Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz)

IEC 62209-3: 2019 specifies measurement protocols and test procedures for the reproducible measurement of peak spatial-average specific absorption rate (psSAR) induced inside a simplified model of a human head or body by radio-frequency (RF) transmitting devices, with a specified measurement uncertainty. Requirements are provided for psSAR assessment using vector measurement-based systems. Such systems determine the psSAR by three-dimensional (3D) field reconstruction within the volume of interest in accordance with the requirements herein for the measurement system, calibration, uncertainty assessment and validation methods. The protocols and procedures apply for the psSAR assessments covering a significant majority of people including children during use of wireless communication devices operated in close proximity to the head or body.
This document is applicable to wireless communication devices intended to be used at a position near the human head or body at distances up to and including 200 mm. This document may be employed to evaluate SAR compliance of different types of wireless communication devices used next to the ear, in front of the face, mounted on the body, combined with other RF-transmitting or non-transmitting devices or accessories (e.g. belt-clip), or embedded in garments. The overall applicable frequency range is from 600 MHz to 6 GHz.
The system validation procedures provided within this document cover frequencies from 600 MHz to 6 GHz.
With a vector measurement-based system this document can be employed to evaluate SAR compliance of different types of wireless communication devices.
The wireless communication device categories covered include but are not limited to mobile telephones, cordless microphones, auxiliary broadcast devices and radio transmitters in personal computers, desktop and laptop devices, multi-band, multi-antenna, and push-to-talk devices.
Key Words: Human Exposure, Hand-Held and Body Mounted Wireless Communication Devices.

Procédure de mesure pour l'évaluation du débit d'absorption spécifique de l'exposition humaine aux champs radiofréquence produits par les dispositifs de communications sans fil tenus à la main ou portés près du corps - Partie 3 : Systèmes basés sur la mesure vectorielle (plage de fréquences comprise entre 600 MHz et 6 GHz)

IEC 62209-3: 2019 spécifie les protocoles et procédures d'essai pour le mesurage reproductible du DAS maximal moyenné dans l'espace (psSAR – peak spatial-average specific absorption rate) induit à l'intérieur d'un modèle simplifié de tête ou de corps humain par des dispositifs d'émission de radiofréquence (RF), avec une incertitude de mesure spécifiée. Des exigences sont fournies concernant l’évaluation du psSAR utilisant des systèmes basés sur la mesure vectorielle. Ces systèmes déterminent le psSAR par reconstruction de champ tridimensionnel (3D) à l'intérieur du volume à l'étude conformément aux exigences du présent document relatives au système de mesure, à l'étalonnage, à l'évaluation de l'incertitude et aux méthodes de validation. Les protocoles et procédures s'appliquent pour les évaluations du psSAR couvrant une grande majorité de personnes, y compris les enfants, lors de l'utilisation de dispositifs de communications à proximité de la tête ou du corps.
Le présent document s'applique aux dispositifs de communications sans fil destinés à être utilisés proches de la tête ou du corps humain, à des distances allant jusqu'à 200 mm inclus. Le présent document peut être utilisé pour évaluer la conformité du DAS de différents types de dispositifs de communications sans fil utilisés proches de l'oreille, devant le visage, sur le corps, en combinaison avec d'autres dispositifs ou accessoires de transmission RF ou pas (une attache de ceinture, par exemple) ou intégrés aux vêtements. La plage de fréquences globale applicable est comprise entre 600 MHz et 6 GHz.
Les procédures de validation du système indiquées dans le présent document couvrent les fréquences comprises entre 600 MHz et 6 GHz.
Avec un système basé sur la mesure vectorielle, le présent document peut être utilisé pour évaluer la conformité du DAS de différents types de dispositifs de communications sans fil.
Les catégories de dispositifs de communications sans fil incluent, entre autres, les téléphones mobiles, les micros sans fil, les dispositifs de diffusion auxiliaires et les émetteurs radio dans les ordinateurs personnels, les ordinateurs de bureau et les ordinateurs portables, ainsi que les dispositifs à plusieurs bandes, à plusieurs antennes et à boutons-poussoirs.
Mots clés: Exposition Humaine, Dispositifs de communications sans fil tenus à la main ou portés près du corps

General Information

Status
Published
Publication Date
23-Sep-2019
Current Stage
PPUB - Publication issued
Start Date
24-Sep-2019
Completion Date
27-Sep-2019
Ref Project
Standard
IEC 62209-3:2019 - Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz)
English and French language
282 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


