This document specifies the requirement for coating mass, other properties and testing of zinc and zinc alloy coatings on steel wire and steel wire products of circular or other section.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the designation and the characterization methods of the decorative metallic coatings of the products for radio wave transmissive application. The designation consists of the transmission loss of the radio wave, the frequency band of the radio wave under consideration, the lightness and hue of the parts, as well as the main material and manufacturing process of metallic coatings. The characterization methods consist of the determination of the transmission loss of radio wave with specific frequency band and the evaluation of lightness and hue which represent the colour and appearance.

  • Standard
    20 pages
    English language
    sale 15% off
  • Draft
    20 pages
    English language
    sale 15% off
  • Draft
    20 pages
    English language
    sale 15% off

This document specifies the requirement for coating mass, other properties and testing of zinc and zinc alloy coatings on steel wire and steel wire products of circular or other section.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies recommendations and requirements for the selection of coating materials, the pre-treatment of rollers, the preparation and post-treatment of the coatings, as well as the quality and performance evaluation of high velocity oxygen fuel (HVOF) cermet coatings used on metallurgical roll components. This document is applicable to four metallurgical rollers: pot inner roller (sink/stabilizing roller) of continuous galvanized line (CGL), cold rolling process roller, hot-rolled straightening roller and furnace roller.

  • Standard
    11 pages
    English language
    sale 15% off

This document specifies the designation and the characterization methods metallic coatings that provide electromagnetic interference (EMI) shielding for parts fabricated from plastics, ceramics, glasses and other materials. The designation consists of the EMI shielding effectiveness in a specific frequency range and the adhesion of metallic coatings to the substrate, as well as the substrate material and the principal component, manufacturing process and thickness of the metallic coatings. The characterization methods consist of the methods to determine the EMI shielding effectiveness of metallic coatings and those to evaluate the adhesion of metallic coatings to the substrate.

  • Standard
    19 pages
    English language
    sale 15% off

This document specifies a method for measuring the thickness of the individual nickel layers in electroplated multilayer nickel coatings and measuring the potential differences between the individual nickel layers in electroplated multilayer nickel coatings.
The measurement of coatings or layer systems other than electroplated multilayer nickel coatings is outside the scope of this document.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for non-destructive measurements of the thickness of conductive coatings on non-conductive base materials. This method is based on the principle of the sheet resistivity measurement and is applicable to any conductive coatings and layers of metal and semiconductor materials. In general, the probe has to be adjusted to the conductivity and the thickness of the respective application. However, this document focuses on metallic coatings on non-conductive base materials (e.g. copper on plastic substrates, printed circuit boards).
This method is also applicable to thickness measurements of conductive coatings on conductive base materials, if the resistivity of the coating and the base material is significantly different. However, this case is not considered in this document.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for non-destructive measurements of the thickness of conductive coatings on non-conductive base materials. This method is based on the principle of the sheet resistivity measurement and is applicable to any conductive coatings and layers of metal and semiconductor materials. In general, the probe has to be adjusted to the conductivity and the thickness of the respective application. However, this document focuses on metallic coatings on non-conductive base materials (e.g. copper on plastic substrates, printed circuit boards).
This method is also applicable to thickness measurements of conductive coatings on conductive base materials, if the resistivity of the coating and the base material is significantly different. However, this case is not considered in this document.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for measuring the thickness of the individual nickel layers in electroplated multilayer nickel coatings and measuring the potential differences between the individual nickel layers in electroplated multilayer nickel coatings.
The measurement of coatings or layer systems other than electroplated multilayer nickel coatings is outside the scope of this document.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the general properties of hot dip galvanized coatings and test methods for
hot dip galvanized coatings applied by dipping fabricated iron and steel articles (including certain
castings) in a zinc melt (containing not more than 2 % of other metals). This document does not apply
to the following:
a) sheet, wire and woven or welded mesh products that are continuously hot dip galvanized;
b) tube and pipe that are hot dip galvanized in automatic plants;
c) hot dip galvanized products (e.g. fasteners) for which specific standards exist and which can
include additional requirements or requirements which are different from those of this document.
NOTE Individual product standards can incorporate this document for the galvanized coating by quoting
its number, or can incorporate it with modifications specific to the product. Different requirements can also be
made for galvanized coatings on products intended to meet specific regulatory requirements.
This document does not apply to after-treatment or additional coating of hot dip galvanized articles.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the terms related to the general types of surface-finishing processes. Emphasis is placed on practical usage in surface-finishing technology in the metal-finishing field.
This document does not include terms for porcelain and vitreous enamel, thermally sprayed coatings and galvanising for which specialized vocabularies and glossaries exist. For the most part, basic terms that have the same meaning in surface finishing as in other fields of technology, and that are defined in handbooks and dictionaries of chemistry and physics, are not included.

