional water diversification scheme that links Murray Bridge to the District Council of Mount Barker.
Examples of the “future-proofing” measures that were incorporated into the design include:
— The siting of the 110 ML storage lagoon on land that acts as a buffer to the SE Freeway at Gifford Hill,
with surrounding land available for additional storage lagoons in the future (an ultimate storage of
440 ML is envisaged).
— The inclusion of a UV disinfection unit in the Old Swanport Road treatment plant to provide treated
stormwater that is fit for purpose under an “unrestricted” irrigation regime. This provides flexibility
for Council and third party water users to irrigate public open spaces 24 h a day. Provision was also
made in the treatment plant for a second UV disinfection unit to be retrofitted in the future, should
higher treatment flow rates be desirable.
6 © ISO 2021 – All rights reserved

— The treatment plant and treated water storage tank have been sized to accommodate Council’s peak
irrigation demand (night time, typically from 10 pm to 8 am) while also filling the tank shared by
two other local organizations. There is further opportunity to operate the treatment plant during
non-peak times (day time, 8 am to 10 pm) to service additional Council sites and other water users.
— The harvesting and distribution pipelines were sized to accommodate stormwater flows from the
planned housing developments at the Old Racecourse (Newbridge) and Gifford Hill development
sites, to enable simultaneous pumping from these sites together with the current harvesting sites.
In particular the pipe crossings of the SE Freeway, which were installed using horizontal directional
drilling (HDD) techniques, have significant redundancy to accommodate increase flows.
With the Council’s unique stormwater drainage system consisting of a series of stormwater basins
in localized depressions, it was also important that the harvesting and reuse strategy was able to
improve the performance of the drainage system and level of flood protection to public and private
infrastructure.
The basins do not naturally drain to the River Murray, but rather they rely on infiltration or pumps to
dispose of stormwater. In the past, these basins have not always been able to cope during large rainfall
events, resulting in flooding of roadways and in some instances, private property, as represented in
Figure A.3. Floodplain modelling was therefore used to inform the selection of pump rates and to
inform the scheme’s control philosophy, to ensure that the improvements to drainage performance and
flood protection were maximized.
Figure A.3 — Before and after floodplain maps for golf course basin, 5-year average recurrence
interval
The planning and design of the scheme also placed strong emphasis on the future operation and
maintenance by Council staff. The scheme has a central Supervisory Control and Data Acquisition
(SCADA) system located at the Old Swanport Road treatment plant that is connected to all sites via
fibre optic cable or mobile phone-based telemetry systems. The SCADA system enables Council staff to
remotely monitor the harvesting and distribution infrastructure for the purpose of automated control,
using their personal computers and/or tablet devices. In addition, critical alarms are alerted to the
operators via an SMS service.
Many of the new pumps utilize variable speed drive functionality to provide operational flexibility,
reduce wear on the mechanical components of the system, and to maintain system pressure as required.
Under standard operating conditions all harvesting sites will pump simultaneously to the Gifford Hill
Lagoon at pre-determined flowrates, in order to maximize the harvestable volume that is generated by
small and frequent rainfall events.
In anticipation of and during large rainfall events, Council staff can use the new control system to
remotely monitor the water levels in the basins and adjust pump rates and sequencing to manage
flood risk in real time. For example, Council will have the flexibility to reduce the pump rate at one site,
to enable a higher pump rate to be achieved at another site that is considered to be at greater risk of
flooding.
While the scheme has been designed to operate automatically with minimal operator intervention,
manual and local modes have also been provided on all equipment to facilitate testing and operation in
unusual circumstances
Other notable operation and maintenance provisions include:
— Lifting mechanisms in the treatment plant to enable the safe and practical maintenance of pump
sets and filters.
— Two solar powered pump stations that can easily be converted to mains power supply if higher
flowrates are required in the future (i.e. after the ultimate development scenario is reached).
— Control manholes with isolation valves at each of the harvesting sites, to provide safe inspection
and access of submersible pumps.
— The selection of submersible pumps stations with pumps capable of being removed from the pump
station without entry in to the pump sump, providing a safe means of pump inspection by the
elimination of confined space entry.
— A concrete ramp at the Gifford Hill Lagoon to provide boat access in the event that chlorine dosing
is required, or small machine access in the event that the lagoon needs to be cleaned out.
— Provision for portable diesel powered pumps to be fitted at the harvesting sites, to enable basins to
be pumped out even if short-term power failure were to occur.
— Design of the treatment plant shed roof to accommodate a future solar array, when battery storage
technology is sufficiently advanced.
A.2.2.3.3 Control devices information
The central Supervisory Control and Data Acquisition (SCADA) system enables all harvesting sites
to pump simultaneously to the Gifford Hill Lagoon at pre-determined flowrates to maximize the
harvestable volume generated by small and frequent rainfall events. In anticipation of, and during,
large rainfall events, Council staff can remotely monitor the water levels in the basins and adjust pump
rates and sequencing to manage flood risk in real time.
A.2.2.3.4 Environmental management
As part of the construction program a project specific Environmental Management Plan (EMP) was
developed with site specific criteria. The EMP detailed methodology included procedures for the
prevention of contaminated water entering watercourses and the stormwater system.
Site-specific sections of the EMP detailed how to deal with the discovery and presence of local fauna
and flora during the construction phase. Specifically this involved relocation of frogs, yabbies and other
fauna to adjacent areas of the site that were not subject to construction works.
Consideration was also given to the discharge of backwash water from the treatment plant. This water
is used to flush the treatment plant vessels during operation and is then transferred to a harvesting
site for reuse, thereby reducing any disposal or wastage of this water. The selection of an ultraviolet
disinfection system for the treatment of the distribution water also has an environmental benefit by
eliminating both the storage and use of significant quantities of hazardous chemicals.
In order to minimize the impact of the project to trees and shrubs, the pipeline alignment and
construction techniques were developed to focus on trimming of trees in order to reduce the number of
trees removed.
8 © ISO 2021 – All rights reserved

A.2.2.3.5 Community and stakeholder engagement
The construction of this project included a dedicated community and stakeholder engagement plan and
team. The team liaised with residents and stakeholders through the design and construction process
with the following outcomes being achieved.
— The pipe alignment was adjusted to minimize disruption and impacts on businesses and the
community in general. An example of this is the realignment of the pipeline along Adelaide Rd. The
pipe was realigned to pass through a carpark rather than crossing one of the busiest intersections in
Murray Bridge. Local businesses were consulted and the realigned pipe was constructed in without
disruption to customer access to the businesses.
— Project introduction letters were distributed by letter drop to the general community, with follow-
up communication to affected community members by specific information drops.
