Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings

(1) Part 1-1 of Eurocode 4 gives a general basis for the design of composite structures together with specific rules for buildings.
(2) The following subjects are dealt with in Part 1-1:
Section 1: General
Section 2: Basis of design
Section 3: Materials
Section 4: Durability
Section 5: Structural analysis
Section 6: Ultimate limit states
Section 7: Serviceability limit states
Section 8: Composite joints in frames for buildings
Section 9: Composite slabs with profiled steel sheeting for buildings

Eurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton - Teil 1-1: Allgemeine Bemessungsregeln und Anwendungsregeln für den Hochbau

(1) Der Teil 1-1 des Eurocode 4 enthält Grundregeln für den Entwurf, die Berechnung und die Bemessung von Verbundtragwerken und zusätzlich spezielle Regelungen für Tragwerke des Hochbaus.
(2) Der Teil 1-1 enthält die folgenden Kapitel:
Kapitel 1: Allgemeines
Kapitel 2: Grundlagen der Tragwerksplanung
Kapitel 3: Werkstoffe
Kapitel 4: Dauerhaftigkeit
Kapitel 5: Ermittlung der Schnittgrößen
Kapitel 6: Grenzzustände der Tragfähigkeit
Kapitel 7: Grenzzustände der Gebrauchstauglichkeit
Kapitel 8: Verbundanschlüsse in Tragwerken des Hochbaus
Kapitel 9: Verbunddecken in Tragwerken des Hochbaus

Eurocode 4: Calcul des structures mixtes acier-béton - Partie 1-1: Règles générales et règles our les bâtiments

(1) La Partie 1.1 de l'Eurocode 4 donne une base générale pour le calcul des structures mixtes ainsi que des dispositions spécifiques pour les bâtiments.
(2) Les sujets suivants sont traités dans la Partie 1.1 :
Section 1: Généralités
Section 2: Bases de calcul
Section 3: Matériaux
Section 4: Durabilité
Section 5: Analyse structurale
Section 6: Etats limites ultimes
Section 7: Etats limites de service
Section 8: Assemblages mixtes des structures de bâtiments
Section 9: Dalles mixtes avec plaques nervurées en acier dans les bâtiments

Evrokod 4: Projektiranje sovprežnih konstrukcij iz jekla in betona - 1-1. del: Splošna pravila in pravila za stavbe

1.1.2  Področje uporabe 1-1. dela evrokoda 4
(1)V 1-1. delu evrokoda 4 so navedene splošne osnove za projektiranje sovprežnih konstrukcij skupaj s posebnimi pravili za stavbe.
(2)1-1. del vsebuje naslednja poglavja:
1: Splošno
2: Osnove projektiranja
3: Materiali
4: Trajnost
5: Analiza konstrukcij
6: Mejna stanja nosilnosti
7: Mejna stanja uporabnosti
8: Sovprežni spoji okvirov v stavbah
9: Sovprežne plošče s profilirano jekleno pločevino v stavbah

General Information

Status
Published
Publication Date
14-Dec-2004
Withdrawal Date
30-Mar-2010
Current Stage
6060 - Definitive text made available (DAV) - Publishing
Start Date
15-Dec-2004
Completion Date
15-Dec-2004

Relations

Standard
EN 1994-1-1:2005
English language
118 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard – translation
EN 1994-1-1:2005
Slovenian language
120 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildingsEvrokod 4: Projektiranje sovprežnih konstrukcij iz jekla in betona - 1-1. del: Splošna pravila in pravila za stavbeEurocode 4: Calcul des structures mixtes acier-béton - Partie 1-1: Regles générales et regles our les bâtimentsEurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton - Teil 1-1: Allgemeine Bemessungsregeln und Anwendungsregeln für den HochbauTa slovenski standard je istoveten z:EN 1994-1-1:2004SIST EN 1994-1-1:2005en91.080.40Betonske konstrukcijeConcrete structures91.080.10Kovinske konstrukcijeMetal structures91.010.30Technical aspectsICS:SIST ENV 1994-1-1:19981DGRPHãþDSLOVENSKI
STANDARDSIST EN 1994-1-1:200501-maj-2005

