ISO/TR 23383:2020
(Main)Textiles and textile products — Smart (Intelligent) textiles— Definitions, categorisation, applications and standardization needs
Textiles and textile products — Smart (Intelligent) textiles— Definitions, categorisation, applications and standardization needs
This document provides definitions in the field of "smart" textiles and textile products as well as a categorization of different types of smart textiles. It describes briefly the current stage of development of these products and their application potential and gives indications on preferential standardization needs.
Textiles et produits textiles — Textiles intelligents — Définitions, catégorisation, applications et besoins de normalisation
Le présent document fournit des définitions dans le domaine des textiles et produits textiles «intelligents», ainsi qu'une catégorisation des différents types de textiles intelligents. Il décrit brièvement l'état actuel de développement de ces produits et leur application potentielle et fournit des indications sur les besoins de normalisation préférentiels.
General Information
Relations
Standards Content (Sample)
TECHNICAL ISO/TR
REPORT 23383
First edition
2020-11
Textiles and textile products — Smart
(Intelligent) textiles— Definitions,
categorisation, applications and
standardization needs
Textiles et produits textiles — Textiles intelligents — Définitions,
catégorisation, applications et besoins de normalisation
Reference number
©
ISO 2020
© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2020 – All rights reserved
Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Functional and smart textile products . 2
4.1 Functional textile products . 2
4.1.1 General. 2
4.1.2 Electrically conductive textile products . 2
4.1.3 Thermally conductive textile products . 3
4.1.4 Thermally radiative (emissive) textile products . 3
4.1.5 Optically conductive textile products . 3
4.1.6 Fluorescent textile products . 3
4.1.7 Phosphorescent textile products . 4
4.1.8 Textile products releasing substances . 4
4.2 Smart (intelligent) textile products . 4
4.2.1 General. 4
4.2.2 Chromic textile products . 5
4.2.3 Phase change textile products . 5
4.2.4 Textile products with active ingredients inside the microcapsules . 6
4.2.5 Shape change (shape memory) textile products . 6
4.2.6 Super-absorbing polymers and gels . 6
4.2.7 Auxetic textile products . 7
4.2.8 Dilating and shear-thickening textile products . 7
4.2.9 Piezoelectric textile products . 7
4.2.10 Electroluminescent textile products . 7
4.2.11 Thermo-electric textile products . 8
4.2.12 Photovoltaic textile products . 8
4.2.13 Electrolytic textile products . 8
4.2.14 Capacitive textile products . 8
5 Smart textile systems . 9
5.1 Categories . 9
5.1.1 General. 9
5.1.2 Systems without energy or communication function (NoE-NoCom) .11
5.1.3 Systems with energy function, but without communication function
(E-NoCom).11
5.1.4 Systems with communication function but without energy function (noE-Com) 11
5.1.5 With energy and communication function (E-Com) .12
5.2 Examples of “Smart textile systems” and their functional analysis .12
5.2.1 Medical application: monitoring of health situation .12
5.2.2 Occupational safety application: work wear and protective clothing .13
5.2.3 Leisure and fashion application .14
5.2.4 Garment based on thermal control by phase change materials (PCM) .14
5.2.5 Heated garment, car seats, etc. for comfort or protection .14
5.2.6 Irradiation system for medical therapeutics .15
5.2.7 Geotextiles applications .16
6 Considerations for standardization .16
6.1 General .16
6.2 Verification of claimed performances .17
6.3 Innocuousness .17
6.4 Durability of properties .18
6.5 Product information .18
6.6 Environmental aspects .19
6.7 Examples of possible standardization of smart (intelligent) textile products and
systems .19
6.7.1 Smart (intelligent) textile products — Phase change materials (PCM) .19
6.7.2 Smart textile systems — Heating textile with temperature control .20
Bibliography .22
iv © ISO 2020 – All rights reserved
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 38, Textiles, in collaboration with the
European Committee for Standardization (CEN) Technical Committee CEN/TC 248, Textiles and textile
products, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna
Agreement).
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
Introduction
Terms like “smart textile” and “intelligent textile” mean different things to different people. However,
there is a common agreement that these are textiles or textile products that possess additional intrinsic
and functional properties not normally associated with traditional textiles.
Although adjectives such as “smart” or “intelligent” are mainly intended for marketing purposes, more
technically correct definitions will not prevent the use of this terminology by textile manufacturers or
by the general public. Nor will the unintended inclusion of “non-smart” products make products any
less safe or fit for purpose.
The standardization of smart textiles or smart textile products or systems is not straightforward
because it involves an overlap between the standardization of the “traditional” textile product, e.g.
a fire fighter's jacket, and the standardization of the additional intrinsic functional properties of the
“smart product”. This overlap can manifest itself in a number of areas, possibly including:
— Expertise: the knowledge and experience of standardization for the textile properties and for the
additional properties (temperature sensing, variable thermal insulation properties) can come from
different unrelated standardization groups. To take the above example, there should be input from
standardization groups working in the areas of textiles, medical devices and electric or electronic
devices.
— Testing: there is a need to test the additional functional properties to specific textile test standards
and vice versa. Again, with the same example, the electronic elements should be assessed for their
resistance to cleaning and the textile elements need to be tested for electrical safety.
— Unexpected and/or unintended synergies: these might result from the combination of technologies
in smart textiles and need be recognized and addressed by standardization, wherever possible. For
example, the presence of conductive fibres to incorporate a personal stereo into a smart raincoat might
increase the risk of the wearer suffering a lightning-strike in a thunderstorm. This is despite the fact
that neither rainwear nor personal stereos, when separate, need to be assessed against this risk.
— Legislation: Certain textile product groups, e.g. protective clothing, geotextiles or textile floor
coverings, are in addition subject to specific national and/ or regional legislation. It can be necessary
to simultaneously address the requirements of legislation covering more than one product category.
For example, a “classic” fire fighter's suit needs comply with the requirements for personal protective
equipment, whereas a “smart” fire fighter's suit with built-in electronic and ICT features should also
comply with the applicable provisions for electronic equipment and ICT. Conformity assessment
will therefore need to follow the conformity assessment schemes for all applicable legal provisions.
The purpose of this document is to identify the considerations that need to be addressed when writing
standards for smart textiles or applying existing standards to them. This information can be of use to:
— end-users, in determining whether a product has indeed been fully assessed;
— conformity assessment bodies, as a guide towards assessing products according to the appropriate
standards;
— specification writers, as a guide to writing new specific standards for smart textiles;
— manufacturers of smart textiles, to advise them on appropriate product testing and on suitable
ways to substantiate product claims;
— market surveillance authorities, to help in the assessment of product claims, product safety and
fitness for purpose.
The factual information in this document is available elsewhere in a more comprehensive form and each
individual item will inevitably be common knowledge to at least one group of readers. The aim of this
document is to guide readers through those areas, with which they are not familiar, and to direct them
vi © ISO 2020 – All rights reserved
towards further, more specialized reading. In accordance with ISO rules, this document is intended to
be reviewed regularly to keep it in line with technical and market evolutions.
TECHNICAL REPORT ISO/TR 23383:2020(E)
Textiles and textile products — Smart (Intelligent)
textiles— Definitions, categorisation, applications and
standardization needs
1 Scope
This document provides definitions in the field of “smart” textiles and textile products as well
as a categorization of different types of smart textiles. It describes briefly the current stage of
development of these products and their application potential and gives indications on preferential
standardization needs.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.1
textile fibre
unit of matter characterised by its flexibility, fineness and high ratio of length to maximum transverse
dimension, which render it suitable for textile applications
[SOURCE: Regulation EU 1007/2011, Article 3, 1. (b), (i)]
3.2
textile product
product made of textile fibres (3.1), yarns and/ or fabrics and intended to be used, as such or in
conjunction with other textile or non-textile elements
3.3
functional textile product
textile product to which a specific function is added by means of material, composition, construction
and/or finishing (applying additives, etc.)