— Where the construction works directly impacted on community members, specific one-on-one
communication was undertaken.
— Due to the important and significant indigenous history at Murray Bridge, the Ngarrindjeri people
as the traditional owners of the land were consulted and involved throughout the construction
process to ensure that the works caused no damage to items of significance.
— The construction program was developed to take into account concerns of the local community.
Examples of this include:
— Pipe construction along Maurice Rd was completed as night works to minimize the impact to
traffic on this busy road.
— Access to materials and pipe construction in the vicinity of the Racecourse was programmed to
avoid disrupting events and training schedules.
— Construction within the Golf Course involved timing of the works prior to major events and the
utilization of track mats to prevent damage to the course during works.
— Extensive consultation was undertaken with state government agencies during the design and
approvals phase, including:
— South Australian Murray-Darling Basin Natural Resources Management Board;
— Department of Environment, Water and Natural Resources;
— Environmental Protection Authority;
— Department for Health and Ageing;
— Department of Planning, Transport and Infrastructure;
— Office of the Technical Regulator.
Indigenous participation was also a strong focus of the project, as Murray Bridge and its surrounding
region has numerous sites of cultural and spiritual significance of the traditional owners of this land,
the Ngarrindjeri people. An important part of the Early Contractor Involvement process was the Council
project team’s collaboration with the Ngarrindjeri Regional Authority to ensure that the selection of
project sites and design of the proposed works was sensitive to the cultural and spiritual significance of
these lands to the Ngarrindjeri people.
Council’s partnership with the Ngarrindjeri Regional Authority continued through the design and
construction stages of the project, involving cultural heritage assessments of the project sites and
monitoring of earth disturbing activities to ensure that risks to cultural heritage were appropriately
managed (Figure A.4).
Figure A.4 — Cultural heritage survey at Rural Avenue Wetland
The Ngarrindjeri Regional Authority also produced a video with their staff and Ngarrindjeri elders
along with the scheme’s project manager to showcase the benefits of forging strong partnerships and
mutual respect between project teams and the Ngarrindjeri nation.
A.2.2.4 Organization
Rural City of Murray Bridge
A.3 Austria — Increasing storage capacity and implementing dynamic control in
Vienna
A.3.1 Background
The wastewater management in various parts of the 11th district of Vienna (Simmering) is prone to
overflow events. The area of Kaiserebersdorf (Figure A.5, orange area) is especially affected. Due to the
low altitude of the area, the sewers have a very low gradient and a very low depth of cover. In the case
of backwater in the sewer network, the system overflows quickly. Especially where, in Figure A.5, the
areas highlighted in black and in orange overlap (circled in pink), there is a relatively abrupt change in
terrain. Coming in from areas with higher altitude, the water has gained increased velocity and then
reaches a sewer with a grade of less than 0,1 %. During heavy rainfall events, this leads to an outflow
of water from the sewer. Due to the existing low depth of cover and the confined space conditions, an
expansion of the sewer in this area is difficult or even impossible.
The sewer network in Simmering is influenced directly by the sewer in Liesingtal valley and with parts
of the 10th district of Vienna (Figure A.5, area highlighted in green). All wastewater from adjacent
areas must be drained via the Simmering sewerage system and the Kaiserebersdorf lifting station,
and directed towards the waste water treatment plant (WWTP). Up until the Kledering lifting station
(screw pumping station), the water in the sewer network is drained with a separate sewerage system.
Downstream from the lifting station, the water is drained with a combined system. In the separate
system that feeds the Blumental storage basin, the stormwater sewers are directed into a body of water,
the Liesing stream. Downstream from the Blumental basin, wastewater as well as stormwater sewers
flow into the Liesing stream collection sewer-relief sewer (LCSR); however, the stormwater sewers have
controlled overflow into the Liesing stream. The first place for a relief sewer in the combined system
10 © ISO 2021 – All rights reserved

is not until shortly before the main wastewater treatment plant, via the Kaiserebersdorf lifting station
and into the Danube Canal (Figure A.5).
This lifting station actually consists of two lifting stations that interact with each other. The so-called
“wastewater lifting station” Kaiserebersdorf and the so-called “stormwater lifting station” Kaisere-
bersdorf. The wastewater lifting station, as of now referred to as Lifting Station Kaiserebersdorf Waste
Water, is responsible for lifting the combined wastewater that flows into Kaiserebersdorf towards the
inflow of the main treatment plant so that it can be cleaned there.
If the maximum capacity of the wastewater lifting station is exceeded due to heavy rainfall, it is possible
to implement gravity drainage into a body of water, namely the Danube Canal, to provide relief. If the
Danube Canal floods, relief can be provided by use of the stormwater lifting station (Lifting Station
Kaiserebersdorf Storm Water).
The total contiguous drainage area thus amounts to more than 69 km . To ensure sustainable water
protection and flood protection in this area, which takes up almost 15 % of Vienna’s total area, an
extensive catalogue of measures based on comprehensive hydro-dynamic studies was composed.
Figure A.5 — Overview drainage area for lifting station Kaiserebersdorf (23rd and parts of the
11th district)
A.3.2 Purpose
In the case of a heavy rainfall event, the wastewater coming in from the adjacent areas (Figure A.5,
highlighted green) is to be retained for as long as possible, so that the problem areas further downstream
are relieved and in order to reduce combined wastewater drainage into the Danube Canal.
Outflow of water from the sewer network onto the surface must be avoided. Special attention must be
paid to the area with abrupt change in terrain (Figure A.5, circled in pink).
A.3.3 Outline
A total retention volume of more than 85 000 m was created. This was done through structural
extensions on the one hand, and through the active management of the existing sewer storage.
The implemented sets of measures and the retention volume that was created is listed in Table A.2.
Table A.2 — Measures and retention volume
Measures Retention volume
Optimising the management of the LCSR and implementing the operating
~17 000 m
mode “flood protection”
Construction of valve chamber Thürnlhofstraße ~8 000 m
Construction of valve chamber Ailecgasse ~6 000 m
Reactivation of the abandoned wastewater treatment plant Blumental as a
2 ~20 000 m
combined wastewater storage basin
3 Construction of the Simmering storage basin (incl. transport sewers) ~34 500 m
4 Full expansion of the Kaiserebersdorf lifting station (SW/WW)
Set of measures 1: The active management of the newly built Liesing stream collection sewer-relief
sewer (LCSR) between Blumental and Kledering is in the focus of the measures already implemented,
as well as the management of the old Liesing stream collection sewer (LCS) between Kledering and
Thürnlhofstraße. During a rainfall event, the new LCSR, with a diameter of 2,4 m and a length of
about 5,3 km, and the old LCS can be divided into a cascading storage chain by means of 11 regulating
structures. The cascading chain frees up storage capacity in the amount of 25 000 m . Via the Kledering
lifting station, the wastewater is divided, depending on the actual system’s capacity, and directed
towards the LCS and a newly built relief sewer in Ailecgasse. With the construction of a valve chamber
in this new Aliecgasse collection sewer, an additional storage of approximately 6 400 m was created.