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 1994-1-1
December 2004 ICS 91.010.30; 91.080.10; 91.080.40 Supersedes ENV 1994-1-1:1992 English version
Eurocode 4: Design of composite steel and concrete structures -Part 1-1: General rules and rules for buildings
Eurocode 4: Calcul des structures mixtes acier-béton - Partie 1-1: Règles générales et règles our les bâtiments
Eurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton - Teil 1-1: Allgemeine Bemessungsregeln und Anwendungsregeln für den Hochbau This European Standard was approved by CEN on 27 May 2004.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
Management Centre: rue de Stassart, 36
B-1050 Brussels © 2004 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 1994-1-1:2004: E

2 Contents
Page
Foreword……………………………………………………………………………………… 8
Section 1 General……………………………………………………………………………. 12 1.1 Scope……………………………………………………………………………………… 12
1.1.1 Scope of Eurocode 4………………………………………………………………… 12
1.1.2 Scope of Part 1.1 of Eurocode 4…………………………………………………….
12 1.2 Normative references……………………………………………………………………. 13
1.2.1 General reference standards…………………………………………………………. 13
1.2.2 Other reference standards……………………………………………………………. 13 1.3 Assumptions………………………………………………………………………………. 14 1.4 Distinction between principles and application rules……………………………………. 14 1.5 Definitions………………………………………………………………………………. 14
1.5.1 General……………………………………………………………………………… 14
1.5.2 Additional terms and definitions used in this Standard……………………………. 14
1.6 Symbols…………………………………………………………………………………. 15
Section 2 Basis of design……………………………………………………………………. 22 2.1 Requirements……………………………………………………………………………. 22 2.2 Principles of limit state design…………………………………………………………… 23 2.3 Basic variables……………………………………………………………………………. 23
2.3.1 Actions and environmental influences………………………………………………. 23
2.3.2 Material and product properties……………………………………………………… 23
2.3.3 Classification of actions……………………………………………………………… 23 2.4 Verification by the partial factor method…………………………………………………. 23
2.4.1 Design values………………………………………………………………………. 23
2.4.1.1 Design values of actions……………………………………………………… 23
2.4.1.2 Design values of material or product properties……………………………… 23
2.4.1.3 Design values of geometrical data……………………………………………. 24
2.4.1.4 Design resistances ……………………………………………………………. 24
2.4.2 Combination of actions……………………………………………………………… 24
2.4.3 Verification of static equilibrium (EQU)…………………………………………… 24
Section 3 Materials…………………………………………………………………………. 24 3.1 Concrete…………………………………………………………………………………. 24 3.2 Reinforcing steel………………………………………………………………………… 25 3.3 Structural steel…………………………………………………………………………… 25 3.4 Connecting devices………………………………………………………………………. 25
3.4.1 General………………………………………………………………………………. 25
3.4.2 Headed stud shear connectors………………………………………………………. 25 3.5 Profiled steel sheeting for composite slabs in buildings…………………………………. 25
Section 4
Durability………………………………………………………………………………. 25 4.1 General……………………………………………………………………………………. 25 4.2 Profiled steel sheeting for composite slabs in buildings…………………………………. 26