3.4
smart textile product
intelligent textile product
interactive textile product
functional textile product (3.3) which interacts reversibly with its environment, or responds or adapts
to changes in the environment
Note 1 to entry: The term “smart textile” can refer to either a “smart textile product” or a “smart textile system”.
Only the context, in which the term is used, determines which one of the two is intended.
3.5
environment
surroundings
circumstances, objects, or conditions, which surround a textile material or textile product or the user of
that material or product
3.6
non-textile element
product which is not composed of textile fibres (3.1)
Note 1 to entry: Non-textile element(s) can include elements used for garment construction, for example slide
fastener(s), press stud(s), button(s), membranes, non-textile patches, prints, coatings, finishes.
Note 2 to entry: Non-textile element(s) can also include elements with functionalities listed in 4.1 and 4.2.
3.7
textile system
assemblage of textile product(s) and non-textile element(s)
3.8
smart textile system
textile-based system which exhibits an intended and exploitable response as a reaction either to
changes in its surroundings/environment or to an external signal/input
4 Functional and smart textile products
4.1 Functional textile products
4.1.1 General
Functional textile products can be components of smart textile systems and hence functional textile
products, which are relevant for these smart textile systems, are discussed here. This is illustrated by
the following examples.
EXAMPLE 1 A textile resistance heater
— Functional textile product: a conductive material forming the basis of a resistance heater in a textile system.
— Smart textile system: a textile resistance heater as (part of) a textile system, connected to an electrical power
supply which can only be switched on and off manually or a resistance heater as part of a textile system,
connected to an electrical power supply with a regulated power output and equipped with a temperature
sensor as to maintain a constant temperature around the heater.
EXAMPLE 2 Optical fibres
— Functional textile product: optical fibres used as part of a textile system
— Smart textile system: optical fibres as (part of) a textile system, connected to a light source which can only
be switched on and off manually or optical fibres as part of a textile system, connected to a light source with
a regulated power output and equipped with a sensor to adjust the illumination level to the amount of light
present due to other light sources in the surroundings of the textile system.
4.1.2 Electrically conductive textile products
Electrically conductive textile product conducts an electrical current or supply an electric field to a
device. Electrical conduction is the movement of electrically charged particles through an electrical
2 © ISO 2020 – All rights reserved
conductor, called an electric current. The charge transport can result as a response to an electric field
or as a result of a concentration gradient in carrier density, i.e. by diffusion.
NOTE A material is considered to have a "good electrical conductivity" if it has a specific conductivity
2 4
(resistivity) of > 10 S/m (<10 Ω·cm). A material is considered to have "ohmic behaviour" if its resistance
follows Ohms law, a fundamental law of electricity, stating that the voltage at the terminals of an ideal resistor
1)
is proportional to the current in the resistor . The materials with the highest specific conductivity are metals.
Some polymers and ceramics can also show ohmic behaviour, e.g. intrinsically conductive polymers (e.g. doped
polyaniline) or indium tin oxide (ITO).
4.1.3 Thermally conductive textile products
Thermally conductive textile products conduct heat. The transfer of thermal energy in a substance is
due to a temperature gradient, i.e. from a region of higher temperature to a region of lower temperature,
acting to equalize temperature differences.
Metals have thermal conductivities above approximately 20 W/(m·K) and are considered to be very
good thermal conductors. Their thermal conductivity increases with their electrical conductivity.
There are also non-metallic elements and compounds that are (very) good thermal conductors (e.g.
carbon and boron nitride).
Applications in smart textile systems can be as a heat sink, e.g. for cooling electronic components.
4.1.4 Thermally radiative (emissive) textile products
Thermally radiative (emissive) textile products radiate heat, i.e. they emit electromagnetic radiation in
the infrared range of 750 nm to 100 µm from their surface due to their temperature.
Thermal radiation (emission) can be utilized in the form of a resistance heater, where the resistance of
a conductor is used to heat the conductor to a sufficiently high temperature to generate heat radiation
or as a heat exchanger, e.g. a pipe with hot air or hot water flowing through it.
Applications in smart textile products are as thermal heaters, as described in 4.1.1.
4.1.5 Optically conductive textile products
Optically conductive textile products transport (visible) light, i.e. electromagnetic radiation in the
range of 400 nm to 750 nm.
Optical fibres from glass or plastic keep the light in their core by total internal reflection, i.e. the fibre
acts as a waveguide. Optical fibres are widely used in fibre-optic communications, which permits
transmission over longer distances and at higher bandwidths (data rates) than other forms of
communications. Fibres are used instead of metal wires because signals travel along them with less
loss, and they are also immune to electromagnetic interference.
Fibres are also used for illumination, and are wrapped in bundles so they can be used to carry
images, thus allowing viewing in tight spaces. Specially designed fibres are used for a variety of other
applications, including sensors and fibre lasers.
4.1.6 Fluorescent textile products
Fluorescence is the molecular absorption of a photon, followed almost instantaneously by the emission
of a less energetic photon. As the emitted photon is of lower energy than the absorbed photon, the
emitted light will be of longer wavelength than the absorbed light, which allows, for example, to turn
UV radiation into visible light.
1) www .electropedia.or g IEV ref 131–15–08.
Fluorescence is used in high visibility clothing for safety purposes. Fluorescent textile products are
available in a variety of colours from red to blue-violet. A variety of organic and inorganic materials
show fluorescence.
4.1.7 Phosphorescent textile products
Phosphorescence is the molecular absorption of a photon, resulting in the formation of an excited state,
followed by the emission of a less energetic photon. Since the emitted photon is of lower energy than
the absorbed photon, the emitted light will be of longer wavelength. The lifetime of the excited state
in phosphorescent materials can be very long, in the order of hours. This means that once activated,
phosphorescent materials will continue to emit light for hours without any external power supply. This
makes them suitable for emergency lighting in the case of power interruptions or for watches, toys,
apparel, giving a "glow in the dark" effect.
Examples of phosphorescent materials are doped (mixed) sulphides (ZnS, (Cd, Zn)S, (Ca, Sr)S) or doped
(mixed) oxides (SrAl O ) but can also be organic molecules.
2 4
4.1.8 Textile products releasing substances
These textile products release substances at a molecular level under the influence of an external
stimulus. The substances used for this purpose are pharmaceuticals, cosmetics, fragrances, etc. They
are bonded to the textile structure by micro-encapsulation or by surface bonding.
[1]
NOTE Some of these textiles are referred to as cosmetotextiles (see CEN/TR 15917 ).
The micro-encapsulation technique makes use of small capsules, in which the substance to be released
is enclosed. When the shell of these capsules is pierced due to an external stimulus, the substance is
released. The different stimuli that can cause piercing of the shell include mechanical force, heat, pH
and contact with water.
The surface bonding technique makes use of substances (loosely) bonded to the surface of the textile
material and released during the use of this material. The nature of the bonding and the surroundings
of the material determines the release rate.
4.2 Smart (intelligent) textile products
4.2.1 General
In this subclause, examples (non-exhaustive) for different smart (intelligent) textile products are
described. The described textile products (see 4.2.2 to 4.2.14) can be used on their own or in combination
with other (non)smart textile products or used in textile systems. The latter are described in Clause 5.