The higher-level control of the different regulating structures works automatically through the central
control system of the Vienna sewer system, out of the control centre of the largest pumping station in
Vienna.
Different operating modes allow for an optimized operation, tailored to the individual rainfall event.
The modes were programmed in regard to water protection for the Liesing stream and to flood
protection of the areas further downstream in Simmering. For instance, the flood protection mode
ensures that any stormwater inflow into the LCSR is stopped and instead directed straight into the
Liesing stream. This creates an additional storage volume in the LCSR (approximately 17 000 m ) for
wastewater, allowing for it to be retained from the high-risk area for longer periods of time.
Set of measures 2: With the reactivation of the abandoned wastewater treatment plant Blumental
(TPB) as a combined wastewater storage basin with a volume of 20 000 m , the restraint effect of the
LCSR was further enhanced.
In order to review the effects of sets of measures 1 and 2 on flood protection in the target area, hydro-
dynamic calculations were carried out based on the “hydro-dynamic model Vienna”. For this, Euler Type
II model rain with a duration of up to 6 h and annualities of 5 years and 10 years were used. Moreover,
the heavy rainfall event of 13 August 2010 was calculated. Its recurrence interval is 50 years.
The result of the calculations showed a retention time of up to 2 h for the wastewater in the valley of
Liesing stream during a rainfall event with an annuality of 5 years. This improved flood protection
and the amount of stormwater draining into the Danube Canal through the relief sewer at the
Kaiserebersdorf lifting station was reduced.
Set of measures 3: With the new construction of the Simmering storage basin as a relief for the
Kaiserebersdorf collection sewer and the area further downstream, a storage volume of around
12 © ISO 2021 – All rights reserved

34 500 m was created, in combination with the two transport sewers (Figure A.6, catchment area
hatched black, transport sewers in blue, inflow control structures marked with black rectangles).
Figure A.6 — Drainage area Simmering storage basin
During heavy rainfall events, inflow into the storage basin and a redirection into the existing sewer
network are controlled at two control stations. Each of the two stations has a transversal throttle valve
to control the amount of water directed into the sewer network, and a flexible, longitudinal gate weir
which controls the inflow into the storage basin.
The flow in the collection sewer in Kaiserebersdorfer Straße can be entirely redirected into the storage
basin, so as to reduce th
...


RAPPORT ISO/TR
TECHNIQUE 24539
Première édition
2021-04
Activités de service relatives aux
réseaux d’alimentation en eau
potable, aux réseaux d’assainissement
et aux réseaux de gestion des eaux
pluviales — Exemples de bonnes
pratiques en matière de gestion des
eaux pluviales
Service activities relating to drinking water supply, wastewater and
stormwater systems — Examples of good practices for stormwater
management
Numéro de référence
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2021
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur l’internet
ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à l’adresse ci-
après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives .1
3 Termes et définitions . 1
4 Format et contenu des exemples fournis dans le présent document .1
Annexe A (informative) Exemples de gestion des eaux pluviales . 2
Annexe B (informative) Documents connexes .79
Bibliographie .86
iii
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes
nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier, de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a
été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir
www.iso.org/directives).
L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir www.iso.org/avant-propos.
Le présent document a été élaboré par le comité technique ISO/TC 224, Activités de service relatives aux
systèmes d'alimentation en eau potable, aux systèmes d'assainissement et aux systèmes de gestion des eaux
pluviales.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www.iso.org/fr/members.html.
iv
Introduction
Les objectifs des réseaux de gestion des eaux pluviales incluent la régulation et la maîtrise efficaces
des débits; la protection de la qualité de l’eau; la préservation de la quantité d’eau; la protection des
biens, des personnes et des milieux naturels; la conservation et la réutilisation de l’eau; la préservation
ou l’amélioration de la santé des écosystèmes; la protection ou l’amélioration de la santé, de la sécurité
et de la protection des personnes; la protection ou l’amélioration des valeurs sociales; et le soutien du
développement durable et de l’adaptation au climat.
Le rapport «Changements climatiques 2014 – Rapport de synthèse – Résumé à l’intention des décideurs,
2014, Groupe d’experts intergouvernemental sur l’évolution du climat» avertit que de nombreux risques
liés aux changements climatiques à l’échelle planétaire sont concentrés dans les zones urbaines. Il
indique que les risques sont amplifiés pour les personnes dépourvues des infrastructures et services
essentiels, ou vivant dans des logements de mauvaise qualité et dans des zones exposées. Les risques
majeurs, tous identifiés avec un degré de confiance élevé, comprennent une dégradation de l’état de
santé et la mise en péril des moyens de subsistance des populations urbaines dues aux inondations
d’origines diverses (inondations pluviales, fluviales et côtières, tempêtes).
D’après le rapport intitulé «World Urbanization Prospects: The 2011 Revision, 2011, United Nations»
(Perspectives de l’urbanisation mondiale 2011), la population urbaine mondiale devrait augmenter
de 72 pour cent d’ici 2050, pour passer de 3,6 milliards en 2011 à 6,3 milliards en 2050, c’est-à-dire une
augmentation équivalente à la taille de la population mondiale totale de 2002. La quasi-totalité de la
croissance attendue de la population mondiale sera concentrée dans les zones urbaines des régions les
moins développées, qui sont considérées comme vulnérables aux inondations. Le rapport indique que les
inondations constituent le danger le plus fréquent et le plus important pour les 633 plus grandes villes
ou agglomérations urbaines analysées. Les coulées de boue sont souvent associées à des phénomènes
météorologiques extrêmes et à de graves inondations, en particulier dans les zones rurales, et auront
typiquement un impact sur les villages ruraux et les petites villes, ou leurs infrastructures de transport
associées.
Par conséquent, les changements climatiques, l’urbanisation et la croissance rapide de la population des
villes et des zones périphériques vont probablement accroître les inondations et les risques associés
aux eaux pluviales à l’échelle planétaire. De sérieux défis en matière de gestion des eaux pluviales sont
posés à un nombre grandissant de services publics de gestion des eaux pluviales, qui sont responsables
de la maîtrise des inondations causées par les eaux de pluie qui pénètrent et mettent en charge les
systèmes de gestion des eaux pluviales, ou qui subsistent en surface et ruissellent, ou qui s’écoulent vers
les points bas locaux et les dépressions topographiques pour créer des zones inondées temporaires.