3Section 5 Structural analysis………………………………………………………………. 26 5.1 Structural modelling for analysis…………………………………………………………. 26
5.1.1 Structural modelling and basic assumptions…………………………………………. 26
5.1.2 Joint modelling………………………………………………………………………… 26
5.1.3 Ground-structure interaction…………………………………………………………. 26 5.2 Structural stability…………………………………………………………………………. 27
5.2.1 Effects of deformed geometry of the structure………………………………………. 27
5.2.2 Methods of analysis for buildings……………………………………………………. 27 5.3 Imperfections………………………………………………………………………………. 28
5.3.1 Basis…………………………………………………………………… ……………… 28
5.3.2 Imperfections in buildings…………………………………………………………… 28
5.3.2.1 General…………………………………………………………………………. 28
5.3.2.2 Global imperfections…………………………………………………………… 29 5.3.2.3 Member imperfections…………………………………………………………. 29 5.4 Calculation of action effects………………………………………………………………… 29
5.4.1 Methods of global analysis……………………………………………………………. 29
5.4.1.1 General…………………………………………………………………………. 29
5.4.1.2 Effective width of flanges for shear lag………………………………………… 29
5.4.2 Linear elastic analysis…………………………………………………………………. 30
5.4.2.1 General…………………………………………………………………………. 30
5.4.2.2 Creep and shrinkage…………………………………………………………… 31
5.4.2.3 Effects of cracking of concrete…………………………………………………. 32
5.4.2.4 Stages and sequence of construction…………………………………………… 33
5.4.2.5 Temperature effects……………………………………………………………. 33
5.4.2.6 Pre-stressing by controlled imposed deformations……………………………… 33
5.4.3 Non-linear global analysis……………………………………………………………. 33
5.4.4 Linear elastic analysis with limited redistribution for buildings………………………. 34
5.4.5 Rigid plastic global analysis for buildings……………………………………………. 35 5.5 Classification of cross-sections……………………………………………………………. 36
5.5.1 General………………………………………………………………………………… 36
5.5.2 Classification of composite sections without concrete encasement…………………… 37
5.5.3 Classification of composite sections for buildings with concrete
encasement……………………………………………………………………………. 37
Section 6
Ultimate limit states……………………………………………………………………… 38 6.1 Beams………………………………………………………………………………………. 38
6.1.1 Beams for buildings……………………………………………………………………. 38
6.1.2 Effective width for verification of cross-sections……………………………………… 40 6.2 Resistances of cross-sections of beams………………………………………………………40
6.2.1 Bending resistance……………………………………………………………………. 40
6.2.1.1 General………………………………………………………………………… 40 6.2.1.2 Plastic resistance moment Mpl,Rd of a composite cross-section………………. 40
6.2.1.3 Plastic resistance moment of sections with partial shear
connection in
buildings……………………………………………………… 42 6.2.1.4 Non-linear resistance to bending……………………………………………. 43 6.2.1.5 Elastic resistance to bending………………………………………………… 44
6.2.2 Resistance to vertical shear…………………………………………………………. 45
6.2.2.1 Scope…………………………………………………………………………. 45
6.2.2.2 Plastic resistance to vertical shear……………………………………………. 45

6.2.2.3 Shear buckling resistance………………………………………………………… 45 6.2.2.4 Bending and vertical shear………………………………………………………. 45 6.3 Resistance of cross-sections of beams for buildings with partial
encasement……………………………………………………………………………………. 46
6.3.1 Scope………………………………………………………………………………………46
6.3.2 Bending resistance………………………………………………………………………
6.3.3 Resistance to vertical shear………………………………………………………………. 47
6.3.4 Bending and vertical shear………………………………………………………………
48 6.4 Lateral-torsional buckling of composite beams………………………………………………. 48
6.4.1 General……………………………………………………………………………………. 48
6.4.2 Verification of lateral-torsional buckling of continuous composite
beams with cross-sections in Class 1, 2 and 3 for buildings……………………………
6.4.3 Simplified verification for buildings without direct calculation………………………… 51 6.5 Transverse forces on webs…………………………………………………………………… 52
6.5.1 General…………………………………………………………………………………… 52
6.5.2 Flange-induced buckling of webs………………………………………………………… 52 6.6 Shear connection……………………………………………………………………………… 52
6.6.1 General…………………………………………………………………………………… 52
6.6.1.1 Basis of design……………………………………………………………………. 52 6.6.1.2 Limitation on the use of partial shear connection in beams
for buildings………………………………………………………………………. 53 6.6.1.3 Spacing of shear connectors in beams for buildings……………………………… 54
6.6.2 Longitudinal shear force in beams for buildings………………………………………….55 6.6.2.1 Beams in which non-linear or elastic theory is used for
resistances of one or more cross-sections………………………………………….55 6.6.2.2 Beams in which plastic theory is used for resistance of
cross-sections……………………………………………………………………… 55
6.6.3 Headed stud connectors in solid slabs and concrete encasement………………………….55
6.6.3.1 Design resistance………………………………………………………………… 55
6.6.3.2 Influence of tension on shear resistance…………………………………………. 56
6.6.4 Design resistance of headed studs used with profiled steel sheeting
in buildings……………………………………………………………………………… 56
6.6.4.1 Sheeting with ribs parallel to the supporting beams………………………………. 56 6.6.4.2 Sheeting with ribs transverse to the supporting beams……………………………. 57 6.6.4.3 Biaxial loading of shear connectors………………………………………………. 58
6.6.5 Detailing of the shear connection and influence of execution…………………………… 58
6.6.5.1 Resistance to separation…………………………………………………………. 58
6.6.5.2 Cover and concreting for buildings………………………………………………. 58
6.6.5.3 Local reinforcement in the slab…………………………………………………… 59
6.6.5.4 Haunches other than formed by profiled steel sheeting…………………………… 59
6.6.5.5 Spacing of connectors……………………………………………………………. 60
6.6.5.6 Dimensions of the steel flange……………………………………………………. 60
6.6.5.7 Headed stud connectors…………………………………………………………… 60
6.6.5.8 Headed studs used with profiled steel sheeting in buildings……………………… 61
6.6.6 Longitudinal shear in concrete slabs……………………………………………………. 61
6.6.6.1 General……………………………………………………………………………. 61
6.6.6.2 Design resistance to longitudinal shear…………………………………………… 61
6.6.6.3 Minimum transverse reinforcement………………………………………………. 62
6.6.6.4 Longitudinal shear and transverse reinforcement in beams
for buildings………………………………………………………………………. 62

