This document specifies functional requirements for the design, construction, testing, commissioning/decommissioning, operation, maintenance and, where appropriate, calibration, together with suitable documented provisions for all new gas measuring systems and any major changes of existing systems.
This document also specifies accuracy classes of measuring systems and thresholds applicable to these classes. Demonstration of compliance is achieved through the selection, installation and operation of appropriate measurement instruments, together with suitable documented provisions for calculations. Examples of demonstration of compliance are provided for each accuracy class; however, they are not prescriptive solutions.
This document is applicable for gases of the 2nd family as classified in EN 437. It is also applicable for treated non-conventional combustible gases complying with EN 437 and for which a detailed technical evaluation of the functional requirements (such as injected biomethane) is performed ensuring there are no other constituents or properties of the gases that can affect the metrological and physical integrity of the measuring systems. This version mentions technical topics to consider when hydrogen and natural gas / hydrogen blends flow through the measuring systems. Blends with a hydrogen content between 20mol% and 98 mol% are not considered by this standard. This document applies to hydrogen with a purity as specified in CEN/TS 17977 for rededicated natural gas systems.
This document can also be used as a guideline for measuring systems for other gases e.g. gaseous CO2 for CCUS.
This document does not apply to for raw or sour gases.
This document does not apply to for gas measurement in CNG filling stations.
This document gives guidelines when designing, installing and operating gas meters with additional functionalities (smart gas meters).
Communication protocols and interfaces for gas meters and remote reading of gas meters are outside the scope of this document and are covered by the appropriate parts of the EN 13757 series. which provide a number of protocols for meter communications. Supervisory control and data acquisition protocols (SCADA) are also not covered by this document.
Unless otherwise specified all pressures used in this document are gauge pressures.
For associated pressure regulating systems the requirements of EN 12186 and/or EN 12279 apply.
For requirements on design, housing, lay-out, materials for components, construction, ventilation, venting and overall safety of gas measuring systems within the scope of this document, the EN 15001 series, EN 12186, EN 12279 and/or EN 1775 apply additionally, where relevant.

  • Draft
    110 pages
    English language
    e-Library read for
    1 day

This document provides requirements and guidance for quantifying liquefied natural gas (LNG) as a marine fuel on board LNG bunkering ships. It is applicable to the measurement of LNG from any source, e.g. gas from conventional reservoirs, shale gas, coalbed methane, at the time of: - ship to ship (STS) transfer to LNG-fuelled ships, - STS transfer between LNG bunkering ships, and - transfer to or from shore tanks or other facilities, irrespective of the type of tanks. This document is also applicable to the quantification of biomethane and synthetic methane from fossil fuels or renewable sources.

  • Standard
    37 pages
    English language
    sale 15% off

This document specifies the calculation procedure for converting the volume of liquefied petroleum gas (LPG) and liquefied natural gas (LNG) under the conditions at the time of measurement to the equivalent volume of liquid or vapour at the standard condition (i.e. 15 °C and 101,325 kPa absolute), or to the equivalent mass or energy (calorific content). This document applies to the quantities of refrigerated hydrocarbon liquids that are stored in or transferred to or from tanks and measured under static storage conditions. This document does not cover the calculation of pressurized gases.

  • Standard
    19 pages
    English language
    sale 15% off

This document specifies a method for the calibration of spherical tanks with a radius greater than 1 m by means of external measurements using an electro-optical distance-ranging instrument (EODR). It also specifies the subsequent calculation and the compilation of tank capacity tables. This document applies to spherical tanks built above ground, that are non-insulated, single-shell and with a radial variation up to 1 %. The method specified in this document can also apply to spherical tanks built above the deck when the carrying ship is in the dock. This document does not apply to the calibration of spheroidal tanks.

  • Standard
    25 pages
    English language
    sale 15% off

This document specifies the minimum requirements to quantify boil-off gas (BOG) consumed on liquefied natural gas (LNG) carriers for their own functions, in particular for power generation and during cargo transfer operations. This document provides requirements for the metering of BOG and the subsequent calorific value calculations, which can be taken into account when the energy transferred during cargo transfer is determined. This document also gives performance requirements and calibration of the elements included in the BOG measurement system. This document, with some modifications, can also be applied to the measurement of BOG consumed by LNG carriers at sea.

  • Standard
    13 pages
    English language
    sale 15% off

This document provides testing procedures for evaluating proppants used in hydraulic fracturing and gravel packing operations.
NOTE            Proppants mentioned in this document refer to sand, ceramic, resin-coated, gravel packing proppants, and other materials used for hydraulic fracturing and gravel packing operations.
This document supplements API Std 19C, 2nd edition (2018), the requirements of which are applicable with the exceptions specified in this document.
This document provides consistent methodology for testing performed on hydraulic fracturing and/or gravel packing proppants.