Les impacts immédiats des inondations urbaines peuvent inclure les pertes de vies humaines, les dégâts
matériels, la perturbation du trafic et des autres services, ainsi que la détérioration des ressources
limitées en eau douce, des écosystèmes aquatiques et des conditions de vie et d’hygiène. Des systèmes
efficaces en matière de gestion des eaux pluviales peuvent accroître la résilience des collectivités en
réduisant la probabilité et la gravité des inondations pluviales, fluviales et côtières.
Des méthodes d’élaboration de plan d’action pour des réseaux de gestion des eaux pluviales ont été
établies dans la plupart des pays développés, mais elles ne s’appliquent pas toujours directement
aux autres pays où les conditions diffèrent. Afin de contribuer à fournir la meilleure solution pour
la zone ciblée, il convient de normaliser le cadre et les processus de planification, dans un contexte
institutionnel et réglementaire local.
La gestion des eaux pluviales urbaines relève généralement de la responsabilité des prestataires de
services municipaux d’assainissement et d’approvisionnement en eau. Cependant, dans certains pays,
le management du système de gestion des eaux pluviales urbaines est assuré par des entités distinctes
spécialement créées à cet effet. Parfois, le financement de ces services provient non pas des redevances
municipales perçues au titre de l’approvisionnement en eau et du traitement des eaux usées, mais des
taxations sur les eaux pluviales appliquées aux biens vulnérables aux inondations et créées dans ce but
ou par une autorité locale.
v
Bien qu’il soit majoritairement et historiquement vrai que la gestion des eaux pluviales urbaines ait
été de la responsabilité des autorités municipales en charge de l’assainissement, il est de plus en plus
reconnu que la gestion des eaux pluviales peut être optimisée ou complétée par une collaboration avec
d’autres parties intéressées telles que l’Office National des Forêts (pour les collines et les montagnes
boisées), les Chambres d’agriculture pour les propriétés agricoles en amont, les Agences de l’Eau ou les
autorités portuaires pour la gestion des tempêtes sur les masses d’eau marine et d’eau douce, ou les
autorités locales.
Le présent document rassemble des exemples de bonnes pratiques en matière de gestion des eaux
pluviales.
Ces exemples illustrent un large éventail de mesures, notamment des mesures structurelles et non
structurelles, pour remplir divers objectifs liés à la gestion des eaux pluviales.
vi
RAPPORT TECHNIQUE ISO/TR 24539:2021(F)
Activités de service relatives aux réseaux d’alimentation en
eau potable, aux réseaux d’assainissement et aux réseaux
de gestion des eaux pluviales — Exemples de bonnes
pratiques en matière de gestion des eaux pluviales
1 Domaine d’application
Le présent document fournit des exemples de bonnes pratiques en matière de gestion des eaux pluviales
en lien avec l’ISO 24536 ainsi que des informations sur les normes et lignes directrices utilisées dans
différents pays.
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes et définitions
Aucun terme n’est défini dans le présent document.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l'adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l'adresse https:// www .electropedia .org/
4 Format et contenu des exemples fournis dans le présent document
Les exemples de gestion des eaux pluviales décrits dans le présent document sont classés par pays et
sont décrits dans l’Annexe A. Ils sont également classés en fonction des objectifs de l’ISO 24536:2019,
Tableau 1, tel qu’indiqué dans le Tableau A.1. Les exemples ont été fournis par des représentants
des pays et adaptés au format du présent document. En outre, bien que les diverses normes et lignes
directrices soient décrites dans l’Annexe B, Tableau B.1 et Tableau B.2, elles ne sont indiquées que par
leur titre et une URL de référence.
Le Tableau 1 illustre la structure des exemples décrits à l’Annexe A.
Tableau 1 — Structure des exemples
Section Contenu
Contexte Fournit des informations générales sur le projet, telles que les caractéristiques
du bassin versant, le contexte social, les problématiques et les tâches.
Objectif Fournit une description des objectifs du projet, tels que les améliorations à
apporter.
Descriptif du projet Fournit une description du projet.
Organisme Indique simplement l’identité de l’organisme présentant son expérience.
Annexe A
(informative)
Exemples de gestion des eaux pluviales
A.1 Introduction
Il existe de nombreux exemples de bonnes pratiques de gestion des eaux pluviales qui suivent les modes
opératoires définis par l’ISO 24536. Les exemples ont été classés en fonction des objectifs de gestion des
eaux pluviales auxquels ils répondaient.
Tableau A.1 — Liste d’exemples et leurs principaux objectifs en matière de gestion des eaux
pluviales en lien avec l’ISO 24536
Objectifs selon l’ISO 24536
Protec-
tion ou
Protec-
amélio- Pro-
tion des
Préser- ration tection
Régula- biens, des Sou-
vation de la ou
tion et Préser- per- tien du
Pro- Conser- ou amé- santé, amé-
maî- vation sonnes et dévelop-
Article/
tection vation liora- de la liora-
Titre
trise de la du milieu pement
Paragraphe
de la et réuti- tion de sécu- tion
effi- quan- naturel durable et
qualité lisation la santé rité et des
caces tité (infras- de l’adap-
de l’eau de l’eau des de la va-
des d’eau tructure, tation au
écosys- pro- leurs
débits proprié- climat
tèmes tection so-
tés et res-
des ciales
sources)
per-
sonnes
Création d’une zone humide à
A.2.1 X X X X X
Mount Barker
Collecte et réutilisation des
A.2.2 eaux pluviales à Murray X X
Bridge
Autriche — Augmentation
de la capacité de stockage et
A.3 X X X X
mise en œuvre d’une régula-
tion dynamique à Vienne
Amélioration du contrôle
des sédiments par la mise en
A.4.1 X X X X
place d’une zone humide à
Hamilton
Planification de mesures
A.4.2 efficaces de gestion des eaux X X X X X X
pluviales à Ottawa
Danemark — Régulation
A.5 X X X X X
dynamique à Kolding
Déconnexion des eaux plu-
viales du réseau unitaire à
A.6.1 X X X X X X
Killingworth et Longbenton,
North Tyneside, Angleterre
Détournement d’une rivière
et stockage des eaux pluviales
A.6.2 X X X X X
à Brunton Park, Gosforth,
Newcastle, Angleterre
France — Régulation en
temps réel des réseaux d’as-
A.7 sainissement pour la réduc- X X X
tion des rejets des déversoirs
d’orage à Biarritz
Tableau A.1 (suite)