56.7 Composite columns and composite compression members………………………………. 63
6.7.1 General………………………………………………………………………………. 63
6.7.2 General method of design ……………………………………………………………. 65
6.7.3 Simplified method of design…………………………………………………………. 66
6.7.3.1 General and scope……………………………………………………………… 66
6.7.3.2 Resistance of cross-sections……………………………………………………. 67 6.7.3.3 Effective flexural stiffness, steel contribution ratio and
relative slenderness……………………………………………………………… 69 6.7.3.4 Methods of analysis and member imperfections………………………………. 70 6.7.3.5 Resistance of members in axial compression…………………………………… 70 6.7.3.6 Resistance of members in combined compression and
uniaxial bending…………………………………………………………………. 71 6.7.3.7 Combined compression and biaxial bending……………………………………. 73
6.7.4 Shear connection and load introduction………………………………………………… 74
6.7.4.1 General…………………………………………………………………………
6.7.4.2 Load introduction………………………………………………………………. 74
6.7.4.3 Longitudinal shear outside the areas of load introduction………………………. 77
6.7.5 Detailing Provisions……………………………………………………………………. 76
6.7.5.1 Concrete cover of steel profiles and reinforcement………………………………78
6.7.5.2 Longitudinal and transverse reinforcement………………………………………78 6.8 Fatigue……………………………………………………………………………………….78
6.8.1 General…………………………………………………………………………………. 78
6.8.2 Partial factors for fatigue assessment for buildings……………………………………. 79
6.8.3 Fatigue strength…………………………………………………………………………. 79
6.8.4 Internal forces and fatigue loadings……………………………………………………. 80
6.8.5 Stresses …………………………………………………………………………………. 80
6.8.5.1 General………………………………………………………………………… 80
6.8.5.2 Concrete………………………………………………………………………… 80
6.8.5.3 Structural steel…………………………………………………………………. 80
6.8.5.4 Reinforcement…………………………………………………………………. 81
6.8.5.5 Shear connection………………………………………………………………… 81
6.8.6 Stress ranges……………………………………………………………………………. 82
6.8.6.1 Structural steel and reinforcement……………………………………………… 82
6.8.6.2 Shear connection……………………………………………………………… 82
6.8.7 Fatigue assessment based on nominal stress ranges…………………………………… 83
6.8.7.1 Structural steel, reinforcement, and concrete………………………………… 83
6.8.7.2 Shear connection……………………………………………………………… 83
Section 7 Serviceability limit states…………………………………………………………… 84 7.1 General……………………………………………………………………………………… 84 7.2 Stresses……………………………………………………………………………………… 84
7.2.1 General…………………………………………………………………………………. 84
7.2.2 Stress limitation for buildings…………………………………………………………. 85 7.3 Deformations in buildings…………………………………………………………………. 85
7.3.1 Deflections……………………………………………………………………………… 85
7.3.2 Vibration………………………………………………………………………………. 86 7.4 Cracking of concrete………………………………………………………………………… 86
7.4.1 General………………………………………………………………………………… 86
7.4.2 Minimum reinforcement………………………………………………………………. 87
7.4.3 Control of cracking due to direct loading……………………………………………… 88