  • Standard
    17 pages
    English language
    e-Library read for
    1 day

This document gives guidance and recommendations on the selection, accuracy, installation, commissioning, calibration and verification of automatic tank thermometers (ATTs) in fiscal/custody transfer applications, in which the ATT is used for measuring the temperature of petroleum and liquid petroleum products stored in pressurized storage tanks. This document is not applicable to the measurement of temperature in caverns or in refrigerated storage tanks.

  • Standard
    11 pages
    English language
    sale 15% off

This document gives requirements and guidance on the accuracy, installation, commissioning, calibration and verification of automatic level gauges (ALGs) both intrusive and non-intrusive, for measuring the level of petroleum and petroleum products having a vapour pressure less than 4 MPa, stored in pressurized storage tanks. This document gives guidance on the use of ALGs in custody transfer application. This document is not applicable to the measurement of level in caverns and refrigerated storage tanks with ALG equipment.

  • Standard
    16 pages
    English language
    sale 15% off

This document provides requirements and guidance on the selection, accuracy, installation, commissioning, calibration and verification of automatic tank thermometers (ATTs) in fiscal/custody transfer applications. The ATT is used for measuring the temperature of petroleum and liquid petroleum products having a Reid vapour pressure less than 100 kPa, stored in cargo tanks on board marine vessels (i.e. tankers and barges). This document is not applicable to the measurement of temperature in refrigerated storage tanks, or pressurized cargo tanks on board marine vessels, which is covered in ISO 8310.

  • Standard
    12 pages
    English language
    sale 15% off

This document defines procedures and requirements for measuring liquefied natural gas (LNG) from truck-to-ship (TTS) using the combination of Coriolis mass flowmeter (MFM) and gas chromatography (GC). It also gives guidance and requirements for portable packaging of the combination system in mobile form which minimizes facility storage space and streamlines the use of development systems. Output from the system in calorie units is applicable to commercial transactions between suppliers and users of liquefied natural gas (LNG) as marine fuel. This document also consists of general requirements, metrological requirements, system flawless requirements, requirements and test methods, and procedures for measurement methods.

  • Standard
    27 pages
    English language
    sale 15% off
  • Standard
    29 pages
    French language
    sale 15% off
  • Standard
    29 pages
    French language
    sale 15% off

This document specifies quantity measurement using a Coriolis mass flow meter (MFM) for bunker cargo loading from an oil terminal to a bunker tanker during custody transfer. Sampling requirements during the custody transfer are also included in this document.

  • Standard
    29 pages
    English language
    sale 15% off

This document gives guidance for measuring a quantity of primarily viscous hydrocarbon liquid using flowmeters at ambient or elevated operating temperatures. This document describes the effects of high viscosities and potentially high temperatures, which can induce additional errors in measurement. It also gives guidance on how to overcome or mitigate difficulties.

  • Standard
    21 pages
    English language
    sale 15% off

This document specifies the criteria and metrological requirements to qualify a master meter and subsequently maintain its qualification. It establishes requirements and procedures for meter verification, using a master mass flow meter to verify the accuracy and functionality of a duty meter installed on a bunker tanker or at a terminal.

  • Standard
    17 pages
    English language
    sale 15% off

This document specifies a method for the determination, using an oscillating U-tube density meter, of the density of crude petroleum and related products within the range 600 kg/m3 to 1 100 kg/m3, which can be handled as single-phase liquids at the test temperature and pressure.
This document is applicable to liquids of any vapour pressure as long as suitable precautions are taken to ensure that they remain in single phase. Loss of light components leads to changes in density during both the sample handling and the density determination.
This method is not intended for use with in-line density meters.

  • Standard
    19 pages
    English language
    e-Library read for
    1 day

This document gives guidance on the accuracy, installation, calibration and verification of automatic level gauges (ALGs), both intrusive and non-intrusive, for measuring the level of petroleum and liquid petroleum products having a Reid vapour pressure less than 100 kPa, transported aboard marine vessels (i.e. tankers and barges). This document gives guidance for buyers and sellers who mutually agree to use marine ALGs for either fiscal and/or custody transfer applications. This document is not applicable to the measurement of level in refrigerated cargo tanks. NOTE For information on the measurement of level in refrigerated cargo tanks, please see ISO 18132-1 and ISO 18132-3.