Objectifs selon l’ISO 24536
Protec-
tion ou
Protec-
amélio- Pro-
tion des
Préser- ration tection
Régula- biens, des Sou-
vation de la ou
tion et Préser- per- tien du
Pro- Conser- ou amé- santé, amé-
maî- vation sonnes et dévelop-
Article/
tection vation liora- de la liora-
Titre
trise de la du milieu pement
Paragraphe
de la et réuti- tion de sécu- tion
effi- quan- naturel durable et
qualité lisation la santé rité et des
caces tité (infras- de l’adap-
de l’eau de l’eau des de la va-
des d’eau tructure, tation au
écosys- pro- leurs
débits proprié- climat
tèmes tection so-
tés et res-
des ciales
sources)
per-
sonnes
Mise en place d’une supervi-
sion en temps réel du fonc-
tionnement des structures
A.8.1 X X
de gestion des eaux pluviales
et de la gestion des risques
d’inondation à Nagoya
Mise en œuvre de la stratégie
A.8.2 de gestion des eaux pluviales X
de la ville de Niigata
Observation et prévisions
par radar en bande X pour la
A.8.3 gestion des eaux pluviales et X X
des risques d’inondation dans
la ville d’Osaka
Mise en œuvre d’une stratégie
A.8.4 de protection contre les X X X
risques d’inondation à Tokyo
Promotion de l’infiltration à
A.8.5 X X X
la source à Yokohama
Mise en œuvre de la stratégie
A.8.6 de gestion des eaux pluviales X X
dans la ville de Kitakyushu
Mise en place d’un système
A.8.7 d’alerte inondation précoce X X
dans la ville de Toyama
Bassin de stockage et réutili-
sation des eaux pluviales dans
A.8.8 X X X
le nouveau stade de la ville
d’Hiroshima
Système de protection contre
A.8.9 les risques d’inondation à X X
Fukuoka
Réduction des rejets des dé-
A.8.10 versoirs d’orage et prévention X X X X X
des inondations à Kyoto
A.2 Australie
A.2.1 Création d’une zone humide à Mount Barker
A.2.1.1 Contexte
Un nouveau centre de services environnementaux est prévu pour la ville de Mt Barker, sur une zone
située à côté d’une station de traitement, du ruisseau Mt Barker Creek et d’une école d’enseignement
secondaire.
La zone est depuis longtemps une zone perturbée, elle a servi d’abattoir, de tannerie et maintenant
de zone de stockage informelle pour les travaux du conseil du district. Malgré ces perturbations, la
bécassine du Japon (un oiseau migrateur de Sibérie menacé d’extinction) et de nombreuses autres
espèces d’oiseaux ont été observées le long de la plaine inondable.
A.2.1.2 Objectif
L’aménagement d’une zone humide et du paysage environnant a été réalisé dans le cadre de la
planification du centre de services environnementaux afin d’atteindre plusieurs objectifs, notamment:
— créer un habitat pour la bécassine du Japon et d’autres espèces d’oiseaux;
— devenir un espace récréatif avec un haut degré d’aménité, assurer des connexions avec un sentier
linéaire le long du ruisseau Mt Barker Creek et vers l’école et le dépôt;
— réhabiliter la végétation et créer une banque de semences de plantes locales dans divers écosystèmes;
— assurer le traitement des eaux pluviales pour le ruissellement généré par le nouveau dépôt et le parc
de stationnement;
— offrir des opportunités en matière de programmes d’éducation et de sensibilisation, à la fois pour
l’école et pour un centre environnemental communautaire prévu pour les groupes communautaires,
les écoles et le grand public.
Un concept a été élaboré pour répondre à ces critères et a été examiné de manière approfondie lors de
la consultation avec l’association Birds SA, le conseil du district, des groupes communautaires et des
écologistes spécialisés.
Le concept prévoit également divers habitats écologiques pour la végétation et les espèces d’oiseaux,
encourage la venue de visiteurs tout en fournissant des zones isolées où les oiseaux ne seront pas
dérangés.
A.2.1.3 Descriptif
Ce projet a été élaboré pour réhabiliter une zone dégradée sur les rives de Mt Barker Creek dans le
cadre de la construction prévue du dépôt de la municipalité. L’élément central du projet est une zone
humide artificielle qui protégera le ruisseau de l’augmentation des polluants, fournira un habitat aux
espèces d’oiseaux rares et menacées et deviendra un espace de loisirs le long du sentier linéaire de Mt
Barker Creek.
Un objectif plus large du projet est de réhabiliter divers habitats écologiques entourant les zones
humides, notamment des prairies, des bois secs et humides et des zones ripariennes. L’initiative a en
grande partie pour but d’améliorer l’habitat de plusieurs oiseaux rares et menacés et la conception a
donc impliqué une consultation étroite avec l’association d’ornithologie Birds SA.
Le concept prévoit divers habitats écologiques pour la végétation et les espèces d’oiseaux, tout en
fournissant des zones isolées où les oiseaux ne seront pas dérangés.
Des sentiers pédestres, des plateformes d’observation et une promenade en bois encouragent les
visiteurs à profiter de la zone humide, tout en gérant leur accès, et permettent la création d’une variété
d’habitats (inondation riparienne, prairie ouverte, prairie touffue et bois humides).
La zone humide de 6 000 m a été aménagée en 2014 et des recherches approfondies ont été effectuées
pour s’approvisionner en espèces végétales locales à utiliser dans les zones humides. Une cartographie
complète a été établie pendant leur plantation afin de permettre à la zone humide de servir de banque
de semences pour ces espèces locales rares à l’avenir.
La zone humide permet également de traiter selon les meilleures pratiques les eaux pluviales liées au
ruissellement du (futur) dépôt, contribuant ainsi à protéger Mt Barker Creek et, en fin de compte, la
rivière Bremer des polluants des eaux pluviales urbaines (voir Figure A.1).
Figure A.1 — Plan des futures zones humides du centre de services environnementaux
de Mt Barker
A.2.1.4 Organisme
Conseil du district de Mount Barker.
A.2.2 Collecte et réutilisation des eaux pluviales à Murray Bridge
A.2.2.1 Contexte
La ville de Murray Bridge, en Australie-Méridionale, est située au bord du fleuve Murray. Il s’agit de l’un
des plus grands centres régionaux à l’extrémité inférieure du bassin Murray-Darling et d’une plaque
tournante importante pour les industries des régions Lower Murray et Mallee. Les aménagements
résidentiels et industriels témoignent de la croissance de la population urbaine de Murray Bridge. La
préservation des nombreux espaces ouverts de la ville (parcs, réserves et installations sportives) est
vitale pour la région et sa communauté locale.