  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the general properties of hot dip galvanized coatings and test methods for hot dip galvanized coatings applied by dipping fabricated iron and steel articles (including certain castings) in a zinc melt (containing not more than 2 % of other metals). This document does not apply to the following:
a) sheet, wire and woven or welded mesh products that are continuously hot dip galvanized;
b) tube and pipe that are hot dip galvanized in automatic plants;
c) hot dip galvanized products (e.g. fasteners) for which specific standards exist and which can include additional requirements or requirements which are different from those of this document.
NOTE      Individual product standards can incorporate this document for the galvanized coating by quoting its number, or can incorporate it with modifications specific to the product. Different requirements can also be made for galvanized coatings on products intended to meet specific regulatory requirements.
This document does not apply to after-treatment or additional coating of hot dip galvanized articles.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method and requirements for plasma nitriding and follow-up PVD hard coatings intended for use in cold-work moulds. This document provides the necessary information, such as the original structure of nitriding steels, process requirements, surface quality and adhesion of duplex PVD coatings, to create an optimal combination of high performance.

  • Standard
    6 pages
    English language
    sale 15% off

This document specifies a destructive method for the measurement of the local thickness of metallic and other inorganic coatings by examination of cross-sections with a scanning electron microscope (SEM). The method is applicable for thicknesses up to several millimetres, but for such thick coatings it is usually more practical to use a light microscope (see ISO 1463). The lower thickness limit depends on the achieved measurement uncertainty (see Clause 10).
NOTE       The method can also be used for organic layers when they are neither damaged by the preparation of the cross-section nor by the electron beam during imaging.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the general properties of hot dip galvanized coatings and test methods for hot dip galvanized coatings applied by dipping fabricated iron and steel articles (including certain castings) in a zinc melt (containing not more than 2 % of other metals). This document does not apply to the following: a) sheet, wire and woven or welded mesh products that are continuously hot dip galvanized; b) tube and pipe that are hot dip galvanized in automatic plants; c) hot dip galvanized products (e.g. fasteners) for which specific standards exist and which can include additional requirements or requirements which are different from those of this document. NOTE Individual product standards can incorporate this document for the galvanized coating by quoting its number, or can incorporate it with modifications specific to the product. Different requirements can also be made for galvanized coatings on products intended to meet specific regulatory requirements. This document does not apply to after-treatment or additional coating of hot dip galvanized articles.

  • Standard
    16 pages
    English language
    sale 15% off
  • Standard
    17 pages
    French language
    sale 15% off
  • Standard
    17 pages
    French language
    sale 15% off

This document specifies the designation and the characterization methods of the decorative metallic coatings of the products for radio wave transmissive application. The designation consists of the transmission loss of the radio wave, the frequency band of the radio wave under consideration, the lightness and hue of the parts, as well as the main material and manufacturing process of metallic coatings. The characterization methods consist of the determination of the transmission loss of radio wave with specific frequency band and the evaluation of lightness and hue which represent the colour and appearance.