  • Standard
    12 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Many petroleum products are used as lubricants and the correct operation of the equipment depends upon the appropriate viscosity of the liquid being used. In addition, the viscosity of many petroleum fuels is important for the estimation of optimum storage, handling, and operational conditions. Thus, the accurate determination of viscosity is essential to many product specifications.  
5.2 Density is a fundamental physical property that can be used in conjunction with other properties to characterize both the light and heavy fractions of petroleum and petroleum products and in this test method is used for the calculation from dynamic to kinematic viscosity.
SCOPE
1.1 This test method covers the measurement of dynamic viscosity and density for the purpose of derivation of kinematic viscosity of petroleum liquids, both transparent and opaque. The kinematic viscosity, ν, in this test method is derived by dividing the dynamic viscosity, η, by the density, ρ, obtained at the same test temperature. This test method also calculates the temperature at which petroleum liquids attain a specified kinematic viscosity using Practice D341.  
1.2 The result obtained from this test method is dependent upon the behavior of the sample and is intended for application to liquids for which primarily the shear stress and shear rate are proportional (Newtonian flow behavior).  
1.3 The range of kinematic viscosity covered by this test method is from 0.5 mm2/s to 1000 mm2/s in the temperature range between –40 °C to 120 °C; however the precision has been determined only for fuels and oils in the range of 2.06 mm2/s to 476 mm2/s at 40 °C and 1.09 mm2/s to 107 mm2/s at 100 °C (as stated in Section 12 on Precision and Bias). For jet fuels, the precision of kinematic viscosity has been determined in the range of 2.957 mm2/s to 5.805 mm2/s at –20 °C and 5.505 mm2/s to 13.03 mm2/s at –40 °C (as stated in Section 12 on Precision and Bias), and the precision of the temperature at 12 mm2/s (cSt) has been determined in the range of –38.3 °C to –58.1 °C (as stated in Section 13 on Precision and Bias). The precision has only been determined for those materials, viscosity ranges, and temperatures as indicated in Section 12 on Precision and Bias. The test method can be applied to a wider range of materials, viscosity, and temperature. For materials not listed in Section 12 on Precision and Bias, the precision and bias may not be applicable.  
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    6 pages
    English language
    sale 15% off

This document specifies methods for the calibration of tanks above eight metres in diameter with cylindrical courses that are vertical. It provides two methods for determining the volumetric quantity of the liquid contained within a tank at gauged liquid levels.
NOTE For optical-reference-line method, the optical (offset) measurements required to determine the circumferences can be taken internally or externally, provided that insulation is removed if tank is insulated.
The methods are suitable for tilted tanks with up to 3 % deviation from the vertical provided that a correction is applied for the measurement tilt, as described in ISO 7507-1.
These methods are alternatives to other methods such as strapping (ISO 7507-1) and the optical-triangulation method (ISO 7507-3).

  • Standard
    33 pages
    English language
    e-Library read for
    1 day
  • Standard
    28 pages
    English language
    sale 15% off
  • Standard
    30 pages
    French language
    sale 15% off

This document establishes all necessary steps to properly measure and account for the quantities of cargoes on liquefied natural gas (LNG) carriers. This includes, but is not limited to, the measurement of liquid volume, vapour volume, temperature and pressure, and accounting for the total quantity of the cargo on board. This document describes the use of common measurement systems on board LNG carriers, the aim of which is to improve the general knowledge and processes in the measurement of LNG for all parties concerned. This document provides general requirements for those involved in the LNG trade on ships and onshore.

  • Standard
    64 pages
    English language
    sale 15% off

This document gives requirements and guidance on the selection, accuracy, installation, commissioning, calibration and verification of automatic tank thermometers (ATTs) in fiscal/custody transfer applications. The ATT is used for measuring the temperature of petroleum and liquid petroleum products having a Reid vapour pressure less than 100 kPa, stored in atmospheric storage tanks. This document is not applicable to the measurement of temperature in caverns or in refrigerated storage tanks.

  • Standard
    15 pages
    English language
    sale 15% off

This document gives requirements and guidance on the accuracy, installation, commissioning, calibration and verification of automatic level gauges (ALGs). It applies to ALGs which are both intrusive and non-intrusive types, in fiscal/custody transfer applications for measuring the level of petroleum and petroleum products having a Reid vapour pressure less than 100 kPa, stored in atmospheric storage tanks. This document is not applicable to the measurement of level in refrigerated storage tanks with ALG equipment.