NOTE Some of the smart functionalities can also be achieved by non-textile elements. Therefore, we will be
referring to textile products to clearly make the distinction.
Table 1 provides an overview of the most common stimulus-response pairs and the corresponding
effect materials or structures can exhibit.
4 © ISO 2020 – All rights reserved
Table 1 — Overview of most common stimulus-response effects (adapted from the final report
[2]
of the FP6 project Clevertex )
Stimulus Response
Optical Mechanical Chemical Electrical Thermal
Optical Photochromism Photovoltaic/
photoelectric
effect
Mechanical Piezochromic Dilatant, Controlled Piezo- Friction
thixotropic, release electricity
auxetic,
controlled release
Chemical Chemiluminescence, Shape memory, Controlled Chemical Exo/endotherm
Solvatochromism, super-absorbing release gradient reactions
Halochromisms polymers, causing charge
sol/hydrogel, separation –
controlled release Galvanic cell
Electrical Electrochromism, Inverse piezo- Electrolysis Joule/coulombic
Electroluminescence, electricity, heating
Electro-optic electrostriction,
Peltier effect
electro-osmosis,
shape memory
Thermal Thermochromism, Shape memory, Controlled Seebeck effect, Phase change
Thermo-opacity controlled release release Pyroelectric
Magnetic Shape memory
Magnetrostriction
4.2.2 Chromic textile products
Chromic material is the general term referring to materials whose absorption, transmission and/or
reflection of light changes due to an external stimulus. The result is a different colour impression.
Chromic materials can be classified depending on the external induction stimulus, e.g. light
(photochromic), heat (thermochromic), pressure (piezochromic), enzymes (biochromic), electricity
(electrochromic). It goes beyond the scope of this report to list all possible chromic effects or to discuss
them in detail.
One commercial application of a thermochromic textile product is baby clothing which shows a change
in colour when the baby has developed a fever. Other applications envisioned for safety clothing are the
use of chromic textile products for indicating exposure to chemicals or radiation.
4.2.3 Phase change textile products
A phase change material (PCM) is a substance which is capable of storing and releasing large amounts
of energy in the form of latent heat, at a specified temperature range (range of phase transformation)
during which the material changes phase or state (from solid to liquid or from liquid to solid). This
energy (heat) is absorbed or released when the material changes from solid to liquid (or the other way
around), thus buffering any external temperature change by evoking a phase transition in the material.
Classic PCMs are water, hydrated salt complexes and saturated hydrocarbons (where the length of the
chain determines the melting point). Depending on the nature of the phase change, e.g. when formation
of a liquid phase is involved, micro-encapsulation can be required. The choice of material or composite
depends on the temperature to be buffered.
The most common method today to produce phase change textile products is by coating or impregnating
fibres or fabrics with a polymeric binder containing micro-encapsulated PCMs. Alternatively, micro-
encapsulated PCMs can be incorporated into fibres during the fibre spinning or filling of hollow fibres.
They can also be laminated as a PCM containing polymeric film onto a textile structure.
Space suits and gloves were the first application of phase change materials (PCM), but nowadays
PCMs are also used for consumer products to improve the thermal comfort of active-wear garments
and clothing textiles. During a sports activity, the thermal stress is mainly due to the disequilibrium
between the heat produced by the human body during an effort, and the heat released into the
environment. When PCMs are encapsulated on underwear during the same activity, a larger amount of
the human heat will be released to the environment.
4.2.4 Textile products with active ingredients inside the microcapsules
Content of the micro-capsules can react on a stimulus from the environment without being released.
One example is PCM materials (see 4.2.3).
Another example are polyols inside a micro-capsule, which can take up perspiration. There is an
endothermal reaction between the polyols and the water, which results in a cooling effect.
NOTE Some of these textiles are referred to as cosmetotextiles (see CEN/TR 15917).
4.2.5 Shape change (shape memory) textile products
These materials change in shape, size or internal structure upon an external stimulus, e.g. temperature,
UV light, moisture, magnetic field, pH value. The shape change can have a one-way or a two-way effect.
A one-way material has a preformed structure, which returns in a non-reversible way to its original,
not-preformed state after receiving an external stimulus.
A two-way material or composite can be cycled between two different preformed states by receiving
opposing external stimuli, e.g. a higher and lower temperature.
Shape memory materials can be:
— polymers with a combination of permanent physical or chemical cross-links, integrated into a
mobile matrix, which is able to store mechanical deformation energy until recovery is activated by
an external stimulus;
— metal alloys switching between two different crystal structures upon a thermal impulse, e.g.
Nitinol, or
— composites of shape-memory-materials and materials providing an elastically restoring force in
one unit (e.g. artificial muscles).
Shape memory materials can be implemented in textile systems in the form of yarns, i.e. in the bulk of
the textile structure or as a coating on a fabric, e.g. creating a membrane. Applications can be textile
systems adjusting their shape, e.g. a garment reducing its length when exposed to heat; or a membrane
adjusting its porosity, e.g. to adjust the water vapour transmission rate.
4.2.6 Super-absorbing polymers and gels
Super-absorbing polymers and gels absorb and retain extremely large amounts of liquid relative to
their own mass resulting in strong swelling and gel formation. Water absorbing polymers (hydrogels)
absorb aqueous solutions through hydrogen bonding with water molecules. The ability to absorb water
depends on the presence of ions in the water, being 500 times its weight (30 to 60 times its volume) for
distilled or deionised water, but only 50 times its weight for a 0,9 % saline solution.
The total absorbency and swelling capacity are controlled by the type and degree of cross-linking in
the polymer. A low-density cross-linked polymer has a higher absorbent capacity and a softer and more
cohesive gel is formed. High cross-link density polymers exhibit lower absorption capacity, but the gel
strength is firmer, maintaining its shape under low pressure.
6 © ISO 2020 – All rights reserved
Examples of the use of super-absorbing polymers are hygiene products, blockage of water penetration
in underground power communication cables, horticultural water retention agents, spill and waste
control, artificial snow for motion picture and stage production and filtration.
4.2.7 Auxetic textile products
Auxetic materials or composites harden and laterally expand upon elongation. This phenomenon is
caused by the macro-structure or micro-structure of the material and not by its chemical composition.
Such materials have a so-called negative Poisson ratio.
Some auxetic textile products contain on a micro-scale both temporary, relatively weak bonds (e.g.
hydrogen bonds), which can be broken and restored (slipping from one to the other) under a low shear
force and stable bonds which, under a high shear force, counters the full load of the force, resulting in a
"stiff" behaviour.
Other auxetic textile products are based on the use of materials with diverging properties, e.g. a textile
yarn comprising a thicker, elastic cord entwined with a thinner, stiffer cord. When tensioned, the
system changes to the thin, stiff cord being entwined by the thicker, elastic cord and the total diameter
increases as compared to the relaxed state.
Auxetic textile products are intended for improved energy absorption and fracture resistance.
Examples of auxetic textile applications are blast resistance, window covering, military tents, and
hurricane defence. Examples of auxetic foam materials are found in sound and shock absorption,
medical engineering, filtration of biological fluids and process engineering.
4.2.8 Dilating and shear-thickening textile products
These materials show an increase in viscosity with increasing shear rate, i.e. they become hard upon
impact and remain soft under low force movement.