6 Section 8 Composite joints in frames for buildings………………………………………… 89 8.1 Scope………………………………………………………………………………………. 89 8.2 Analysis, modelling and classification……………………………………………………… 90
8.2.1
General………………………………………………………………………………… 90
8.2.2
Elastic global analysis…………………………………………………………………. 90
8.2.3
Classification of joints…………………………………………………………………. 90 8.3 Design methods……………………………………………………………………………… 91
8.3.1 Basis and scope…………………………………………………………………………. 91
8.3.2 Resistance……………………………………………………………………………… 91
8.3.3 Rotational stiffness……………………………………………………………………. 91
8.3.4 Rotation capacity………………………………………………………………………. 91 8.4 Resistance of components…………………………………………………………………. 92
8.4.1 Scope…………………………………………………………………………………… 92
8.4.2 Basic joint components………………………………………………………………… 92
8.4.2.1 Longitudinal steel reinforcement in tension……………………………………. 92
8.4.2.2 Steel contact plate in compression……………………………………………… 92
8.4.3 Column web in transverse compression…………………………………………………93
8.4.4 Reinforced components………………………………………………………………… 93
8.4.4.1 Column web panel in shear……………………………………………………. 93
8.4.4.2 Column web in compression …………………………………………………… 93
Section 9 Composite slabs with profiled steel sheeting for buildings………………………. 94 9.1 General……………………………………………………………………………………… 94
9.1.1 Scope…………………………………………………………………………………… 94
9.1.2 Definitions……………………………………………………………………………… 95
9.1.2.1 Types of
shear connection……………………………………………………… 95
9.1.2.2 Full shear connection am partial shear connection……………………………… 95 9.2 Detailing provisions…………………………………………………………………………. 96
9.2.1 Slab thickness and reinforcement………………………………………………………. 96
9.2.2 Aggregate………………………………………………………………………………. 97
9.2.3 Bearing requirements…………………………………………………………………… 97 9.3 Actions and action effects…………………………………………………………………… 97
9.3.1 Design situations………………………………………………………………………. 97
9.3.2 Actions for profiled steel sheeting as shuttering………………………………………. 98
9.3.3 Actions for composite slab……………………………………………………………. 98 9.4 Analysis for internal forces and moments…………………………………………………. 98
9.4.1 Profiled steel sheeting as shuttering…………………………………………………… 98
9.4.2 Analysis of composite slab……………………………………………………………. 98
9.4.3 Effective width of composite slab for concentrated point and
line loads……………………………………………………………………………… 99 9.5 Verification of profiled steel sheeting as shuttering for ultimate
limit states…………………………………………………………………………………. 100 9.6 Verification of profiled steel sheeting as shuttering for
serviceability limit states…………………………………………………………………… 100 9.7 Verification of composite slabs for ultimate limit states……………………………………100
9.7.1 Design criterion………………………………………………………………………
9.7.2 Flexure………………………………………………………………………………… 101
9.7.3 Longitudinal shear for slabs without end anchorage…………………………………
9.7.4 Longitudinal shear for slabs with end anchorage………………………………………104