  • Standard
    19 pages
    English language
    sale 15% off

This document provides descriptions of the different types of pipe provers, otherwise known as displacement provers, currently in use. These include sphere (ball) provers and piston provers operating in unidirectional and bidirectional forms. It applies to provers operated in conventional, reduced volume, and small volume modes.
This document gives guidelines for:
—    the design of pipe provers of each type;
—    the calibration methods;
—    the installation and use of pipe provers of each type;
—    the interaction between pipe provers and different types of flowmeters;
—    the calculations used to derive the volumes of liquid measured (see Annex A);
—    the expected acceptance criteria for fiscal and custody transfer applications, given as guidance for both the calibration of pipe provers and when proving flowmeters (see Annex C).
This document is applicable to the use of pipe provers for crude oils and light hydrocarbon products which are liquid at ambient conditions. The principles apply across applications for a wider range of liquids, including water. The principles also apply for low vapour pressure, chilled and cryogenic products, however use with these products can require additional guidance.

  • Standard
    118 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
5.1 The Oxygen Transmission Rate is an important determinant of packaging functionality afforded by packaging materials for a wide variety of packaged products including food, pharmaceuticals and medical devices. In some applications, sufficient oxygen must be allowed to permeate into the package. In others, the oxygen ingress must be minimized to maintain product quality.  
5.2 Other ASTM Standard Methods to measure the oxygen transmission rate are described in Test Method D3985 and Test Method F2622.
SCOPE
1.1 This test method covers a procedure for determination of the transmission rate of oxygen gas through plastics in the form of film, sheeting, laminates, coextrusions, coated or uncoated papers or fabrics.  
1.2 This test method is not the only method for measurement of the oxygen transmission rate (OTR). There are other methods of OTR determination that use other oxygen sensors and procedures.  
1.3 The values stated in SI units are to be regarded as standard. Commonly used metric units used to report Oxygen Transmission Rate are included in Terminology, Procedure, Precision and Bias sections and in the Calculation section of the Appendix.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    7 pages
    English language
    sale 15% off
  • Standard
    7 pages
    English language
    sale 15% off

This document provides descriptions of the different types of pipe provers, otherwise known as displacement provers, currently in use. These include sphere (ball) provers and piston provers operating in unidirectional and bidirectional forms. It applies to provers operated in conventional, reduced volume, and small volume modes.
This document gives guidelines for:
—    the design of pipe provers of each type;
—    the calibration methods;
—    the installation and use of pipe provers of each type;
—    the interaction between pipe provers and different types of flowmeters;
—    the calculations used to derive the volumes of liquid measured (see Annex A);
—    the expected acceptance criteria for fiscal and custody transfer applications, given as guidance for both the calibration of pipe provers and when proving flowmeters (see Annex C).
This document is applicable to the use of pipe provers for crude oils and light hydrocarbon products which are liquid at ambient conditions. The principles apply across applications for a wider range of liquids, including water. The principles also apply for low vapour pressure, chilled and cryogenic products, however use with these products can require additional guidance.

  • Standard
    118 pages
    English language
    e-Library read for
    1 day

This document provides descriptions of the different types of pipe provers, otherwise known as displacement provers, currently in use. These include sphere (ball) provers and piston provers operating in unidirectional and bidirectional forms. It applies to provers operated in conventional, reduced volume, and small volume modes. This document gives guidelines for: - the design of pipe provers of each type; - the calibration methods; - the installation and use of pipe provers of each type; - the interaction between pipe provers and different types of flowmeters; - the calculations used to derive the volumes of liquid measured (see Annex A); - the expected acceptance criteria for fiscal and custody transfer applications, given as guidance for both the calibration of pipe provers and when proving flowmeters (see Annex C). This document is applicable to the use of pipe provers for crude oils and light hydrocarbon products which are liquid at ambient conditions. The principles apply across applications for a wider range of liquids, including water. The principles also apply for low vapour pressure, chilled and cryogenic products, however use with these products can require additional guidance.

  • Standard
    109 pages
    English language
    sale 15% off
  • Standard
    118 pages
    French language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This practice covers a series of methods offered to aid users in calibrating U-tube density meters to provide a measure of density and an associated expanded uncertainty. The reference density, as obtained from either an equation of state (EOS) or CRM has an uncertainty that arises from the uncertainty of the measurements of temperature, pressure, and also the chemical purity of the substance studied (origin) or for that matter of the certified reference material. This uncertainty results in an additional uncertainty for the density of these samples. Because the measurements made with U-tube density meters are not absolute, the uncertainty with which the instrument calibration is determined is directly related to the uncertainty of the density obtained.
SCOPE
1.1 This practice outlines procedures for the calibration of U-tube density cells. It is applicable to instruments capable of determining fluid density at temperatures in the range –10 °C to 200 °C and pressures from just greater than the saturation pressure to 140 MPa. The practice refers to density cells as they are utilized to make measurements of fluids primarily in the compressed-liquid state. Examples of substances for which the density can be determined with a calibrated U-tube density meter include: crude oils, gasoline and gasoline-oxygenate blends, diesel and jet fuels, hydraulic fluids, and lubricating oils.  
1.2 This practice specifies a procedure for the determination of the expanded uncertainty of the density measurement.  
1.3 This practice pertains to fluids with viscosities  
1.4 4 The values listed in SI units are regarded as the standard, unless otherwise stated. The SI unit for mass density is kilograms per cubic metre (kg·m-3) and can be given as grams per cubic centimetre (g·cm-3).  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    7 pages
    English language
    sale 15% off
  • Standard
    7 pages
    English language
    sale 15% off