A dilatant effect occurs when closely packed particles are combined with enough liquid to fill the gaps
between them. At low flow velocities, the liquid acts as a lubricant, and the dilatant flows easily. At
higher flow velocities, the liquid is unable to fill the gaps created between particles, friction strongly
increases, resulting in a sudden increase in viscosity.
Applications in textiles are found in protective clothing against mechanical impact, e.g. body armour,
and in traction control. An example is a soft silicone coating on a fabric, which hardens under impact,
thus damping the force of the blow.
4.2.9 Piezoelectric textile products
The piezo-electric effect consists of a separation of electrical charges across a material in response to
an applied mechanical deformation. This effect can also be inversed, i.e. a mechanical deformation is
generated in response to an applied electric field.
Applications of the piezo-electric effect are found in insulating materials having a non-centrosymmetric
crystal lattice (e.g. quartz, PZT, PVDF). In order to utilize the charge separation by mechanical
deformation or to realize the mechanical deformation by applying an electric field, the piezo-electric
material needs to be positioned between two electrodes. For polycrystalline materials to exhibit the
piezoelectric or inverse piezoelectric effect, the individual crystallites need to be aligned, which is done
by applying a high electric field at elevated temperatures.
Piezoelectric materials can be used to develop textile products for strain or acceleration sensing as well
as for energy production utilizing mechanical deformation (e.g. in shoes).
4.2.10 Electroluminescent textile products
This refers to textile products emitting light in response to an electric current passing through
them or to a strong electric field being applied to them. In these structures, the electroluminescent
layer are sandwiched between two electrodes, the top one being transparent for transmission of the
emitted light.
For the electroluminescent layer most commonly inorganic or organic semiconductors (thin film or
powder) are used, together with a dopant (additive) to define the colour, or inorganic materials such as
ZnS, doped with Cu, Ag, or Mn.
Electroluminescent textile products can operate at low voltage and low current. They can be used to
provide lighted displays on apparel or canvasses for leisure or advertising purposes.
4.2.11 Thermo-electric textile products
These materials generate an electric field when a thermal gradient is applied. The material needs to
show a good electrical conductivity but a poor thermal conductivity in the direction of the thermal
gradient.
In these structures, the thermo-electric material are sandwiched between textile electrodes and a good
heat transfer needs to be ensured at the external surfaces.
Thermo-electric textile products applications are power generation and refrigeration.
4.2.12 Photovoltaic textile products
In photovoltaic (photoelectric) materials, the impact of a photon results in the transition of an electron
from the valence band to the conduction band of a semiconductor.
Photovoltaic materials, as used in photovoltaic cells, consist of a top electrode, a p-type semiconductor/
n-type semiconductor junction and a bottom electrode. Illumination of a photovoltaic cell results in the
generation of charges, i.e. building up of a voltage between the two electrodes. Hence the device can act
as a power supply.
Examples of photovoltaic materials are doped Si and dye sensitized oxide semiconductors (TiO , ZnO).
Their major application field is in solar cells (absorption of sunlight), as grid independent power supply.
4.2.13 Electrolytic textile products
An electrolyte is a substance containing free ions that behaves as an electrically conductive medium
(based on ion conduction). Electrolytes are used as a part of a battery. Placing a metal into an
electrolyte results in the deposition of ions on the electrode or dissolution of ions from the electrode
into the electrolyte, i.e. the formation of a galvanic half-cell. Two galvanic half cells are combined to
form a battery.
Fully textile-based batteries have not been developed yet, but are anticipated as they are much lighter
weight and retain textile properties as compared to current battery technology. The latter is usually a
major drawback in textile systems requiring an input of electrical energy.
4.2.14 Capacitive textile products
Capacitive textile products have the ability to store electrical charges. A typical capacitor consists of
an insulating material placed between two conductive materials (electrodes). When an electrical field
is applied to the insulating material, negative and positive charges are separated and stored at the
opposite surfaces of the material.
Capacitive textile products can be created by multilayer weaving or embroidering, laminating
multilayer structures or printing multi-layers of conductive ink.
8 © ISO 2020 – All rights reserved
5 Smart textile systems
5.1 Categories
5.1.1 General
A smart textile system is basically composed of:
— actuator(s), completed by possible sensor(s);
— information management device.
The information within the smart textile system can be controlled and/or managed by electronic
device(s) (such as a processor). Such textile systems are also called “electronic textiles” or “e-textiles”.
NOTE A separate CEN/TR on electronic textiles is under preparation.
A smart textile system can be characterized by two functions: the energy function and the external
communication function. External communication can be unidirectional or bidirectional, and implies a
possible interaction with human intelligence.
Based on these two functions, depending on whether they are present or not, four different categories
can be determined (see Table 2 and Figure 1).
Figure 1 — Flow chart for characterizing a smart textile system, also giving guidelines for later
standardization efforts
10 © ISO 2020 – All rights reserved
Table 2 — Categories of smart textile systems
Without energy function With energy function
Without communication function “NoE-NoCom” “E-NoCom”
With communication function “NoE-Com” “E-Com”
Smart textile systems “with energy function” are based on the presence of an internal power supply
device fed by elements of the system capable of producing and supplying energy to it. Energy sources
outside the textile system are usually needed for ensuring the continuity of the energy function.
Smart textile systems “without energy function” are not equipped with an internal energy supply
device, but can require an external supply of energy, usually in form of the stimulus.
Smart textile systems “with communication function” include the presence of mono- or bidirectional
means of communication with their environment. The communication can be intended for direct
perception by humans, e.g. visual information, sound, odours, e
...
RAPPORT ISO/TR
TECHNIQUE 23383
Première édition
2020-11
Textiles et produits textiles —
Textiles intelligents — Définitions,
catégorisation, applications et besoins
de normalisation
Textiles and textile products — Smart (Intelligent) textiles—
Definitions, categorisation, applications and standardization needs
Numéro de référence
©
ISO 2020
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2020
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2020 – Tous droits réservés
Sommaire Page
Avant-propos .v
Introduction .vi
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Produits textiles fonctionnels et intelligents . 2
4.1 Produits textiles fonctionnels . 2
4.1.1 Généralités . 2
4.1.2 Produits textiles électriquement conducteurs . 2
4.1.3 Produits textiles thermiquement conducteurs . 3
4.1.4 Produits textiles thermiquement radiatifs (émissifs) . 3
4.1.5 Produits textiles optiquement conducteurs . 3
4.1.6 Produits textiles fluorescents . 4
4.1.7 Produits textiles phosphorescents . 4
4.1.8 Produits textiles libérant des substances . 4
4.2 Produits textiles intelligents . 4
4.2.1 Généralités . 4
4.2.2 Produits textiles chromiques . 5
4.2.3 Produits textiles à changement de phase . 5
4.2.4 Produits textiles avec des ingrédients actifs à l’intérieur de microcapsules . 6
4.2.5 Produits textiles à changement de forme (mémoire de forme) . 6
4.2.6 Polymères et gels super-absorbants . 6
4.2.7 Produits textiles auxétiques . 7
4.2.8 Produits textiles dilatants et à épaississement par cisaillement . 7
4.2.9 Produits textiles piézoélectriques . 7
4.2.10 Produits textiles électroluminescents . 8
4.2.11 Produits textiles thermoélectriques . 8
4.2.12 Produits textiles photovoltaïques . 8
4.2.13 Produits textiles électrolytiques . . 8
4.2.14 Produits textiles capacitifs . 9
5 Systèmes textiles intelligents . 9
5.1 Catégories . 9
5.1.1 Généralités . 9
5.1.2 Systèmes sans fonction d’énergie ou de communication (NoE-NoCom) .11
5.1.3 Systèmes avec une fonction d’énergie, mais sans fonction de
communication (E-NoCom).11
5.1.4 Systèmes avec une fonction de communication, mais sans fonction
d’énergie (NoE-Com).12
5.1.5 Systèmes avec une fonction d’énergie et une fonction de communication
(E-Com) .12
5.2 Exemples de «systèmes textiles intelligents» et de leur analyse fonctionnelle .12
5.2.1 Applications médicales: surveillance de l’état de santé .12
5.2.2 Applications dans le domaine de la sécurité au travail: tenues de travail et
vêtements de protection .13
5.2.3 Applications pour les loisirs et la mode .14
5.2.4 Vêtements fondés sur la régulation thermique par des matériaux à
changement de phase (MCP) .15
5.2.5 Vêtements chauffants, sièges de voiture chauffants, etc. pour le confort ou
la protection .15
5.2.6 Système d’irradiation pour les thérapies médicales .16
5.2.7 Applications des géotextiles .16
6 Considérations pour la normalisation .17
6.1 Généralités .17
6.2 Vérification des performances revendiquées .18
6.3 Innocuité.18
6.4 Durabilité des propriétés .18
6.5 Informations sur les produits .19
6.6 Aspects environnementaux.20
6.7 Exemples de normalisation possible des produits et systèmes textiles intelligents .20
6.7.1 Produits et systèmes textiles intelligents — Matériaux à changement de
phase (MCP) .20
6.7.2 Systèmes textiles intelligents — Chauffage des textiles avec régulation de
température .21
Bibliographie .23
iv © ISO 2020 – Tous droits réservés
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes
nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier, de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir www .iso .org/ avant -propos.