IEC 62209-3 ®
Edition 1.0 2019-09
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
HORIZONTAL STANDARD
NORME HORIZONTALE
Measurement procedure for the assessment of specific absorption rate of
human exposure to radio frequency fields from hand-held and body-mounted
wireless communication devices –
Part 3: Vector measurement-based systems (Frequency range of 600 MHz
to 6 GHz)
Procédure de mesure pour l'évaluation du débit d'absorption spécifique
de l'exposition humaine aux champs radiofréquence produits par les dispositifs
de communications sans fil tenus à la main ou portes près du corps –
Partie 3: Systèmes basés sur la mesure vectorielle (plage de fréquences
comprise entre 600 MHz et 6 GHz)

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform Electropedia - www.electropedia.org
The advanced search enables to find IEC publications by a The world's leading online dictionary on electrotechnology,
variety of criteria (reference number, text, technical containing more than 22 000 terminological entries in English
committee,…). It also gives information on projects, replaced and French, with equivalent terms in 16 additional languages.
and withdrawn publications. Also known as the International Electrotechnical Vocabulary

(IEV) online.
IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published IEC Glossary - std.iec.ch/glossary
details all new publications released. Available online and once 67 000 electrotechnical terminology entries in English and
a month by email. French extracted from the Terms and Definitions clause of IEC
publications issued since 2002. Some entries have been
IEC Customer Service Centre - webstore.iec.ch/csc collected from earlier publications of IEC TC 37, 77, 86 and
If you wish to give us your feedback on this publication or need CISPR.

further assistance, please contact the Customer Service

Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC - Le premier dictionnaire d'électrotechnologie en ligne au monde,
webstore.iec.ch/advsearchform avec plus de 22 000 articles terminologiques en anglais et en
La recherche avancée permet de trouver des publications IEC français, ainsi que les termes équivalents dans 16 langues
en utilisant différents critères (numéro de référence, texte, additionnelles. Egalement appelé Vocabulaire
comité d’études,…). Elle donne aussi des informations sur les Electrotechnique International (IEV) en ligne.

projets et les publications remplacées ou retirées.
Glossaire IEC - std.iec.ch/glossary
IEC Just Published - webstore.iec.ch/justpublished 67 000 entrées terminologiques électrotechniques, en anglais
Restez informé sur les nouvelles publications IEC. Just et en français, extraites des articles Termes et Définitions des
Published détaille les nouvelles publications parues. publications IEC parues depuis 2002. Plus certaines entrées
Disponible en ligne et une fois par mois par email. antérieures extraites des publications des CE 37, 77, 86 et
CISPR de l'IEC.
Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-nous:
sales@iec.ch.
Electropedia - www.electropedia.org

IEC 62209-3 ®
Edition 1.0 2019-09
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
HORIZONTAL STANDARD
NORME HORIZONTALE
Measurement procedure for the assessment of specific absorption rate of

human exposure to radio frequency fields from hand-held and body-mounted

wireless communication devices –

Part 3: Vector measurement-based systems (Frequency range of 600 MHz

to 6 GHz)
Procédure de mesure pour l'évaluation du débit d'absorption spécifique

de l'exposition humaine aux champs radiofréquence produits par les dispositifs

de communications sans fil tenus à la main ou portes près du corps –

Partie 3: Systèmes basés sur la mesure vectorielle (plage de fréquences

comprise entre 600 MHz et 6 GHz)

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 33.060.20 ISBN 978-2-8322-7355-5