This document specifies the process and methodology for the construction, operation, and maintenance of statistical control charts to assess if a laboratory's execution of a standard test method is in-statistical-control and how to establish and validate the 'in-statistical-control' status.
It specifies control charts that are most appropriate for ISO/TC 28 test methods where the dominant common cause variation is associated with the long term, multiple operator conditions. The control charts specified for determination of in-statistical-control are: individual (I), moving range of 2 (MR2), and either the exponentially weighted moving average (EWMA) or zone-based run rules [similar to Western Electric (WE) run rules[3]] as sensitivity enhancement strategy to support the I-chart.
The procedures in this document have been primarily designed for numerical results obtained from testing of control samples prepared from a homogenous source of petroleum and related products in a manner that preserves the homogeneity of properties of interest between control samples. If the test method permits, a certified reference material (CRM) sample is used as a control sample provided the sample composition is representative of the material being tested and is not a pure compound; if this is done then the laboratory best establishes its own mean for the CRM sample.
This document is applicable to properties of interest that are (known to be) stable over time, and for data sets with sufficient resolution to support validation of the assumption that the data distribution can be approximately represented by the normal (Gaussian) model. Mitigating strategies are suggested for situations where the assumption cannot be validated.

  • Standard
    44 pages
    English language
    e-Library read for
    1 day

This document covers the physical properties, potential contaminants and test procedures for heavy brine fluids manufactured for use in oil and gas well drilling, completion, and workover fluids.
This document supplements API RP 13J, 5th edition (2014), the requirements of which are applicable with the exceptions specified in this document.
This document provides more suitable method descriptions for determining the formate brines pH, carbonate/bicarbonate concentrations and crystallization temperature at ambient pressure compared to the methods provided by API RP 13J, 5th edition (2014).
This document is intended for the use of manufacturers, service companies and end-users of heavy brines.

  • Standard
    23 pages
    English language
    e-Library read for
    1 day

This document specifies methods for the calibration of tanks above eight metres in diameter with cylindrical courses that are vertical. It provides two methods for determining the volumetric quantity of the liquid contained within a tank at gauged liquid levels. NOTE For optical-reference-line method, the optical (offset) measurements required to determine the circumferences can be taken internally or externally, provided that insulation is removed if tank is insulated. The methods are suitable for tilted tanks with up to 3 % deviation from the vertical provided that a correction is applied for the measurement tilt, as described in ISO 7507-1. These methods are alternatives to other methods such as strapping (ISO 7507-1) and the optical-triangulation method (ISO 7507-3).

  • Standard
    33 pages
    English language
    e-Library read for
    1 day
  • Standard
    28 pages
    English language
    sale 15% off
  • Standard
    30 pages
    French language
    sale 15% off