  • Standard
    20 pages
    English language
    sale 15% off

This document specifies requirements for steel fasteners with electroplated coatings and coating
systems. The requirements related to dimensional properties also apply to fasteners made of copper or
copper alloys.
It also specifies requirements and gives recommendations to minimize the risk of hydrogen
embrittlement, see 4.4 and Annex B.
It mainly applies to fasteners with zinc and zinc alloy coating systems (zinc, zinc-nickel, zinc-iron) and
cadmium, primarily intended for corrosion protection and other functional properties:
— with or without conversion coating,
— with or without sealant,
— with or without top coat,
— with or without lubricant (integral lubricant and/or subsequently added lubricant).
Specifications for other electroplated coatings and coating systems (tin, tin-zinc, copper-tin, coppersilver, copper, silver, copper-zinc, nickel, nickel-chromium, copper-nickel, copper-nickel-chromium)
are included in this document only for dimensional requirements related to fasteners with ISO metric
threads.
The requirements of this document for electroplated fasteners take precedence over other documents
dealing with electroplating.
This document applies to steel bolts, screws, studs and nuts with ISO metric thread, to other threaded
fasteners and to non-threaded fasteners such as washers, pins, clips and rivets.
NOTE Electroplating is also applied to stainless steel fasteners, e.g. for the purpose of lubrication in order to
avoid galling.
Information for design and assembly of coated fasteners is given in Annex A.
This document does not specify requirements for properties such as weldability or paintability

  • Standard
    66 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies four electrographic tests for assessing the porosity of electrodeposited gold and gold alloy coatings for engineering, and decorative and protective purposes.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies methods used to evaluate the external corrosion hazards of well casings, as well as cathodic protection means and devices to be implemented in order to prevent corrosion of the external part of these wells in contact with the soil.
This document applies to any gas, oil or water well with metallic casing, whether cemented or not.
However, in special conditions (shallow casings: e.g. 50 m, and homogeneous soil), EN 12954 can be used to achieve the cathodic protection and assess its efficiency.

  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This International Standard describes general types of surface-finishing processes and provides a vocabulary that defines terms related to these processes. Emphasis is placed on practical usage in surface-finishing technology in the metal-finishing field. The vocabulary does not include definitions and terms for porcelain and vitreous enamel, thermally sprayed coatings and hot-dip galvanizing for which specialized vocabularies and glossaries exist or are in preparation. For the most part, basic terms that have the same meaning in surface finishing as in other fields of technology, and that are defined in handbooks and dictionaries of chemistry and physics, are not included.

  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the terms related to the general types of surface-finishing processes. Emphasis is placed on practical usage in surface-finishing technology in the metal-finishing field. This document does not include terms for porcelain and vitreous enamel, thermally sprayed coatings and galvanising for which specialized vocabularies and glossaries exist. For the most part, basic terms that have the same meaning in surface finishing as in other fields of technology, and that are defined in handbooks and dictionaries of chemistry and physics, are not included.

  • Standard
    28 pages
    English language
    sale 15% off
  • Standard
    35 pages
    French language
    sale 15% off
  • Draft
    32 pages
    English language
    sale 15% off
  • Draft
    35 pages
    French language
    sale 15% off

This document specifies a destructive method for the measurement of the local thickness of metallic
and other inorganic coatings by examination of cross-sections with a scanning electron microscope
(SEM). The method is applicable for thicknesses up to several millimetres, but for such thick coatings it
is usually more practical to use a light microscope (see ISO 1463). The lower thickness limit depends on
the achieved measurement uncertainty (see Clause 10).
NOTE The method can also be used for organic layers when they are neither damaged by the preparation of
the cross-section nor by the electron beam during imaging.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a destructive method for the measurement of the local thickness of metallic and other inorganic coatings by examination of cross-sections with a scanning electron microscope (SEM). The method is applicable for thicknesses up to several millimetres, but for such thick coatings it is usually more practical to use a light microscope (see ISO 1463). The lower thickness limit depends on the achieved measurement uncertainty (see Clause 10). NOTE The method can also be used for organic layers when they are neither damaged by the preparation of the cross-section nor by the electron beam during imaging.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    13 pages
    French language
    sale 15% off
  • Draft
    12 pages
    English language
    sale 15% off
  • Draft
    13 pages
    French language
    sale 15% off

This document specifies the apparatus, reagents, and procedure to assess the corrosion resistance of chromium electroplated parts in the presence of de-icing salts (especially calcium chloride) in the laboratory. This method is primarily applicable to decorative parts plated with chromium, especially to exterior (automobile) parts electroplated with nickel-chromium or copper-nickel-chromium. This document simulates a special corrosion in the presence of hygroscopic and corrosive de-icing salt and conductive mud with a high salt concentration on chromium electroplated deposits during winter.