Le présent document a été élaboré par le comité technique ISO/TC 38, Textiles, en collaboration avec le
comité technique CEN/TC 248, Textiles et produits textiles, du Comité européen de normalisation (CEN)
conformément à l’Accord de coopération technique entre l’ISO et le CEN (Accord de Vienne).
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www .iso .org/ fr/ members .html.
Introduction
La notion de «textile intelligent» revêt des significations différentes selon les personnes. Il existe
toutefois un consensus sur le fait qu’il s’agit de textiles ou de produits textiles qui possèdent des
propriétés intrinsèques et fonctionnelles supplémentaires par rapport à celles généralement associées
aux textiles traditionnels.
Bien que l’adjectif «intelligent» soit principalement destiné à des fins de marketing, des définitions
plus correctes techniquement n’empêcheront pas l’emploi de cette terminologie par les fabricants de
textiles ou par le grand public. Et l’inclusion involontaire de produits «non intelligents» n’en fera pas
pour autant des produits moins sûrs ou moins aptes à l’emploi.
La normalisation des textiles, produits textiles ou systèmes textiles intelligents n’est pas simple, car elle
implique un chevauchement entre la normalisation des produits textiles «traditionnels», par exemple
une veste de pompier, et la normalisation des propriétés fonctionnelles intrinsèques supplémentaires
associées aux «produits intelligents». Ce chevauchement peut se manifester dans un certain nombre de
domaines, notamment:
— l’expertise: la connaissance et l’expérience de la normalisation pour les propriétés des textiles et les
propriétés additionnelles (propriétés de détection de température, d’isolation thermique variable)
peuvent provenir de groupes de normalisation différents, sans aucun lien. Pour reprendre l’exemple
ci-dessus, il convient d’obtenir des informations de la part des groupes de normalisation travaillant
dans les domaines du textile, des dispositifs médicaux et des dispositifs électriques ou électroniques.
— les essais: il est nécessaire de soumettre à l’essai les propriétés fonctionnelles additionnelles selon
des normes d’essai textiles spécifiques, et vice versa. Dans l’exemple ci-dessus, il convient d’évaluer
la résistance au nettoyage des éléments électroniques tandis que les éléments textiles nécessitent
des essais portant sur leur sécurité électrique.
— des synergies inattendues et/ou involontaires: celles-ci pourraient résulter de la combinaison de
technologies dans les textiles intelligents et elles doivent être reconnues et traitées par le biais de la
normalisation, à chaque fois que possible. Par exemple, la présence de fibres conductrices dans un
imperméable intelligent pour y intégrer une stéréo personnelle pourrait augmenter le risque que la
personne qui le porte soit foudroyée en cas d’orage. Et ceci en dépit du fait que ni l’imperméable ni
la stéréo personnelle, pris séparément, n’aient besoin d’être évalués vis-à-vis de ce risque.
— la législation: certains groupes de produits textiles, par exemple les vêtements de protection, les
géotextiles ou les revêtements de sol textiles, sont en outre soumis à une législation nationale et/ou
régionale spécifique. Il peut être nécessaire de satisfaire simultanément aux exigences de la législation
portant sur plusieurs catégories de produits. Par exemple, une tenue de pompier «classique» doit
être conforme aux exigences relatives aux équipements de protection individuelle, tandis qu’il
convient qu’une tenue de pompier «intelligente» présentant des caractéristiques électroniques et
TIC intégrées soit également conforme aux dispositions applicables aux équipements électroniques
et aux TIC. L’évaluation de la conformité devra donc suivre les programmes d’évaluation de la
conformité de toutes les dispositions légales applicables.
Le présent document a pour but d’identifier les questions devant être abordées lors de l’élaboration
de normes sur les textiles intelligents ou pour l’application de normes existantes à ces textiles. Ces
informations peuvent être utiles pour:
— l’utilisateur final, pour l’aider à déterminer si un produit a bien été évalué dans son intégralité;
— les organismes d’évaluation de la conformité, en tant que guide pour l’évaluation des produits selon
des normes appropriées;
— les rédacteurs de spécifications, en tant que guide pour rédiger de nouvelles normes spécifiques
pour les textiles intelligents;
— les fabricants de textiles intelligents, afin de les conseiller sur les essais appropriés des produits et
sur les manières appropriées de corroborer les revendications concernant les produits;
vi © ISO 2020 – Tous droits réservés
— les autorités de surveillance des marchés, afin de les aider à évaluer les revendications concernant
les produits, ainsi que la sécurité et l’aptitude à l’emploi des produits.
Les informations factuelles contenues dans le présent document sont disponibles dans d’autres
documents sous une forme plus complète et chaque élément individuel sera inévitablement bien
connu d’au moins un groupe de lecteurs. Le but du présent document est de guider les lecteurs dans
les domaines qui ne leur sont pas familiers et de les orienter vers d’autres ouvrages plus spécialisés.
Conformément aux règles de l’ISO, il est prévu de réviser le présent document de manière régulière
pour tenir compte des évolutions techniques et du marché.
RAPPORT TECHNIQUE ISO/TR 23383:2020(F)
Textiles et produits textiles — Textiles intelligents —
Définitions, catégorisation, applications et besoins de
normalisation
1 Domaine d’application
Le présent document fournit des définitions dans le domaine des textiles et produits textiles
«intelligents», ainsi qu’une catégorisation des différents types de textiles intelligents. Il décrit
brièvement l’état actuel de développement de ces produits et leur application potentielle et fournit des
indications sur les besoins de normalisation préférentiels.
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l’adresse http:// www .electropedia .org/
3.1
fibre textile
élément caractérisé par sa flexibilité, sa finesse et sa grande longueur par rapport à la dimension
transversale maximale, qui le rendent apte à des applications textiles
[SOURCE: Règlement UE 1007/2011, Article 3, point 1. (b), (i)]
3.2
produit textile
produit constitué de fibres textiles (3.1), de fils et/ou d’étoffes et destiné à être utilisé seul ou avec
d’autres éléments textiles ou non textiles
3.3
produit textile fonctionnel
produit textile auquel une fonction spécifique est ajoutée par le biais du matériau, de sa composition, de
sa construction et/ou de sa finition (en appliquant des additifs, etc.)