9.7.5 Vertical shear……………………………………………………………………. 104
9.7.6 Punching shear…………………………………………………………………… 104 9.8 Verification of composite slabs for serviceability limit states………………………… 104
9.8.1 Control of cracking of concrete…………………………………………………… 104
9.8.2 Deflection………………………………………………………………………… 105
Annex A (Informative) Stiffness of joint components in buildings…………………… 106 A.1 Scope…………………………………………………………………………………. 106 A.2 Stiffness coefficients…………………………………………………………………… 106
A.2.1 Basic joint components…………………………………………………………… 106
A.2.1.1 Longitudinal steel reinforcement in tension………………………………. 106
A.2.1.2 Steel contact plate in compression………………………………………… 106
A.2.2 Other components in composite joints…………………………………………… 108
A.2.2.1 Column web panel in shear………………………………………………. 108 A.2.2.2 Column web in transverse compression…………………………………………. 108 A.2.3 Reinforced components……………………………………………………………. 108
A.2.3.1 Column web panel in shear……………………………………………… 108
A.2.3.2 Column web in transverse compression…………………………………. 108 A.3 Deformation of the shear connection………………………………………………… 109
Annex B (Informative) Standard tests………………………………………………………. 110 B.1 General………………………………………………………………………………. 110 B.2 Tests on shear connectors……………………………………………………………. 110
B.2.1 General…………………………………………………………………………. 110
B.2.2 Testing arrangements…………………………………………………………… 110
B.2.3 Preparation of specimens………………………………………………………… 111
B.2.4 Testing procedure………………………………………………………………. 112
B.2.5 Test evaluation……………………………………………………………………. 112 B.3 Testing of composite floor slabs………………………………………………………. 113
B.3.1 General…………………………………………………………………………… 113
B.3.2 Testing arrangement………………………………………………………………. 114
B.3.3 Preparation of specimens…………………………………………………………. 115
B.3.4 Test loading procedure……………………………………………………………. 115
B.3.5 Determination of design values for m and k……………………………………… 116
B.3.6 Determination of the design values for τu,Rd……………………………………… 117
Annex C (Informative) Shrinkage of concrete for composite structures for buildings…………………………………………………………………………………… 118
Bibliography……………………………………………………………………………….118

8 Foreword
This document (EN 1994-1-1:2004), Eurocode 4: Design of composite steel and concrete structures: Part 1-1 General rules and rules for buildings, has been prepared on behalf of Technical Committee CEN/TC 250 "Structural Eurocodes", the Secretariat of which is held by BSI.
This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2005, and conflicting national standards shall be withdrawn at the latest by March 2010.
This document supersedes ENV 1994-1-1:1992.
CEN/TC 250 is responsible for all Structural Eurocodes.
According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.
Background of the Eurocode programme In 1975, the Commission of the European Community decided on an action programme in the field of construction, based on article 95 of the Treaty. The objective of the programme was the elimination of technical obstacles to trade and the harmonisation of technical specifications.
Within this action programme, the Commission took the initiative to establish a set of harmonised technical rules for the design of construction works which, in a first stage, would serve as an alternative to the national rules in force in the Member States and, ultimately, would replace them.
For fifteen years, the Commission, with the help of a Steering Committee with Representatives of Member States, conducted the development of the Eurocodes programme, which led to the first generation of European codes in the 1980s.
In 1989, the Commission and the Member States of the EU and EFTA decided, on the basis of an agreement1 between the Commission and CEN, to transfer the preparation and the publication of the Eurocodes to CEN through a series of Mandates, in order to provide them with a future status of European Standard (EN). This links de facto the Eurocodes with the provisions of all the Council’s Directives and/or Commission’s Decisions dealing with European standards (e.g. the Council Directive 89/106/EEC on construction products - CPD - and Council Directives 93/37/EEC, 92/50/EEC and 89/440/EEC on public works and services and equivalent EFTA Directives initiated in pursuit of setting up the internal market).
The Structural Eurocode programme comprises the following standards generally consisting of a number of Parts:
1 Agreement between the Commission of the European Communities and the European Committee for Standardisation (CEN) concerning the work on EUROCODES for the design of building and civil engineering works (BC/CEN/03/89).