En outre, d’importants lotissements sont prévus sur le site de Newbridge (ancien hippodrome) et à
Gifford Hill. Ils devraient comprendre plus de 3 000 logements et constitueront une part importante
de l’expansion proposée pour Murray Bridge au cours des 20 prochaines années. L’un des défis que doit
relever la municipalité est la mise en place d’une infrastructure pouvant gérer de manière appropriée
l’augmentation du ruissellement des eaux pluviales associée aux réhabilitations et aménagements de
terrains vierges.
A.2.2.2 Objectif
Le système de gestion et de réutilisation des eaux pluviales de Murray Bridge a été construit pour fournir
une source alternative, sûre et durable d’eau non potable à la ville de Murray Bridge. Le système collecte
les eaux pluviales de huit bassins et zones humides à travers Murray Bridge et les transporte vers une
lagune à parois étanches à Gifford Hill pour leur stockage à long terme. Lorsqu’elles sont nécessaires à
l’irrigation, les eaux pluviales brutes sont pompées de la lagune vers la nouvelle station de traitement
située sur Old Swanport Road, à partir de laquelle les eaux pluviales traitées sont transportées par des
pompes et des canalisations de distribution vers le système d’irrigation de la ville.
Le système est une réalisation de la ville de Murray Bridge, en partenariat avec le gouvernement
australien et deux contributeurs privés. Le budget total de 14,23 millions de dollars a été pris en
charge par un financement de 7,115 millions de dollars provenant du Plan national pour l’eau urbaine
et le dessalement du gouvernement australien, à hauteur de la co-contribution de la municipalité et des
travaux en nature de la coentreprise de Gifford Hill. Le système a été achevé dans les délais et le budget
impartis, avec un bilan irréprochable en matière de sécurité.
L’accord de financement du gouvernement australien exigeait que le système diminue la dépendance à
l’égard du fleuve Murray et réduise la demande en eau potable de 172 millions de litres par an.
A.2.2.3 Descriptif
A.2.2.3.1 Présentation du système
La ville de Murray Bridge (la municipalité) dispose actuellement d’une allocation d’eau de 250 millions
de litres/an provenant du fleuve Murray, cette allocation étant soumise à des restrictions en fonction
des conditions de débit du fleuve. L’allocation de la municipalité a été considérablement réduite pendant
les années de sécheresse de 2006 à 2010, chutant jusqu’à 45 millions de litres/an (18 %) en 2008/09. Ces
restrictions ont eu pour effet de «brunir» et de dégrader considérablement les réserves et les terrains
de sport de la municipalité.
En réponse à la sécheresse, la municipalité a identifié les eaux pluviales comme une ressource précieuse
et inexploitée pouvant assurer un approvisionnement en eau sûr, durable et diversifié pour répondre
aux futurs besoins de la communauté. Une stratégie a rapidement été élaborée sur la manière dont
les eaux pluviales peuvent être collectées et réutilisées à Murray Bridge pour éviter que les effets
dévastateurs de la sécheresse ne se répètent, réduire la dépendance à l’égard du réseau d’alimentation
en eau et du fleuve Murray et améliorer l’agrément des nombreux parcs et réserves, les performances
d’assainissement et la protection contre les inondations, ainsi que la qualité de l’eau.
A.2.2.3.2 Conception
En 2014, la ville de Murray Bridge s’est engagée dans un processus d’ECI (Early Contractor Involvement,
implication anticipée de l’entrepreneur) avec les partenaires en charge de la construction et de la
conception afin d’optimiser l’étude de conception précédente du système. Le processus d’ECI a été
facilité par le gestionnaire de projet du système, avec la contribution du conseiller technique du système.
En raison d’un retard dans les aménagements résidentiels prévus sur les sites de l’ancien hippodrome
(Newbridge) et de Gifford Hill, qui ont été initialement proposés comme source d’une partie importante
du volume d’eaux pluviales pouvant être collecté dans la précédente étude de conception, une phase
complète d’étude des options a été entreprise pour identifier des sites de collecte alternatifs qui peuvent
atteindre ou dépasser les valeurs cibles de collecte.
Grâce à une planification, une conception et une gestion minutieuses, le volume (demande d’irrigation
satisfaite) des huit sites de collecte actuellement raccordés au système devrait être d’environ
230 millions de litres par an, sur la base de la pluviométrie moyenne à Murray Bridge. Le système prévoit
également le raccordement de futures stations de pompage sur les sites d’aménagement de Newbridge
(ancien hippodrome) et de Gifford Hill. Une fois ces stations de pompage installées et les aménagements
achevés, le volume total pouvant être collecté par le système pourrait dépasser 700 millions de litres
par an.
Le processus d’ECI a également permis d’identifier un terrain vacant sur Old Swanport Rd, idéalement
situé pour devenir l’élément central du système (Figure A.2). Se trouvant entre la zone humide existante
de Rural Avenue et la lagune de Gifford Hill, avec une alimentation électrique disponible depuis Old
Swanport Rd, et à une courte distance en voiture du dépôt de la municipalité, le site était idéal pour la
construction de la nouvelle station de traitement.
Figure A.2 — L’«élément central» du système; zone humide de Rural Avenue, station
de traitement et lagune de Gifford Hill
Le tracé des nouvelles canalisations le long de Rural Avenue, Prosperity Grove et Maurice Road a été
choisi pour établir une connexion entre la station de traitement et le réseau d’irrigation existant de la
municipalité sur Adelaide Road. Ce tracé a également permis de collecter les eaux pluviales des zones
humides et des bassins existants de la municipalité en utilisant des canalisations parallèles afin de
réduire les coûts de construction (c’est-à-dire un ensemble de canalisations pour la collecte et un autre
ensemble de canalisations pour la distribution, dans la même réserve routière).
La planification et la conception du système ont pris en compte les possibilités d’extension future pour
inclure des sites de collecte supplémentaires, une demande accrue d’eaux pluviales traitées et une
connexion possible avec un système régional de diversification de l’approvisionnement en eau qui relie
Murray Bridge au conseil de district de Mount Barker.
Exemples de mesures «adaptées aux évolutions futures» qui ont été intégrées dans le concept:
— emplacement de la lagune de stockage de 110 millions de litres sur un terrain qui sert de zone
tampon à l’autoroute SE à Gifford Hill, les terrains environnants étant disponibles pour des lagunes
de stockage supplémentaires à l’avenir (un stockage final de 440 millions de litres est envisagé);
— inclusion d’une unité de désinfection par UV dans la station de traitement d’Old Swanport Road afin
de fournir des eaux pluviales traitées qui soient adaptées à un régime d’irrigation «sans restriction».