3.4
produit textile intelligent
produit textile interactif
produit textile fonctionnel (3.3) qui interagit de manière réversible avec son environnement, ou qui
répond ou qui s’adapte à des changements survenant dans l’environnement
Note 1 à l'article: Le terme «textile intelligent» peut faire référence soit à un «produit textile intelligent», soit à un
«système textile intelligent». Seul le contexte dans lequel le terme est employé détermine à laquelle de ces deux
notions il est fait référence.
3.5
environnement
voisinage
circonstances, objets ou conditions qui entourent une matière textile ou un produit textile ou
l’utilisateur de cette matière ou de ce produit
3.6
élément non textile
produit qui n’est pas composé de fibres textiles (3.1)
Note 1 à l'article: Les éléments non textiles peuvent inclure des éléments utilisés pour la réalisation du vêtement,
par exemple fermeture(s) à glissière, bouton(s) à pression, bouton(s), membranes, empiècements non textiles,
imprimés, revêtements, finitions.
Note 2 à l'article: Les éléments non textiles peuvent aussi inclure des éléments ayant les fonctionnalités
énumérées en 4.1 et 4.2.
3.7
système textile
assemblage de produit(s) textile(s) et d’élément(s) non textiles(s)
3.8
système textile intelligent
système à base de textiles qui présente une réponse prévue et exploitable en réaction soit à des
changements de son voisinage/environnement, soit à un signal/une entrée externe
4 Produits textiles fonctionnels et intelligents
4.1 Produits textiles fonctionnels
4.1.1 Généralités
Les produits textiles fonctionnels peuvent être des composants de systèmes textiles intelligents. C’est
la raison pour laquelle les produits textiles fonctionnels qui sont pertinents pour ces systèmes textiles
intelligents sont abordés ici. Les exemples suivants illustrent ce propos.
EXEMPLE 1 Un dispositif textile de chauffage par résistance
— produit textile fonctionnel: une matière conductrice constituant la base d’un dispositif de chauffage par
résistance dans un système textile;
— système textile intelligent: un dispositif textile de chauffage par résistance constituant un (faisant partie
d’un) système textile, raccordé à une alimentation électrique qui ne peut être branchée et débranchée que
manuellement, ou un dispositif de chauffage par résistance faisant partie d’un système textile, raccordé à
une alimentation électrique d’une puissance régulée en sortie et muni d’un capteur de température pour
maintenir une température constante autour du dispositif;
EXEMPLE 2 Fibres optiques
— produit textile fonctionnel: des fibres optiques utilisées dans un système textile;
— système textile intelligent: des fibres optiques constituant un (faisant partie d’un) système textile, raccordées
à une source lumineuse qui ne peut être branchée et débranchée que manuellement, ou des fibres optiques
faisant partie d’un système textile, raccordées à une source lumineuse d’une puissance régulée en sortie et
munies d’un capteur pour ajuster le niveau d’éclairage à la quantité de lumière présente en raison d’autres
sources lumineuses dans le voisinage du système textile.
4.1.2 Produits textiles électriquement conducteurs
Les produits textiles électriquement conducteurs alimentent un dispositif en courant électrique ou lui
fournissent un champ électrique. La conduction électrique est le mouvement des particules chargées
2 © ISO 2020 – Tous droits réservés
électriquement dans un conducteur électrique, appelé courant électrique. Le transfert de charge peut
résulter d’une réponse à un champ électrique ou d’un gradient de concentration dans la densité de
porteurs de charge, c’est-à-dire par diffusion.
NOTE Un matériau est considéré comme ayant une «bonne conductivité électrique» s’il possède une
2 4
conductivité spécifique (résistivité) > 10 S/m (<10 Ω·cm). Un matériau est considéré comme ayant un
«comportement ohmique» si sa résistance suit la loi d’Ohm, une loi fondamentale en électricité qui stipule que
1)
la tension aux bornes d’une résistance idéale est proportionnelle à l’intensité dans la résistance . Les matériaux
possédant la conductivité spécifique la plus élevée sont les métaux. Certains polymères et céramiques peuvent
également présenter un comportement ohmique, par exemple les polymères intrinsèquement conducteurs (tels
que la polyaniline dopée) ou l’oxyde d’indium-étain (ITO).
4.1.3 Produits textiles thermiquement conducteurs
Les produits textiles thermiquement conducteurs conduisent la chaleur. Le transfert d’énergie
thermique dans une substance est dû à un gradient de température, c’est-à-dire d’une région à
température plus élevée vers une région à température plus basse, qui tend à égaliser les écarts de
température.
Les métaux possèdent des conductivités thermiques d’environ 20 W/(m·K) et plus et sont considérés
comme de très bons conducteurs thermiques. Leur conductivité thermique augmente avec leur
conductivité électrique. Il existe également des éléments et composés non métalliques qui sont de (très)
bons conducteurs thermiques (par exemple le carbone et le nitrure de bore).
Les applications dans les systèmes textiles intelligents peuvent inclure les puits de chaleur, par exemple
pour refroidir les composants électroniques.
4.1.4 Produits textiles thermiquement radiatifs (émissifs)
Les produits textiles thermiquement radiatifs (émissifs) irradient de la chaleur, c’est-à-dire qu’ils
émettent un rayonnement électromagnétique dans l’infrarouge, de 750 nm à 100 µm, à partir de leur
surface en raison de leur température.
Le rayonnement thermique (émission) peut être utilisé sous la forme d’un dispositif de chauffage
par résistance, où la résistance d’un conducteur sert à chauffer le conducteur à une température
suffisamment élevée pour générer un rayonnement thermique, ou sous forme d’échangeur thermique,
par exemple un tuyau dans lequel circule de l’air chaud ou de l’eau chaude.
Les applications dans les produits textiles intelligents sont les dispositifs de chauffage thermiques,
comme décrit en 4.1.1.
4.1.5 Produits textiles optiquement conducteurs
Les produits textiles optiquement conducteurs transportent la lumière (visible), c’est-à-dire le
rayonnement électromagnétique dans la plage de 400 nm à 750 nm.
Les fibres optiques en verre ou en plastique conservent la lumière dans leur âme par réflexion totale
interne, c’est-à-dire que la fibre sert de guide d’ondes. Les fibres optiques sont largement utilisées dans
les communications par fibres optiques, qui permettent une transmission sur de plus longues distances
et à des largeurs de bande (débits) supérieures par rapport aux autres formes de communication. Les
fibres sont employées à la place des fils métalliques, car les signaux les traversent avec moins de pertes
et elles sont également insensibles aux interférences électromagnétiques.
Les fibres sont également utilisées pour l’éclairage et sont enroulées en faisceaux de manière à pouvoir
transporter des images, et ainsi permettre une visualisation dans des espaces confinés. Des fibres de
conception spéciale sont utilisées pour une grande variété d’autres applications, notamment pour les
capteurs et les lasers à fibres.
1) www .electropedia .org IEV réf 131–15–08.
4.1.6 Produits textiles fluorescents
La fluorescence est l’absorption moléculaire d’un photon, suivie presque instantanément de l’émission
d’un photon moins énergétique. Étant donné que le photon émis est de plus faible énergie que le photon
absorbé, la lumière émise sera d’une longueur d’onde supérieure à la lumière absorbée, ce qui permet
par exemple de transformer le rayonnement UV en lumière visible.