– 2 – IEC 62209-3:2019 © IEC 2019
CONTENTS
FOREWORD . 9
INTRODUCTION . 11
1 Scope . 12
2 Normative references . 12
3 Terms and definitions . 13
4 Symbols and abbreviated terms . 14
5 Overview of the measurement procedure . 14
6 Measurement system specifications . 17
6.1 General requirements . 17
6.2 Phantom specifications . 19
6.2.1 Head phantom specifications – shell . 19
6.2.2 Body phantom specifications – shell . 19
6.2.3 Tissue-equivalent medium properties . 19
6.3 Measurement system requirements . 19
6.3.1 General . 19
6.3.2 Scanning measurement system specifications . 19
6.3.3 Array measurement system specifications . 20
6.4 Device holder specification . 21
6.5 Reconstruction algorithm and peak spatial-averaging specifications . 22
7 Protocol for SAR assessments . 22
7.1 Measurement preparation . 22
7.1.1 General . 22
7.1.2 Preparation of tissue-equivalent medium . 22
7.1.3 System check . 23
7.1.4 Preparation of the device under test (DUT) . 23
7.1.5 Operating modes . 23
7.1.6 Position of the DUT in relation to the phantom . 23
7.1.7 Positions of the DUT in relation to the flat phantom for large DUT . 23
7.1.8 Test frequencies for DUT . 24
7.2 Tests to be performed . 24
7.3 General measurement procedure . 25
7.3.1 General . 25
7.3.2 Measurement procedure for scanning systems . 25
7.3.3 Measurement procedure for array systems . 26
7.4 SAR measurements for simultaneous transmission . 26
7.4.1 General . 26
7.4.2 SAR measurements for uncorrelated signals . 27
7.4.3 SAR measurements for correlated signals . 31
8 Measurement uncertainty estimation. 32
8.1 General . 32
8.2 Requirements on the measurement uncertainty evaluation . 32
8.3 Description of measurement uncertainty models . 33
8.3.1 General . 33
8.3.2 Uncertainty models for array measurement system and scanning
measurement systems . 34
8.3.3 Example uncertainty budget templates . 35

9 Measurement report . 39
Annex A (normative) Phantom specifications . 40
A.1 SAM phantom specifications . 40
A.1.1 Justification . 40
A.1.2 SAM phantom geometry. 40
A.1.3 Tissue-equivalent medium . 40
A.2 Flat phantom specifications . 41
A.3 Specific phantoms. 42
A.4 Tissue-equivalent medium . 43
Annex B (normative) Calibration and characterization of dosimetric probes. 44
B.1 General . 44
B.2 Types of calibration . 44
B.2.1 Amplitude calibration with analytical fields . 44
B.2.2 Amplitude and phase calibration by transfer calibration . 45
B.2.3 Amplitude and phase calibration using numerical reference . 47
Annex C (informative) Field reconstruction techniques . 49
C.1 General . 49
C.2 Objective of field reconstruction techniques . 49
C.3 Background. 49
C.4 Reconstruction techniques . 51
C.4.1 Expansion techniques . 51
C.4.2 Source reconstruction techniques . 52
C.4.3 Source base function decomposition . 52
C.4.4 Phase reconstruction . 52
C.5 Source reconstruction and SAR estimation from fields measured outside the
phantom. 53
C.6 Additional considerations for field reconstruction in scanning systems . 53
Annex D (normative) SAR measurement system verification and system validation . 54
D.1 Objectives and purpose . 54
D.1.1 General . 54
D.1.2 Objectives and purpose of system check . 54
D.1.3 Objectives of system validation . 54
D.2 SAR measurement setup and procedure for system check and system
validation . 55
D.2.1 General . 55
D.2.2 Power measurement setups . 55
D.2.3 Procedure to measure and normalize SAR . 57
D.2.4 Power measurement uncertainty . 59
D.3 System check . 61
D.3.1 System check antennas and test conditions . 61
D.3.2 System check antennas and test conditions for scanning systems . 61
D.3.3 System check antennas and test conditions for array systems . 61
D.3.4 System check acceptance criteria . 62
D.4 System validation . 62
D.4.1 Validation of array systems and scanning systems . 62
D.4.2 Requirements for system validation antennas and test conditions . 62
D.4.3 Requirements for array systems and scanning systems . 62
D.4.4 Test positions for system validation . 64
D.4.5 System validation procedure based on peak spatial-average SAR . 71