Cela offre une flexibilité à la municipalité et aux utilisateurs d’eau tiers pour irriguer les espaces
publics ouverts 24 heures sur 24. Des dispositions ont également été prises dans la station de
traitement pour qu’une deuxième unité de désinfection par UV puisse être installée ultérieurement,
si des débits d’eau traitée plus élevés sont souhaités;
— dimensionnement de la station de traitement et du bassin de stockage des eaux traitées pour
répondre aux pics de demande d’irrigation de la municipalité (la nuit, généralement entre 22 heures
et 8 heures) tout en remplissant le bassin partagé par deux autres organisations locales. Il est
également possible d’exploiter la station de traitement en dehors des heures de pointe (en journée,
de 8 heures à 22 heures) pour desservir d’autres sites de la municipalité et d’autres utilisateurs
d’eau;
— dimensionnement des canalisations de collecte et de distribution pour accueillir les écoulements
d’eaux pluviales des aménagements résidentiels prévus sur les sites de l’ancien hippodrome
(Newbridge) et de Gifford Hill, afin de permettre le pompage simultané depuis ces sites et les sites
de collecte actuels. En particulier, les croisements de canalisations de l’autoroute SE, qui ont été
installés à l’aide de techniques de forage horizontal dirigé (HDD), présentent une forte redondance
pour faire face à des débits accrus.
Le système unique de gestion des eaux pluviales de la municipalité étant constitué d’une série de
bassins d’eaux pluviales dans des dépressions localisées, il était également important que la stratégie
de collecte et de réutilisation puisse améliorer les performances du réseau d’assainissement et le niveau
de protection contre les inondations des infrastructures publiques et privées.
Les bassins ne se déversent pas naturellement dans le fleuve Murray, mais s’appuient plutôt sur
l’infiltration ou des pompes pour évacuer les eaux pluviales. Par le passé, ces bassins n’ont pas toujours
été en mesure de faire face aux événements pluvieux intenses, entraînant l’inondation de routes et,
dans certains cas, de propriétés privées, comme le montre la Figure A.3. La modélisation de la plaine
inondable a donc été utilisée pour déterminer le choix des débits des pompes et la philosophie de
régulation du système, afin de garantir que les améliorations des performances d’assainissement et de
la protection contre les inondations soient maximisées.
Figure A.3 — Cartes avant/après de la plaine inondable pour le bassin du terrain de golf,
intervalle de récurrence moyen de 5 ans
La planification et la conception du système ont également accordé une place importante à l’exploitation
et à l’entretien futurs par le personnel de la municipalité. Le système dispose d’un système central
d’acquisition et de contrôle des données (SCADA) situé dans la station de traitement d’Old Swanport
Road, qui est connecté à tous les sites par des câbles à fibres optiques ou des systèmes de télémétrie
basés sur la téléphonie mobile. Le système SCADA permet aux membres du personnel de la municipalité
de surveiller à distance l’infrastructure de collecte et de distribution à des fins de régulation
automatisée, en utilisant leurs PC et/ou leurs tablettes. En outre, les alarmes critiques sont transmises
aux opérateurs par un service de SMS.
Un grand nombre des nouvelles pompes utilise la fonctionnalité d’entraînement à vitesse variable
pour offrir une flexibilité de fonctionnement, réduire l’usure des composants mécaniques du système
et maintenir la pression du système selon les besoins. Dans des conditions de fonctionnement
normales, tous les sites de collecte pomperont simultanément vers la lagune de Gifford Hill à des débits
prédéterminés afin de maximiser le volume pouvant être collecté, qui est généré par les événements
pluvieux peu intenses et fréquents.
En prévision des événements pluvieux intenses et pendant ceux-ci, le personnel de la municipalité peut
utiliser le nouveau système de régulation pour surveiller à distance les niveaux d’eau dans les bassins
et ajuster les débits et le séquençage des pompes pour gérer le risque d’inondation en temps réel. Par
exemple, la municipalité aura la possibilité de réduire le débit de pompage sur un site, pour permettre
d’atteindre un débit plus élevé sur un autre site considéré comme présentant un risque d’inondation
plus important.
Bien que le système ait été conçu pour fonctionner automatiquement avec une intervention minimale de
l’opérateur, des modes manuel et local ont également été prévus sur tous les équipements pour faciliter
les essais et le fonctionnement dans des circonstances inhabituelles.
D’autres dispositions notables en matière d’exploitation et d’entretien incluent:
— des mécanismes de levage dans la station de traitement pour permettre l’entretien sûr et pratique
des groupes de pompes et des filtres;
— deux stations de pompage fonctionnant à l’énergie solaire qui peuvent facilement être converties
pour une alimentation par le réseau électrique si des débits plus importants sont nécessaires à
l’avenir (c’est-à-dire une fois le scénario d’aménagement final terminé);
— des regards de visite avec des vannes d’isolement sur chacun des sites de collecte, pour permettre
une inspection et un accès sûrs des pompes submersibles;
— le choix de stations de pompage submersibles avec des pompes pouvant être retirées de la station de
pompage sans entrer dans le puisard de la pompe, ce qui offre un moyen sûr d’inspecter les pompes
en évitant toute entrée dans un espace confiné;
— une rampe en béton au niveau de la lagune de Gifford Hill pour permettre l’accès de bateaux si un
dosage du chlore s’avère nécessaire, ou l’accès de petites machines si la lagune doit être nettoyée;
— des dispositions permettant l’installation de pompes portatives à moteur diesel sur les sites de
collecte, afin de pouvoir pomper dans les bassins même en cas de panne de courant de courte durée;
— la conception du toit en appentis de la station de traitement permettant d’accueillir une future
installation photovoltaïque, lorsque la technologie de stockage sur batteries sera suffisamment
avancée.
A.2.2.3.3 Informations sur les dispositifs de régulation
Le système central d’acquisition et de contrôle des données (SCADA) permet à tous les sites de collecte
de pomper simultanément vers la lagune de Gifford Hill à des débits prédéterminés afin de maximiser
le volume pouvant être collecté, qui est généré par les événements pluvieux peu intenses et fréquents.
En prévision des événements pluvieux intenses et pendant ceux-ci, le personnel de la municipalité peut
surveiller à distance les niveaux d’eau dans les bassins et ajuster les débits et le séquençage des pompes
pour gérer le risque d’inondation en temps réel.
A.2.2.3.4 Gestion environnementale
Dans le cadre du programme de construction, un plan de management environnemental (EMP) propre
au projet a été élaboré avec des critères particuliers au site. La méthodologie détaillée de l’EMP
comprenait des modes opératoires pour empêcher des eaux contaminées de s’écouler dans les cours
d’eau et le système de gestion des eaux pluviales.