La fluorescence est utilisée dans les vêtements luminescents pour des raisons de sécurité. Les produits
textiles fluorescents sont disponibles dans une grande variété de coloris allant du rouge au bleu-violet.
De nombreux matériaux organiques et inorganiques sont fluorescents.
4.1.7 Produits textiles phosphorescents
La phosphorescence est l’absorption moléculaire d’un photon, conduisant à la formation d’un état
excité, suivie de l’émission d’un photon moins énergétique. Étant donné que le photon émis est de
plus faible énergie que le photon absorbé, la lumière émise sera d’une longueur d’onde supérieure. La
durée de l’état excité dans les matériaux phosphorescents peut être très longue, de l’ordre de plusieurs
heures. Cela signifie qu’une fois activés, les matériaux phosphorescents continuent à émettre de la
lumière pendant des heures sans aucune alimentation en énergie externe. Cette propriété fait qu’ils
sont adaptés pour l’éclairage de secours en cas de panne électrique ou pour les montres, les jouets, les
articles d’habillement ayant un effet «luisant dans l’obscurité».
Les sulfures dopés (mixtes) (ZnS, (Cd, Zn)S, (Ca, Sr)S) ou les oxydes dopés (mixtes) (SrAl O ) sont des
2 4
exemples de matériaux phosphorescents, mais il peut également s’agir de molécules organiques.
4.1.8 Produits textiles libérant des substances
Ces produits textiles libèrent des substances à un niveau moléculaire sous l’influence d’un stimulus
externe. Les substances utilisées à cet effet sont des produits pharmaceutiques, des cosmétiques, des
fragrances, etc. Elles sont liées à la structure textile par micro-encapsulation ou par liaison superficielle.
[1]
NOTE Certains de ces textiles sont appelés cosmétotextiles (voir le CEN/TR 15917 ).
La technique de micro-encapsulation fait appel à de petites capsules dans lesquelles la substance
à libérer est enfermée. Lorsque la coque de ces capsules est percée suite à un stimulus externe, la
substance est libérée. Les différents stimuli pouvant provoquer la rupture de la coque sont un effort
mécanique, la chaleur, le pH et le contact avec l’eau.
La technique de liaison superficielle fait appel à des substances (faiblement) liées à la surface de la
matière textile et libérées au cours de l’utilisation de cette matière. La nature de la liaison et le voisinage
de la matière déterminent le taux de libération.
4.2 Produits textiles intelligents
4.2.1 Généralités
Le présent paragraphe fournit des exemples (liste non exhaustive) de différents produits textiles
intelligents. Les produits textiles intelligents (voir 4.2.2 à 4.2.14) peuvent être utilisés seuls ou
en association avec d’autres produits textiles (non) intelligents ou ils peuvent être utilisés dans des
systèmes textiles. Cette dernière catégorie est décrite à l’Article 5.
NOTE Certaines fonctionnalités intelligentes peuvent également être obtenues avec des éléments non
textiles. Par conséquent, l’on fait référence à des produits textiles afin de faire clairement la distinction.
Le Tableau 1 donne un aperçu des paires de stimulus/réponse les plus courantes et de l’effet
correspondant qui peut être observé sur les matières ou les structures.
4 © ISO 2020 – Tous droits réservés
Tableau 1 — Aperçu des effets stimulus/réponse (adapté du rapport final du projet FP6 de
[2]
Clevertex )
Réponse
Stimulus
Optique Mécanique Chimique Électrique Thermique
Optique Photochromisme Effet photovol-
taïque/ photoé-
lectrique
Mécanique Piézochromie Dilatation, thixo- Libération Piézoélectricité Frottement
tropie, auxétisme, contrôlée
libération contrôlée
Chimique Chimiluminescence, Mémoire de forme, Libération Gradient chimique Réactions exo/
solvatochromie, polymères super- contrôlée causant une endother-
halochromie absorbants, sol-gel/ séparation des miques
hydrogel, libération charges – Cellule
contrôlée galvanique
Électrique Électrochromisme, Piézoélectricité Électrolyse Chauffage par
électroluminescence, inverse, électrostric- effet Joule/
électro-optique tion, électro-osmose, coulombien
mémoire de forme
effet Peltier
Thermique Thermochromie, ther- Mémoire de forme, Libération Effet Seebeck, effet Changement
mo-opacité libération contrôlée contrôlée pyroélectrique de phase
Magnétique Mémoire de forme,
magnétrostriction
4.2.2 Produits textiles chromiques
«Matière chromique» est un terme générique pour désigner les matières dont l’absorption, la
transmission et/ou la réflexion de la lumière change en fonction d’un stimulus externe. Le résultat est
une impression de couleur différente.
Les matières chromiques peuvent être classées en fonction du stimulus d’induction externe, par
exemple la lumière (photochromique), la chaleur (thermochromique), la pression (piézochromique), les
enzymes (biochromique), l’électricité (électrochromique). L’énumération de tous les effets chromiques
possibles et leur description détaillée ne font pas partie du domaine d’application du présent rapport.
Les vêtements pour bébé qui changent de couleur lorsque le bébé a de la fièvre sont l’une des applications
commerciales des produits textiles thermochromiques. D’autres applications envisagées pour les
vêtements de sécurité sont l’utilisation des produits textiles chromiques pour indiquer l’exposition à
des produits chimiques ou à des radiations.
4.2.3 Produits textiles à changement de phase
Un matériau à changement de phase (MCP) est une substance qui est capable de stocker et de libérer
de grandes quantités d’énergie sous forme de chaleur latente, dans une plage de température spécifiée
(plage de transformation de phase) au cours de laquelle le matériau change de phase ou d’état (de solide
à liquide ou de liquide à solide). Cette énergie (chaleur) est absorbée ou libérée lorsque le matériau
passe de l’état solide à l’état liquide (ou inversement), ce qui équilibre en amortissant tout changement
de température externe en provoquant une transition de phase dans le matériau.
Les MCP classiques sont l’eau, les complexes de sels hydratés et les hydrocarbures saturés (dans lesquels
la longueur de la chaîne détermine le point de fusion). En fonction de la nature du changement de phase,
par exemple lorsque la formation d’une phase liquide est impliquée, une micro-encapsulation peut être
nécessaire. Le choix du matériau ou du composite dépend de la température d’équilibre.
La méthode la plus courante à l’heure actuelle consiste à produire des produits textiles à changement
de phase en revêtant ou en imprégnant les fibres ou les étoffes avec un liant polymère contenant des
MCP micro-encapsulés. Autrement, les MCP micro-encapsulés peuvent être incorporés aux fibres au
cours du filage ou du remplissage des fibres creuses. Ils peuvent également être laminés sous forme de
MCP contenant un film polymère sur une structure textile.
Les combinaisons spatiales et les gants ont été la première application des matériaux à changement
de phase (MCP), mais de nos jours les MCP sont également utilisés pour les produits de grande
consommation dans le but d’améliorer le confort thermique des vêtements d’activités sportives et des
textiles d’habillement. Au cours d’une activité sportive, la contrainte thermique est principalement due
au déséquilibre entre la chaleur produite par le corps humain au cours de l’effort et la chaleur libérée
dans l’environnement. Lorsque des MCP sont encapsulés dans les sous-vêtements, au cours de la même
activité une plus grande quantité de chaleur humaine est libérée dans l’environnement.