– 4 – IEC 62209-3:2019 © IEC 2019
D.4.6 On-site system validation after installation . 79
D.4.7 System validation acceptance criteria . 80
Annex E (informative) Interlaboratory comparisons . 82
E.1 Purpose . 82
E.2 Monitor laboratory . 82
E.3 Phantom set-up . 82
E.4 Reference devices . 82
E.5 Power set-up . 83
E.6 Interlaboratory comparison – Procedure. 83
Annex F (normative) System validation antennas . 84
F.1 General requirements . 84
F.2 Return loss requirements . 84
F.3 Standard dipole antenna . 85
F.4 VPIFA . 88
F.5 2-PEAK CPIFA . 90
F.6 Additional antennas . 94
Annex G (normative) SAR calibration of reference antennas . 95
G.1 Purpose . 95
G.2 Parameters or quantities and ranges to be determined by calibration method . 96
G.3 Reference antenna calibration setup . 96
G.4 Reference antenna calibration procedure . 97
G.4.1 Verification of return loss . 97
G.4.2 Calibration of reference antennas: step-by-step procedure . 97
G.4.3 Uncertainty budget of reference antenna calibration . 98
G.5 Method and uncertainties for the transfer of calibration between two of more
antennas of the same type using the array system . 102
Annex H (informative) General considerations on uncertainty estimation . 105
H.1 Concept of uncertainty estimation . 105
H.2 Type A and Type B evaluations . 106
H.3 Degrees of freedom and coverage factor . 106
H.4 Combined and expanded uncertainties . 107
H.5 Analytical reference functions . 108
Annex I (normative) Evaluation of measurement uncertainty of SAR results from
scanning vector measurement-based systems with single probes . 111
I.1 Measurement uncertainties to be evaluated by the system manufacturer MM . 111
I.1.1 General . 111
I.1.2 Calibration CF. 111
I.1.3 Isotropy ISO . 111
I.1.4 System linearity LIN . 112
I.1.5 Sensitivity limit SL . 112
I.1.6 Boundary effect BE . 112
I.1.7 Readout electronics RE . 113
I.1.8 Response time RT . 113
I.1.9 Probe positioning PP . 113
I.1.10 Sampling error SE . 113
I.1.11 Phantom shell PS . 114
I.1.12 Tissue-equivalent medium parameters MAT . 114
I.1.13 Measurement system immunity/secondary reception MSI . 116

I.2 Uncertainty of reconstruction corrections and post-processing to be specified
by the manufacturer MN . 116
I.2.1 General . 116
I.2.2 Evaluation of uncertainty due to reconstruction REC . 116
I.2.3 Impact of noise on reconstruction POL . 117
I.2.4 SAR averaging SAV . 117
I.2.5 SAR scaling SARS . 117
I.2.6 SAR correction for deviations in permittivity and conductivity SC . 118
I.3 Uncertainties that are dependent on the DUT MD . 119
I.3.1 General . 119
I.3.2 Probe coupling with the DUT PC . 119
I.3.3 Modulation Response MOD . 119
I.3.4 Integration time IT . 120
I.3.5 Measured SAR drift SD . 120
I.4 Uncertainties related to the measurement environment ME . 120
I.4.1 General . 120
I.4.2 Device holder DH . 120
I.4.3 Device positioning DP . 121
I.4.4 RF ambient conditions AC . 121
I.4.5 Measurement system drift and noise DN . 121
I.5 Uncertainties of validation antennas MV . 122
I.5.1 General . 122
I.5.2 Deviation of experimental antennas DEX . 122
I.5.3 Power measurement uncertainty PMU . 122
I.5.4 Other uncertainty contributions when using validation antennas OVS . 122
Annex J (normative) Evaluation of the measurement system uncertainty of fixed array
or scanning array vector measurement-based systems . 123
J.1 Measuring system uncertainties to be evaluated by the manufacturer MM. 123
J.1.1 General . 123
J.1.2 Calibration CF. 123
J.1.3 Isotropy ISO . 123
J.1.4 Mutual sensor coupling MSC . 124
J.1.5 Scattering due to the presence of the array AS. 125
J.1.6 System linearity LIN . 126
J.1.7 Sensitivity limit SL . 126
J.1.8 Boundary effect BE . 126
J.1.9 Readout electronics RE . 127
J.1.10 Response time RT . 127
J.1.11 Probe position PP . 127
J.1.12 Sampling error SE . 128
J.1.13 Array boundaries AB . 128
J.1.14 Phantom shell PS . 129
J.1.15 Tissue-equivalent medium parameters MAT . 129
J.1.16 Phantom homogeneity HOM . 131
J.1.17 Measurement system immunity/secondary reception MSI . 132
J.2 Uncertainty of reconstruction, corrections, and post-processing to be
specified by the manufacturer MN . 132
J.2.1 General . 132
J.2.2 Evaluation of uncertainty due to reconstruction REC . 132