  • Standard
    7 pages
    English language
    sale 15% off
  • Draft
    7 pages
    English language
    sale 15% off

This document specifies a method for the measurement of the local thickness of metallic coatings, oxide layers, and porcelain or vitreous enamel coatings, by the microscopical examination of cross-sections using an optical microscope.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies methods for assessing the tin coating on drawn round copper wire for the manufacture of electrical conductors, e.g. according to EN 13602.
This document includes test methods for the determination of the following characteristics:
a) thickness of the unalloyed tin coating;
b) continuity of the tin coating;
c) adherence of the tin coating.
WARNING — This document can involve the use of hazardous materials, operations, and equipment. This document does not purport to address all of the safety problems associated with their use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Moreover this document does not cover the aspects related to the people protection against the X-ray. To obtain information applicable to this aspect, it is convenient to refer to national and international standards, and also to the local regulations if they exist.

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies four electrographic tests for assessing the porosity of electrodeposited gold and gold alloy coatings for engineering, and decorative and protective purposes.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the measurement of metal coating thickness by first forming a step between the surface of the coating and the surface of its substrate and then measuring the step height using a profile recording instrument. It covers the instrumentation characteristics and the procedure appropriate to this specific application of profilometric methods.
The method is applicable to the measurement of thicknesses of metal coatings from 0,01 µm to 1 000 µm on flat surfaces and, if appropriate precautions are taken, on cylindrical surfaces. It is highly suitable for the measurement of minute thicknesses but, for thicknesses of less than 0,01 µm, surface flatness and surface smoothness are very critical and, accordingly, the method is not suitable for use down to the lowest level of measurement usual for electronic stylus instruments. The method is suitable for measuring coating thicknesses when preparing coating thickness reference standards.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies four electrographic tests for assessing the porosity of electrodeposited gold and gold alloy coatings for engineering, and decorative and protective purposes.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    French language
    sale 15% off
  • Standard
    5 pages
    French language
    sale 15% off
  • Draft
    5 pages
    English language
    sale 15% off

This European Standard specifies methods for assessing the tin coating on drawn round copper wire for the manufacture of electrical conductors, e.g. according to EN 13602.
This European Standard includes test methods for the determination of the following characteristics:
a)   thickness of the unalloyed tin coating;
b)   continuity of the tin coating;
c)   adherence of the tin coating.
WARNING - This European Standard can involve the use of hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with their use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the measurement of the local thickness of metallic coatings, oxide
layers, and porcelain or vitreous enamel coatings, by the microscopical examination of cross-sections
using an optical microscope.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the measurement of metal coating thickness by first forming a
step between the surface of the coating and the surface of its substrate and then measuring the step
height using a profile recording instrument. It covers the instrumentation characteristics and the
procedure appropriate to this specific application of profilometric methods.
The method is applicable to the measurement of thicknesses of metal coatings from 0,01 μm to 1 000 μm
on flat surfaces and, if appropriate precautions are taken, on cylindrical surfaces. It is highly suitable
for the measurement of minute thicknesses but, for thicknesses of less than 0,01 μm, surface flatness
and surface smoothness are very critical and, accordingly, the method is not suitable for use down to
the lowest level of measurement usual for electronic stylus instruments. The method is suitable for
measuring coating thicknesses when preparing coating thickness reference standards.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the measurement of the local thickness of metallic coatings, oxide layers, and porcelain or vitreous enamel coatings, by the microscopical examination of cross-sections using an optical microscope.

  • Standard
    13 pages
    English language
    sale 15% off
  • Standard
    14 pages
    French language
    sale 15% off
  • Draft
    13 pages
    English language
    sale 15% off
  • Draft
    14 pages
    French language
    sale 15% off

This document specifies a method for measuring the in-plane Young’s modulus of thermal barrier coatings (TBCs) formed on substrates, from room temperature up to 1 000 °C.