4.2.4 Produits textiles avec des ingrédients actifs à l’intérieur de microcapsules
Le contenu des microcapsules peut réagir à un stimulus de l’environnement sans être libéré.
Les MCP en sont un exemple (voir 4.2.3).
Autre exemple, les polyols à l’intérieur d’une microcapsule, qui peuvent absorber la transpiration. Il se
produit une réaction endothermique entre les polyols et l’eau, qui conduit à un effet de refroidissement.
NOTE Certains de ces textiles sont appelés cosmétotextiles (voir le CEN/TR 15917).
4.2.5 Produits textiles à changement de forme (mémoire de forme)
Ces matériaux changent de forme, de taille ou de structure interne suite à un stimulus externe, tel que
la température, les rayons UV, l’humidité, les champs magnétiques, le pH. Ce changement de forme peut
avoir un effet unidirectionnel ou bidirectionnel.
Un matériau unidirectionnel a une structure préformée qui reprend de manière non réversible sa forme
originale, à l’état non préformé, après avoir reçu un stimulus externe.
Un matériau ou un composite bidirectionnel peut basculer entre deux états préformés différents
lorsqu’il reçoit des stimuli externes opposés, par exemple une température plus élevée ou plus basse.
Les matériaux à mémoire de forme peuvent être:
— des polymères avec une combinaison de doubles liaisons physiques ou chimiques permanentes,
intégrés à une matrice mobile qui est capable de stocker l’énergie de la déformation mécanique
jusqu’à ce que la reprise de forme soit activée par un stimulus externe;
— des alliages métalliques basculant entre deux structures cristallines différentes suite à une
impulsion thermique, par exemple le Nitinol; ou
— des composites de matériaux à mémoire de forme et de matériaux fournissant une force de reprise
élastique à un élément (par exemple des muscles artificiels).
Les matériaux à mémoire de forme peuvent être mis en œuvre dans les systèmes textiles sous forme de
fils, c’est-à-dire dans le corps même de la structure textile, ou sous forme de revêtement sur une étoffe,
par exemple en créant une membrane. Les applications peuvent concerner des systèmes textiles qui
ajustent leur forme, par exemple un vêtement qui diminue en longueur lorsqu’il est exposé à la chaleur, ou
une membrane dont la porosité varie, par exemple pour réguler le taux de transmission de vapeur d’eau.
4.2.6 Polymères et gels super-absorbants
Les polymères et les gels super-absorbants absorbent et retiennent des quantités extrêmement
importantes de liquide par rapport à leur masse, ce qui conduit à un fort gonflement et à la formation
de gel. Les polymères absorbeurs d’eau (hydrogels) absorbent des solutions aqueuses par liaison
hydrogène avec les molécules d’eau. La capacité d’absorption d’eau dépend de la présence d’ions dans
l’eau, qui est de 500 fois sa masse (30 à 60 fois son volume) pour l’eau distillée ou déionisée, mais de
seulement 50 fois sa masse pour une solution saline à 0,9 %.
6 © ISO 2020 – Tous droits réservés
Le pouvoir absorbant total et la capacité de gonflement sont maîtrisés par le type et le degré de
réticulation du polymère. Un polymère réticulé basse densité a un pouvoir absorbant supérieur et un
gel plus mou et plus cohésif se forme. Les polymères réticulés haute densité ont un pouvoir absorbant
inférieur, mais la consistance du gel est plus ferme et il conserve sa forme sous une basse pression.
Les produits d’hygiène, le blocage de la pénétration d’eau dans les câbles de communication souterrains,
les agents de rétention d’eau horticoles, la maîtrise des déversements et des déchets, la production et la
filtration de la neige artificielle pour le cinéma et le théâtre sont des exemples d’utilisation de polymères
super-absorbants.
4.2.7 Produits textiles auxétiques
Les matériaux ou composites auxétiques durcissent et se dilatent latéralement en cas d’allongement.
Ce phénomène est dû à la macrostructure ou à la microstructure du matériau et non à sa composition
chimique. Ces matériaux sont dits à coefficient de Poisson négatif.
Certains produits textiles auxétiques contiennent, à l’échelle microscopique, à la fois des liaisons
temporaires relativement faibles (par exemple liaisons hydrogène) qui peuvent être rompues et
rétablies (en passant d’une liaison à une autre) sous l’effet d’une faible force de cisaillement, et des
liaisons stables qui, sous l’effet d’une force de cisaillement élevée, résistent à cette charge, ce qui donne
lieu à un comportement «rigide».
D’autres produits textiles auxétiques reposent sur l’utilisation de matériaux ayant des propriétés
divergentes, par exemple un fil textile composé d’une corde élastique plus épaisse entrelacée avec une
corde plus rigide et plus fine. Mis en tension, le système change de façon que la corde plus rigide et plus
fine s’entrelace avec la corde élastique plus épaisse, ce qui fait augmenter le diamètre total par rapport
à l’état au repos.
Les produits textiles auxétiques sont destinés à améliorer l’absorption d’énergie et la résistance à la
rupture. La résistance à la déflagration, les revêtements pour fenêtres, les tentes militaires et la
protection contre les ouragans sont des exemples d’applications de textiles auxétiques. On utilise aussi
des matériaux en mousse auxétiques pour l’absorption des bruits et des chocs, en ingénierie médicale,
pour la filtration des fluides biologiques et en ingénierie des procédés.
4.2.8 Produits textiles dilatants et à épaississement par cisaillement
Ces matériaux présentent une augmentation de la viscosité lorsque le taux de cisaillement augmente,
c’est-à-dire qu’ils deviennent durs sous l’effet d’un impact et restent mous sous l’effet d’un déplacement
dû à une faible force.
Un effet dilatant se produit lorsque des particules très serrées sont combinées à une quantité suffisante
de liquide pour combler les espaces entre elles. À des vitesses d’écoulement peu élevées, le liquide
agit comme un lubrifiant et le dilatant s’écoule facilement. À des vitesses d’écoulement plus élevées, le
liquide ne peut pas remplir les espaces créés entre les particules, le frottement augmente fortement et
ceci conduit à une augmentation soudaine de la viscosité.
Les applications dans les textiles concernent les vêtements de protection contre les chocs mécaniques,
par exemple les gilets pare-balles, et la maîtrise de l’application d’une traction. À titre d’exemple, on
peut citer un revêtement de silicone mou sur une étoffe, qui durcit sous l’impact et qui atténue par
conséquent la force des coups.
4.2.9 Produits textiles piézoélectriques
L’effet piézoélectrique consiste en une séparation des charges électriques dans un matériau en réponse
à l’application d’une déformation mécanique. Cet effet peut également être inversé, c’est-à-dire qu’une
déformation mécanique est produite en réponse à l’application d’un champ électrique.
On trouve des applications de l’effet piézoélectrique dans les matériaux isolants qui ont un réseau
cristallin non centrosymétrique (par exemple quartz, PZT, PVDF). Pour pouvoir réaliser la séparation
des charges par déformation mécanique ou obtenir une déformation mécanique en appliquant un champ
électrique, le matériau piézoélectrique doit être placé entre deux électrodes. Pour que les matériaux
polycristallins présentent un effet piézoélectrique ou un effet piézoélectrique inverse, les cristallites
individuelles doivent être alignées, ce qui est possible en appliquant un champ électrique élevé à des
températures élevées.
Les matériaux piézoélectriques peuvent être utilisés pour développer des produits textiles sensibles
à la déformation ou à l’accélération, ainsi que po
...










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...