– 6 – IEC 62209-3:2019 © IEC 2019
J.2.3 Impact of noise on reconstruction POL . 132
J.2.4 SAR averaging SAV . 132
J.2.5 SAR scaling SARS . 132
J.2.6 SAR correction for deviations in permittivity and conductivity SC . 132
J.3 Measurement system uncertainties that are dependent on the DUT MD . 132
J.3.1 General . 132
J.3.2 Probe or probe-array coupling with the DUT PC . 132
J.3.3 Modulation response MOD . 133
J.3.4 Integration time IT . 133
J.3.5 Measurement system drift and noise DN . 133
J.4 Uncertainties related to the source or noise ME . 133
J.4.1 General . 133
J.4.2 Device holder DH . 133
J.4.3 Device positioning DP . 133
J.4.4 RF ambient conditions AC . 134
J.4.5 Measurement system drift and noise DN . 134
J.5 Uncertainties of validation antennas MV . 134
J.5.1 General . 134
J.5.2 Deviation of experimental antennas DEX . 134
J.5.3 Power measurement uncertainty PMU . 134
J.5.4 Other uncertainty contributions when using validation antennas OVS . 134
Bibliography . 135

Figure 1 – Evaluation plan checklist . 15
Figure 2 – Illustration of the shape and orientation relative to a curved phantom
surface of the distorted cubic volume for computing psSAR . 22
Figure 3 – Measurements performed by shifting a large device over the efficient
measurement area of the system including overlapping areas – in this case: six tests
performed . 24
Figure 4 – Flow chart for SAR measurements of uncorrelated signals at different
frequencies using a measurement system able to distinguish between different
frequency components (Method 2) . 27
Figure 5 – Illustration of the amplitude spectrum, as function of frequency, for
simultaneously transmitted signals of multiple frequency bands emitted by a DUT . 28
Figure 6 – Illustration of a completely covered signal bandwidth B by the
s
measurement system analysis bandwidth B at single transmission mode . 29
a
Figure 7 – Illustration of a completely covered signal bandwidths B (for i = 2 to N) by
si
the measurement system analysis bandwidth B for simultaneous multiple-frequency
a
transmission mode . 29
Figure 8 – Illustration of a non-coverage of the signal bandwidths B (for i = 2 to N) by
si
the measurement system analysis bandwidth B for simultaneous multiple-frequency
a
transmission mode . 29
Figure 9 – Illustration of a partial-coverage of the signal bandwidths B (for i = 2 to N)
si
by the measurement system analysis bandwidth B for simultaneous multiple-
a
frequency transmission mode . 30
Figure 10 – Illustration of reduction of the measurement system analysis bandwidth B
a
to cover only one signal bandwidth B (for i = 1 to N) for simultaneous multiple-
si
frequency transmission mode . 30
Figure 11 – Illustration of increasing or moving the measurement system analysis
bandwidth B to cover one or more signal bandwidth B (for i = 1 to N) for
a si
simultaneous multiple-frequency transmission mode . 30

Figure A.1 – Sagittally-bisected phantom with extended perimeter, used for scanning
measurement systems . 41
Figure A.2 – Dimensions of the elliptical phantom . 42
Figure C.1 – Coordinate system for 2D planar measurement-system . 50
Figure C.2 – Generic configuration of SAR measurement system . 50
Figure C.3 – Schematic representation of 2D planar measurement-based SAR system
and its coordinate system . 52
Figure C.4 – Source reconstruction from fields outside a phantom . 53
Figure D.1 – Recommended power measurement setup for system check and system
validation . 56
Figure D.2 – Equipment setup for measurement of forward power P and forward
f
coupled power P . 57
fc
Figure D.3 – Equipment setup for measuring the shorted reverse coupled power P . 58
rcs
Figure D.4 – Equipment setup for measuring the power with the reference antenna
connected . 58
Figure D.5 – Port numbering for the S-parameter measurements of the directional
coupler . 60
Figure D.6 – SAM masks for positioning dipole antennas and VPIFAs on the head
phantoms, including holes where the antenna spacer is inserted . 65
Figure D.7 – Flat masks for positioning VPIFAs on the flat phantoms, including a hole
in the centre where the VPIFA spacer is inserted . 66
Figure D.8 – Dipole showing the distance of s = 15 mm . 67
Figure D.9 – 2-PEAK CPIFA showing the fixed distance of s = 7 mm . 67
Figure D.10 – VPIFA positioned showing the fixed distance of s = 2 mm . 68
Figure D.11 – System check and validation locations for the flat phantom . 69
Figure D.12 – System check and validation locations for the head phantom . 70
Figure D.13 – Definition of rotation angles for dipoles . 71
Figure F.1 – Mechanical details of the standard dipole . 87
Figure F.2 – VPIFA validation antenna . 89
Figure F.3 – 2-PEAK CPIFA at 2 450 MHz . 92
Figure F.4 – Detail of the tuning structure and matching structure . 93
Figure G.1 – Measurement setup for waveguide calibration of dosimetric probe, and
similar setup (same tissue-equivalent liquid, dielectric spacer, power sensors and
coupler) for antenna calibration . 95
Figure G.2 – Setup for calibration of a reference antenna . 96
Figure G.3 – Method for the transfer of calibration between two antennas of the same
type using the array system . 103
Figure I.1 – Illustration of SAR measurement results during 8 h and the centred moving
average . 122