SIGNIFICANCE AND USE
4.1 This guide describes a methodology for estimating the effectiveness of an in-situ burn. It is intended to aid decision-makers and spill-responders in contingency planning, spill response, and training.  
4.2 This guide is not intended as a detailed operational manual for the ignition and burning of oil slicks. The guide does not cover the feasibility of an in-situ burn, or the evaluation of airborne emissions from a burn.  
4.3 It is generally accepted that a precise determination of the burn effectiveness will not be possible. However, the methodology presented in this guide can be used to provide a consistent and reasonable estimate.  
4.4 Burn effectiveness can be reported as total volume burned or burn efficiency (that is, volume burned of that available), or both.
SCOPE
1.1 This guide relates to the use of in-situ burning of oil spills. The focus of the guide is in-situ burning of spills on water, but the techniques described in the guide are generally applicable to in-situ burning of land spills as well.  
1.2 The purpose of this guide is to provide information that will enable spill responders to estimate the volume of oil consumed in an in-situ burn.  
1.3 This guide is one of several related to in-situ burning. Other standards cover specifications for fire-containment booms and the environmental and operational considerations for burning.  
1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.4.1 Exception—Table 1, Table 2 and Fig. 2 provide inch-pound units for information only.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Guide
    5 pages
    English language
    sale 15% off
  • Guide
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 A standard test is necessary to establish a baseline performance parameter so that dispersants can be compared, a given dispersant can be compared for effectiveness on different oils, and at different oil weathering stages, and batches of dispersant or oils can be checked for effectiveness changes with time or other factors. This test method provides a test at low mixing energy that is useful for discriminating subtle changes in effectiveness between variables when dispersant efficacy is high. A higher energy test alternative is the Baffled Flask (Test Method F3251).  
5.2 Dispersant effectiveness varies with oil type, sea energy, oil conditions, salinity, and many other factors. Test results from this test method form a baseline, but are not to be taken as the absolute measure of performance at sea. Actual field effectiveness could be more or less than this value.  
5.3 Many dispersant tests have been developed around the world. This test has been developed over many years using findings from world-wide testing to use standardized equipment, test procedures, and to overcome difficulties noted in other test procedures.
SCOPE
1.1 This test method covers the procedure to determine the effectiveness of oil spill dispersants on various oils in the laboratory. This test method is not applicable to other chemical agents nor to the use of such products or dispersants in open waters.  
1.2 This test method covers the use of the swirling flask test apparatus and does not cover other apparatuses nor are the analytical procedures described in this report directly applicable to such procedures.  
1.3 The test results obtained using this test method are intended to provide baseline effectiveness values used to compare dispersants and oil types under conditions analogous to those used in the test.  
1.4 The test results obtained using this test method are effectiveness values that should be cited as test values derived from this standard test. Dispersant effectiveness values do not directly relate to effectiveness at sea or in other apparatuses. Actual effectiveness at sea is dependent on sea energy, oil state, temperature, salinity, actual dispersant dosage, and amount of dispersant that interacts with the oil.  
1.5 The decision to use or not use a dispersant on an oil should not be based solely on this or any other laboratory test method.  
1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

This document specifies procedures and requirements for the transfer of bunkers to vessels by bunker tankers using the Coriolis mass flow meter (MFM) system. It encompasses the process leading to the approval of the MFM system as installed on bunker tankers and post-approval bunkering operation. It covers terminology, specifications, requirements and procedures on metrology, system integrity, metering system selection and installation, MFM system verification, bunker delivery and dispute handling. NOTE Local and international regulations, such as the International Convention for the Prevention of Pollution from Ships (MARPOL) can apply.

  • Standard
    49 pages
    English language
    sale 15% off

This document establishes a common basis for, and assistance in, the classification of applications and multiphase meters, as well as guidance and recommendations for the implementation and use of such meters. The so-called in-line multiphase flow meters (MPFMs) that directly measure the oil, water and gas flow rates, as well as the partial- and full-separation MPFMs are the main focus of this document. Conventional two- or three-phase separators are not included in this document. Only limited reference is made to wet-gas meters, since although wet-gas flow is a subset of multiphase flow, wet-gas measurement is covered by ISO/TR 11583 and ISO/TR 12748.

  • Technical specification
    98 pages
    English language
    sale 15% off

This document describes the design, use and calibration of volumetric measures (capacity measures) which are intended for use in fixed locations in a laboratory or in the field. This document gives guidance on both standard and non-standard measures. It also covers portable and mobile measures. This document is applicable to the petroleum industry; however, it may be applied more widely to other applications.
This document excludes measures for cryogenic liquids and pressurized measures as used for liquid petroleum gas (LPG) and liquefied natural gas (LNG).
Volumetric measures are classified as test measures or prover tanks depending on capacity and design.
Measures described in this document are primarily designed, calibrated and used to measure volumes from a measure which is wetted and drained for a specified time before use and designated to deliver. Many of the provisions, however, apply equally to measures which are used to measure a volume using a clean and dry measure and designated to contain.
Guidance is given regarding commonly expected uncertainties and calibration specifications.
The document also provides, in Annex A, reference formulae describing the properties of water and other fluids and materials used in volumetric measurement more generally.

  • Standard
    79 pages
    English language
    e-Library read for
    1 day

This document describes the design, use and calibration of volumetric measures (capacity measures) which are intended for use in fixed locations in a laboratory or in the field. This document gives guidance on both standard and non-standard measures. It also covers portable and mobile measures. This document is applicable to the petroleum industry; however, it may be applied more widely to other applications.
This document excludes measures for cryogenic liquids and pressurized measures as used for liquid petroleum gas (LPG) and liquefied natural gas (LNG).
Volumetric measures are classified as test measures or prover tanks depending on capacity and design.
Measures described in this document are primarily designed, calibrated and used to measure volumes from a measure which is wetted and drained for a specified time before use and designated to deliver. Many of the provisions, however, apply equally to measures which are used to measure a volume using a clean and dry measure and designated to contain.
Guidance is given regarding commonly expected uncertainties and calibration specifications.
The document also provides, in Annex A, reference formulae describing the properties of water and other fluids and materials used in volumetric measurement more generally.