  • Standard
    10 pages
    English language
    sale 15% off
  • Draft
    10 pages
    English language
    sale 15% off

This document specifies a method for the measurement of metal coating thickness by first forming a step between the surface of the coating and the surface of its substrate and then measuring the step height using a profile recording instrument. It covers the instrumentation characteristics and the procedure appropriate to this specific application of profilometric methods. The method is applicable to the measurement of thicknesses of metal coatings from 0,01 µm to 1 000 µm on flat surfaces and, if appropriate precautions are taken, on cylindrical surfaces. It is highly suitable for the measurement of minute thicknesses but, for thicknesses of less than 0,01 µm, surface flatness and surface smoothness are very critical and, accordingly, the method is not suitable for use down to the lowest level of measurement usual for electronic stylus instruments. The method is suitable for measuring coating thicknesses when preparing coating thickness reference standards.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    9 pages
    French language
    sale 15% off
  • Draft
    8 pages
    English language
    sale 15% off
  • Draft
    9 pages
    French language
    sale 15% off

This document specifies a method of determining the mass per unit area of hot dip galvanized coatings on ferrous materials.
Since an exact knowledge of the area of the surface is essential, this document is mainly applicable to shapes whose areas are easy to determine. If, with heavy samples, the specifications of Clause 7 cannot be met, then the hot dip galvanized coating mass is determined by another method.

  • Standard
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements for the coating mass per unit area, for other properties and also for testing of zinc or zinc-alloy coatings on steel wire and steel wire products of circular or other section.

  • Standard
    15 pages
    English language
    sale 15% off
  • Draft
    15 pages
    English language
    sale 15% off

This document specifies a method for non-destructive measurements of the thickness of conductive coatings on non-conductive base materials. This method is based on the principle of the sheet resistivity measurement and is applicable to any conductive coatings and layers of metal and semiconductor materials. In general, the probe has to be adjusted to the conductivity and the thickness of the respective application. However, this document focuses on metallic coatings on non-conductive base materials (e.g. copper on plastic substrates, printed circuit boards). This method is also applicable to thickness measurements of conductive coatings on conductive base materials, if the resistivity of the coating and the base material is significantly different. However, this case is not considered in this document.

  • Standard
    9 pages
    English language
    sale 15% off
  • Standard
    10 pages
    French language
    sale 15% off
  • Standard
    10 pages
    French language
    sale 15% off
  • Draft
    9 pages
    English language
    sale 15% off

This document specifies a method of determining the mass per unit area of hot dip galvanized coatings
on ferrous materials.
Since an exact knowledge of the area of the surface is essential, this document is mainly applicable to
shapes whose areas are easy to determine. If, with heavy samples, the specifications of Clause 7 cannot
be met, then the hot dip galvanized coating mass is determined by another method.

  • Standard
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for measuring the thickness of the individual nickel layers in electroplated multilayer nickel coatings and measuring the potential differences between the individual nickel layers in electroplated multilayer nickel coatings. The measurement of coatings or layer systems other than electroplated multilayer nickel coatings is outside the scope of this document.

  • Standard
    11 pages
    English language
    sale 15% off
  • Standard
    11 pages
    French language
    sale 15% off
  • Standard
    11 pages
    French language
    sale 15% off

This document specifies a method of determining the mass per unit area of hot dip galvanized coatings on ferrous materials. Since an exact knowledge of the area of the surface is essential, this document is mainly applicable to shapes whose areas are easy to determine. If, with heavy samples, the specifications of Clause 7 cannot be met, then the hot dip galvanized coating mass is determined by another method.

  • Standard
    3 pages
    English language
    sale 15% off
  • Standard
    3 pages
    French language
    sale 15% off

This document gives guidelines and recommendations for the general principles of design appropriate to articles to be hot dip galvanized after fabrication (e.g. in accordance with ISO 1461) for the corrosion protection of, for example, articles that have been manufactured in accordance with EN 1090-2.
This document does not apply to hot dip galvanized coatings applied to continuous wire or sheet (e.g. to EN 10346).