Table 1 – Evaluation plan checklist . 16
Table 2 – Uncertainty budget template for the evaluation of the measurement system
uncertainty of the 1 g or 10 g psSAR to be carried out by the system manufacturer . 36
Table 3 – Uncertainty budget template for evaluating the uncertainty in the measured
value of 1 g SAR or 10 g SAR from a DUT . 37
Table 4 – Uncertainty budget template for evaluating the uncertainty in the measured
value of 1 g SAR or 10 g SAR from a validation antenna . 38

– 8 – IEC 62209-3:2019 © IEC 2019
Table 5 – Uncertainty budget template for evaluating the uncertainty in the measured
value of 1 g SAR or 10 g SAR from the system check . 39
Table A.1 – Dielectric properties of the tissue-equivalent medium . 43
Table B.1 – Uncertainty analysis for single-probe calibration in waveguide . 45
Table B.2 – Uncertainty analysis for transfer calibration of array systems . 46
Table B.3 – Uncertainty analysis of transfer calibration of array systems . 48
Table D.1 – Example of power measurement uncertainty in % . 60
Table D.2 – Modulations and multiplexing modes used by radio systems . 64
Table D.3 – Peak spatial-average SAR (psSAR) averaged over 1 g and 10 g values for
the flat phantom filled with tissue-equivalent medium for the antennas specified in
Annex F . 72
Table D.4 – Peak spatial-average SAR (psSAR) averaged over 1 g and 10 g values for
antenna generating two peaks on the flat phantom filled with tissue-equivalent medium
for the antennas specified in Annex F . 73
Table D.5 – Peak spatial-average SAR (psSAR) averaged over 1 g and 10 g values on
the head left and right phantom for the antennas specified in Annex F . 74
Table D.6 – Peak spatial-average SAR (psSAR) averaged over 1 g and 10 g values for
antenna generating two peaks on the head left and right phantom for the antennas
specified in Annex F. Modulations are as specified in Table D.2 . 79
Table D.7 – Set of randomised tests for on-site system validation using flat phantom
1 g and 10 g psSAR, normalized to 1 W forward power, using the antennas specified in
Annex F . 79
Table D.8 – Set of tests for on-site system validation using left and right head
phantoms for 1 g and 10 g psSAR for the antennas specified in Annex F . 80
Table F.1 – Return loss values for antennas specified in Annex F and flat phantom
filled with tissue-equivalent medium . 85
Table F.2 – Mechanical dimensions of the reference dipoles . 86
Table F.3 – Dimensions for VPIFA antennas at different frequencies . 90
Table F.4 – Dielectric properties of the dielectric layers for VPIFA antennas . 90
Table F.5 – Thickness of substrates and planar metallization . 93
Table F.6 – Dielectric properties of FR4 . 93
Table F.7 – Values for the antenna dimensions in Figures F.4 and F.5 . 94
Table G.1 – Example uncertainty budget for reference dipole antenna calibration for
1 g and 10 g averaged SAR (750 MHz to 3 GHz) . 99
Table G.2 – Example uncertainty budget for reference antenna calibration (PIFA) for 1
g and 10 g averaged SAR (750 MHz to 3 GHz) . 100
Table G.3 – Example uncertainty budget for reference antenna (dipole) calibration for
1 g and 10 g averaged SAR (3 GHz to 6 GHz) . 101
Table G.4 – Example uncertainty budget for the calibration of an antenna using the
transfer method, as percentages . 104
Table H.1 – Parameters of analytical reference functions and associated reference
peak 10 g SAR value . 109

INTERNATIONAL ELECTROTECHNICAL COMMISSION
_____________
MEASUREMENT PROCEDURE FOR THE ASSESSMENT
OF SPECIFIC ABSORPTION RATE OF HUMAN EXPOSURE
TO RADIO FREQUENCY FIELDS FROM HAND-HELD AND
BODY-MOUNTED WIRELESS COMMUNICATION DEVICES –

Part 3: Vector measurement-based systems
(Frequency range of 600 MHz to 6 GHz)

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...