  • Standard
    79 pages
    English language
    e-Library read for
    1 day

This document describes the design, use and calibration of volumetric measures (capacity measures) which are intended for use in fixed locations in a laboratory or in the field. This document gives guidance on both standard and non-standard measures. It also covers portable and mobile measures. This document is applicable to the petroleum industry; however, it may be applied more widely to other applications. This document excludes measures for cryogenic liquids and pressurized measures as used for liquid petroleum gas (LPG) and liquefied natural gas (LNG). Volumetric measures are classified as test measures or prover tanks depending on capacity and design. Measures described in this document are primarily designed, calibrated and used to measure volumes from a measure which is wetted and drained for a specified time before use and designated to deliver. Many of the provisions, however, apply equally to measures which are used to measure a volume using a clean and dry measure and designated to contain. Guidance is given regarding commonly expected uncertainties and calibration specifications. The document also provides, in Annex A, reference formulae describing the properties of water and other fluids and materials used in volumetric measurement more generally.

  • Standard
    70 pages
    English language
    sale 15% off
  • Standard
    78 pages
    French language
    sale 15% off

This document specifies the methodology for the regular monitoring of the test method precision achieved versus the precision published in the standard test method using data from proficiency testing schemes (PTSs) supported by the regular users of standard test methods.
The procedures in this document are designed specifically for proficiency testing (PT) conducted on standard test methods, having a published reproducibility, for petroleum and petroleum-related products, which are presumed to be homogeneous, and where the data distribution is approximately normal. In addition, it is applicable to properties of interest that are (known to be) stable over time and transport.
This document specifies the methodology for the statistical comparison of standard deviation under reproducibility conditions achieved in PT programmes versus that published.
The purpose of this comparison is to find out if the published reproducibility precision is representative of that achievable by the regular participants in the PT programmes.
This document also provides guidance on how to use a PT z-score to monitor an individual participant's performance over time (see Annex B).

  • Standard
    22 pages
    English language
    e-Library read for
    1 day

This document specifies procedures and requirements for the transfer of bunkers to vessels involving bunker tankers, road tankers and shore pipelines. It is applicable to pre-delivery, delivery and post-delivery checks and documentation.

  • Standard
    45 pages
    English language
    sale 15% off

This document specifies the metrological and technical requirements for flowmeters intended to be used for the dynamic measurement of liquefied natural gas (LNG) and other refrigerated hydrocarbon fluids. For LNG static volume measurement used in custody transfer, see ISO 10976. This document sets the best practice for the proper selection and installation of flowmeters in cryogenic applications and identifies the specific issues that can affect the performance of the flowmeter in use. Moreover, it offers a calibration guideline for laboratory and on-site conditions (mass or volume) by either using LNG or other reference fluids. The choice of calibration fluid will depend on the capabilities of the available flow calibration facilities and the ability to achieve the required overall measurement uncertainty demanded by the intended application. This document is applicable, but is not limited, to the use of Coriolis and ultrasonic flowmeters for dynamic measurements of LNG. In principle, LNG and other refrigerated liquid hydrocarbons are considered in this document. Recommendations in this document are based on the available test results with LNG. These results are probably applicable to other cryogenic fluids.

  • Standard
    47 pages
    English language
    sale 15% off

This document specifies the methodology for the design of an Interlaboratory Study (ILS) and
calculation of precision estimates of a test method specified by the study. In particular, it defines the
relevant statistical terms (Clause 3), the procedures to be adopted in the planning of ILS to determine
the precision of a test method (Clause 4), and the method of calculating the precision from the results of
such a study (Clauses 5 and 6).
The procedures in this document have been designed specifically for petroleum and petroleum related
products, which are normally considered as homogeneous. However, the procedures described in this
document can also be applied to other types of homogeneous products. Careful investigations are
necessary before applying this document to products for which the assumption of homogeneity can be
questioned.