Des sections de l’EMP propres au site détaillaient la manière de gérer la découverte et la présence de la
faune et de la flore locales pendant la phase de construction. Il s’agissait en particulier de déplacer les
grenouilles, les écrevisses et d’autres espèces animales vers des zones adjacentes du site qui n’étaient
pas concernées par les travaux de construction.
Le rejet des eaux de rétrolavage de la station de traitement a également été pris en considération. Ces
eaux sont utilisées pour rincer les cuves de la station de traitement pendant son fonctionnement et sont
ensuite transférées vers un site de collecte pour être réutilisées, ce qui réduit toute élimination ou tout
gaspillage de ces eaux. Le choix d’un système de désinfection par ultraviolets pour le traitement de l’eau
de distribution présente également un avantage environnemental en éliminant à la fois le stockage et
l’utilisation de quantités importantes de produits chimiques dangereux.
Afin de réduire le plus possible l’impact du projet sur les arbres et les arbustes, le tracé des canalisations
et les techniques de construction ont été définis en mettant l’accent sur l’élagage des arbres de façon à
réduire le nombre d’arbres enlevés.
A.2.2.3.5 Implication de la communauté et des parties prenantes
La construction de ce projet comprenait un plan et une équipe consacrés à l’implication de la
communauté et des parties prenantes. L’équipe a assuré la liaison avec les habitants et les parties
prenantes tout au long du processus de conception et de construction et a obtenu les résultats suivants:
— le tracé des canalisations a été ajusté pour réduire le plus possible les perturbations et les impacts
sur les entreprises et la communauté en général. Le repositionnement de la canalisation le long
d’Adelaide Rd. en est un exemple. La canalisation a été repositionnée pour passer à travers un parc
de stationnement plutôt que de traverser l’une des intersections les plus fréquentées de Murray
Bridge. Les entreprises locales ont été consultées et la canalisation repositionnée a été installée
sans perturber l’accès des clients aux entreprises;
— des lettres de présentation du projet ont été distribuées dans les boîtes à lettres de l’ensemble de la
communauté, avec une communication de suivi pour les membres affectés de la communauté via la
distribution d’informations spécifiques;
— lorsque les travaux de construction avaient un impact direct sur des membres de la communauté,
une communication individuelle spécifique a été mise en place;
— en raison de l’importante histoire liée aux aborigènes à Murray Bridge, le peuple Ngarrindjeri, en
tant que propriétaire traditionnel des terres, a été consulté et impliqué tout au long du processus de
construction afin de s’assurer que les travaux ne causent aucun dommage à des éléments importants;
— le programme de construction a été élaboré pour tenir compte des préoccupations de la communauté
locale. Voici quelques exemples:
— l’installation des canalisations le long de Maurice Rd a été effectuée de nuit afin de réduire le
plus possible l’impact sur le trafic sur cette route très fréquentée;
— l’accès aux matériaux et l’installation des canalisations à proximité de l’hippodrome ont été
programmés pour éviter de perturber les événements et les calendriers d’entraînement;
— les travaux de construction sur le terrain de golf ont été programmés avant les événements
majeurs et des nattes de protection ont été utilisées pour éviter d’endommager le terrain
pendant les travaux;
— des consultations approfondies ont été menées auprès des agences gouvernementales de l’État au
cours de la phase de conception et de validation, notamment auprès:
— du Conseil de gestion des ressources naturelles du bassin Murray-Darling d’Australie-
Méridionale;
— du Département de l’environnement, de l’eau et des ressources naturelles;
— de l’autorité de protection de l’environnement;
— du Département de la santé et des personnes âgées;
— du Département de la planification, des transports et des infrastructures;
— du Bureau du régulateur technique.
Le projet a également mis un accent important sur la participation des peuples indigènes, car Murray
Bridge et sa région environnante possèdent de nombreux sites d’importance culturelle et spirituelle
pour les propriétaires traditionnels de ces terres, le peuple Ngarrindjeri. Composante importante du
processus d’ECI (implication anticipée de l’entrepreneur), la collaboration de l’équipe du projet de la
municipalité avec l’Autorité régionale Ngarrindjeri a permis de s’assurer que le choix des sites du projet
et la conception des travaux proposés respectaient l’importance culturelle et spirituelle de ces terres
pour le peuple Ngarrindjeri.
Le partenariat de la municipalité avec l’Autorité régionale Ngarrindjeri s’est poursuivi tout au long des
phases de conception et de construction du projet, impliquant des évaluations du patrimoine culturel
sur les sites du projet et la surveillance des activités de terrassement pour s’assurer que les risques
pour le patrimoine culturel étaient gérés de manière appropriée (Figure A.4).
Figure A.4 — Évaluation du patrimoine culturel au niveau de la zone humide de Rural Avenue
L’Autorité régionale Ngarrindjeri a également réalisé une vidéo avec son personnel et des anciens du
peuple Ngarrindjeri, ainsi que le gestionnaire de projet du système, pour montrer les avantages d’établir
des partenariats solides et un respect mutuel entre les équipes du projet et la nation Ngarrindjeri.
A.2.2.4 Organisme
Ville de Murray Bridge.
A.3 Autriche — Augmentation de la capacité de stockage et mise en œuvre d’une
régulation dynamique à Vienne
A.3.1 Contexte
e
La gestion des eaux usées dans différentes parties du 11 arrondissement de Vienne (Simmering)
est sujette à des incidents de débordement du réseau d’assainissement. La zone de Kaiserebersdorf
(Figure A.5, zone colorée en orange) est particulièrement affectée. En raison de la faible altitude de
la zone, les collecteurs ont une très faible pente et une très faible profondeur de couverture. En cas de
retour d’eau dans le réseau d’assainissement, le système déborde rapidement, en particulier au niveau
d’un changement de terrain relativement abrupt, à l’endroit où, sur la Figure A.5, les zones hachurées
en noir et en orange se chevauchent (encerclé en rose). Provenant de zones à plus haute altitude, l’eau a
gagné en vitesse et atteint alors un collecteur dont la pente est inférieure à 0,1 %. Lors de fortes pluies,
cela entraîne un écoulement d’eau hors du collecteur. En raison de la faible profondeur de couverture
existante et des conditions d’espace confiné, une extension du collecteur dans cette zone est difficile,
voire impossible.
Le réseau d’assainissement de Simmering subit l’influence directe du collecteur de la vallée de
e
Liesingtal et de certaines parties du 10 arrondissement de Vienne (Figure A.5, zone hachurée en vert).
Toutes les eaux
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...