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements and recommendations for electroless Ni-P-ceramic composite coatings applied from aqueous solutions onto metallic and non-metallic substrates. This document does not apply to ternary nickel alloys and nickel-boron ceramic composite coatings.

  • Standard
    8 pages
    English language
    sale 15% off
  • Draft
    8 pages
    English language
    sale 15% off

This document specifies a method for measuring the reproducible linear thermal expansion coefficient of ceramic top coats (TCs) for thermal barrier coatings (TBCs) up to 1 300 °C.

  • Standard
    9 pages
    English language
    sale 15% off
  • Standard
    9 pages
    English language
    sale 15% off

This document specifies a method for using phase-sensitive eddy-current instruments for non-destructive measurements of the thickness of non-magnetic metallic coatings on metallic and non-metallic basis materials such as:
a)    zinc, cadmium, copper, tin or chromium on steel;
b)    copper or silver on composite materials.
The phase-sensitive method can be applied without thickness errors to smaller surface areas and to stronger surface curvatures than the amplitude-sensitive eddy-current method specified in ISO 2360, and is less affected by the magnetic properties of the basis material. However, the phase-sensitive method is more affected by the electrical properties of the coating materials.
In this document, the term "coating" is used for materials such as, for example, paints and varnishes, electroplated coatings, enamel coatings, plastic coatings, claddings and powder coatings.
This method is particularly applicable to measurements of the thickness of metallic coatings. These coatings can be non-magnetic metallic coatings on non-conductive, conductive or magnetic base materials, but also magnetic coatings on non-conductive or conductive base materials.
The measurement of metallic coatings on metallic basis material works only when the product of conductivity and permeability (σ, μ) of one of the materials is at least a factor of two times the product of conductivity and permeability for the other material. Non-ferromagnetic materials have a relative permeability of one.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives guidelines and recommendations for the general principles ofdesign appropriate to articles to be hot dip galvanized after fabrication (e.g.in accordance with ISO 1461) for the corrosion protection of, for example,articles that have been manufactured in accordance with EN 1090-2. This documentdoes not apply to hot dip galvanized coatings applied to continuous wire orsheet (e.g. to EN 10346).

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the general principles for the implementation of a system of cathodic protection against corrosive attacks on buried or immersed metal structures with and without the influence of external electrical sources.

  • Standard
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for using phase-sensitive eddy-current instruments for non-destructive measurements of the thickness of non-magnetic metallic coatings on metallic and non-metallic basis materials such as: a) zinc, cadmium, copper, tin or chromium on steel; b) copper or silver on composite materials. The phase-sensitive method can be applied without thickness errors to smaller surface areas and to stronger surface curvatures than the amplitude-sensitive eddy-current method specified in ISO 2360, and is less affected by the magnetic properties of the basis material. However, the phase-sensitive method is more affected by the electrical properties of the coating materials. In this document, the term “coating” is used for materials such as, for example, paints and varnishes, electroplated coatings, enamel coatings, plastic coatings, claddings and powder coatings. This method is particularly applicable to measurements of the thickness of metallic coatings. These coatings can be non-magnetic metallic coatings on non-conductive, conductive or magnetic base materials, but also magnetic coatings on non-conductive or conductive base materials. The measurement of metallic coatings on metallic basis material works only when the product of conductivity and permeability (s, μ) of one of the materials is at least a factor of two times the product of conductivity and permeability for the other material. Non-ferromagnetic materials have a relative permeability of one.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives guidelines and recommendations for the general principles of design appropriate to articles to be hot dip galvanized after fabrication (e.g. in accordance with ISO 1461) for the corrosion protection of, for example, articles that have been manufactured in accordance with EN 1090-2. This document does not apply to hot dip galvanized coatings applied to continuous wire or sheet (e.g. to EN 10346).

  • Standard
    21 pages
    English language
    sale 15% off
  • Standard
    23 pages
    French language
    sale 15% off

This document specifies the evaluation standard of the composition, structure and properties of multi-layer hard coatings by common physical vapor deposition (PVD), indicating a vacuum deposition method that produces a material source by evaporation, sputtering or related non-chemical ways.

  • Standard
    9 pages
    English language
    sale 15% off