  • Amendment
    10 pages
    English language
    e-Library read for
    1 day

This document specifies the methodology for the application of precision estimates of a test method
derived from ISO 4259-1. In particular, it defines the procedures for setting the property specification
limits based upon test method precision where the property is determined using a specific test method,
and in determining the specification conformance status when there are conflicting results between
supplier and receiver. Other applications of this test method precision are briefly described in principle
without the associated procedures.
The procedures in this document have been designed specifically for petroleum and petroleum-related
products, which are normally homogeneous. However, the procedures described in this document can
also be applied to other types of homogeneous products. Careful investigations are necessary before
applying this document to products for which the assumption of homogeneity can be questioned.

  • Amendment
    11 pages
    English language
    e-Library read for
    1 day

ISO 91:2017 refers to temperature volume correction factors, which allow users to convert volumes, measured at ambient conditions, to those at reference conditions for transactional purposes. This document also refers to compressibility factors required to correct hydrocarbon volumes measured under pressure to the corresponding volumes at the equilibrium pressure for the measured temperature.

  • Standard
    21 pages
    English language
    e-Library read for
    1 day
  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    16 pages
    French language
    sale 15% off

ISO 4259-1:2017 specifies the methodology for the design of an Interlaboratory Study (ILS) and calculation of precision estimates of a test method specified by the study. In particular, it defines the relevant statistical terms (Clause 3), the procedures to be adopted in the planning of ILS to determine the precision of a test method (Clause 4), and the method of calculating the precision from the results of such a study (Clauses 5 and 6).
The procedures in ISO 4259-1:2017 have been designed specifically for petroleum and petroleum related products, which are normally considered as homogeneous. However, the procedures described in ISO 4259-1:2017 can also be applied to other types of homogeneous products. Careful investigations are necessary before applying ISO 4259-1:2017 to products for which the assumption of homogeneity can be questioned.

  • Standard
    84 pages
    English language
    e-Library read for
    1 day

ISO 4259-2:2017 specifies the methodology for the application of precision estimates of a test method derived from ISO 4259‑1. In particular, it defines the procedures for setting the property specification limits based upon test method precision where the property is determined using a specific test method, and in determining the specification conformance status when there are conflicting results between supplier and receiver. Other applications of this test method precision are briefly described in principle without the associated procedures.
The procedures in ISO 4259-2:2017 have been designed specifically for petroleum and petroleum-related products, which are normally homogeneous. However, the procedures described in ISO 4259-2:2017 can also be applied to other types of homogeneous products. Careful investigations are necessary before applying ISO 4259-2:2017 to products for which the assumption of homogeneity can be questioned.

  • Standard
    33 pages
    English language
    e-Library read for
    1 day

ISO 2714:2017 describes and discusses the characteristics of displacement flowmeters. Attention is given to the factors to be considered in the application of positive displacement meters to liquid metering. These include the properties and nature of the liquid to be metered, the correct installation and operation of the meter, environmental effects, and the wide choice of secondary and ancillary equipment. Aspects of meter proving and maintenance are also discussed. ISO 2714:2017 is applicable to the metering of any appropriate liquid. Guidance is given on the use of positive displacement meters in the metering of two-component mixtures of the same phase such as water and oil. It is not applicable to two-phase flow when gases or solids are present under metering conditions (i.e. two-phase flow). It can be applied to the many and varied liquids encountered in industry for liquid metering only. It is not restricted to hydrocarbons. Guidance on the performance expected for fiscal/custody transfer applications for hydrocarbons is outlined. ISO 2714:2017 is not applicable to cryogenic liquids such as liquefied natural gas (LNG) and refrigerated petroleum gas. It does not cover potable water and fuel dispenser applications.

  • Standard
    36 pages
    English language
    sale 15% off

ISO 2715:2017 describes and discusses the characteristics of turbine flowmeters. Attention is given to the factors to be considered in the application of turbine meters to liquid metering. These include the properties and nature of the liquid to be metered, the correct installation and operation of the meter, environmental effects, and the wide choice of secondary and ancillary equipment. Aspects of meter proving and maintenance are also discussed. ISO 2715:2017 is applicable to the metering of any appropriate liquid. Guidance is given on the use of turbine meters in the metering of two-component liquid mixtures such as water and oil. It is not applicable to two-phase flow when gases or solids are present under metering conditions (i.e. two-phase flow). It can be applied to the many and varied liquids encountered in industry for liquid metering and is not restricted to hydrocarbons. Guidance on the performance expected for fiscal/custody transfer applications for hydrocarbons is outlined. ISO 2715:2017 is not applicable to cryogenic liquids, such as liquefied natural gas (LNG) and refrigerated petroleum gas. It does not cover potable water applications.

  • Standard
    38 pages
    English language
    sale 15% off
  • Standard
    42 pages
    French language
    sale 15% off
  • Standard
    42 pages
    French language
    sale 15% off