9EN 1990 Eurocode : Basis of Structural Design
EN 1991 Eurocode 1: Actions on structures EN 1992 Eurocode 2: Design of concrete structures EN 1993 Eurocode 3: Design of steel structures EN 1994 Eurocode 4: Design of composite steel and concrete structures EN 1995 Eurocode 5: Design of timber structures EN 1996 Eurocode 6: Design of masonry structures EN 1997 Eurocode 7: Geotechnical design EN 1998 Eurocode 8: Design of structures for earthquake resistance EN 1999 Eurocode 9: Design of aluminium structures
Eurocode standards recognise the responsibility of regulatory authorities in each Member State and have safeguarded their right to determine values related to regulatory safety matters at national level where these continue to vary from State to State.
Status and field of application of Eurocodes
The Member States of the EU and EFTA recognise that Eurocodes serve as reference documents for the following purposes:
– as a means to prove compliance of building and civil engineering works with the essential requirements of Council Directive 89/106/EEC, particularly Essential Requirement N°1 – Mechanical resistance and stability – and Essential Requirement N°2 – Safety in case of fire ;
– as a basis for specifying contracts for construction works and related engineering services ;
– as a framework for drawing up harmonised technical specifications for construction products (ENs and ETAs)
The Eurocodes, as far as they concern the construction works themselves, have a direct relationship with the Interpretative Documents2 referred to in Article 12 of the CPD, although they are of a different nature from harmonised product standards3. Therefore, technical aspects arising from the Eurocodes work need to be adequately considered by CEN Technical Committees and/or EOTA Working Groups working on product standards with a view to achieving full compatibility of these technical specifications with the Eurocodes.
The Eurocode standards provide common structural design rules for everyday use for the design of whole structures and component products of both a traditional and an innovative nature. Unusual forms of construction or design conditions are not specifically covered and additional expert consideration will be required by the designer in such cases.
2 According to Art. 3.3 of the CPD, the essential requirements (ERs) shall be given concrete form in interpretative documents for the creation of the necessary links between the essential requirements and the mandates for harmonised ENs and ETAGs/ETAs. 3 According to Art. 12 of the CPD the interpretative documents shall : a) give concrete form to the essential requirements by harmonising the terminology and the technical bases and indicating classes or levels for each requirement where necessary ; b) indicate methods of correlating these classes or levels of requirement with the technical specifications, e.g. methods of
calculation and of proof, technical rules for project design, etc. ; c) serve as a reference for the establishment of harmonised standards and guidelines for European technical approvals. The Eurocodes, de facto, play a similar role in the field of the ER 1 and a part of ER 2.

10 National Standards implementing Eurocodes
The National Standards implementing Eurocodes will comprise the full text of the Eurocode (including any annexes), as published by CEN, which may be preceded by a National title page and National foreword, and may be followed by a National annex.
The National annex may only contain information on those parameters which are left open in the Eurocode for national choice, known as Nationally Determined Parameters, to be used for the design of buildings and civil engineering works to be constructed in the country concerned, i.e.:
- values and/or classes where alternatives are given in the Eurocode, - values to be used where a symbol only is given in the Eurocode, - country specific data (geographical, climatic, etc.), e.g. snow map, - the procedure to be used where alternative procedures are given in the Eurocode.
It may also contain
- decisions on the use of informative annexes, and
- references to non-contradictory complementary information to assist the user to apply the Eurocode.
Links between Eurocodes and harmonised technical specifications (ENs and ETAs) for products
There is a need for consistency between the harmonised technical specifications for construction products and the technical rules for works4. Furthermore, all the information accompanying the CE Marking of the construction products which refer to Eurocodes shall clearly mention which Nationally Determined Parameters have been taken into account.
Additional information specific to EN 1994-1-1
EN 1994-1-1 describes the Principles and requirements for safety, serviceability and durability of composite steel and concrete structures, together with specific provisions for buildings. It is based on the limit state concept used in conjunction with a partial factor method.
For the design of new structures, EN 1994-1-1 is intended to be used, for direct application, together with other Parts of EN 1994, Eurocodes EN 1990 to 1993 and Eurocodes EN 1997 and 1998.
EN 1994-1-1 also serves as a reference document for other CEN TCs concerning structural matters.
EN 1994-1-1 is intended for use by: – committees drafting other standards for structural design and related product, testing and execution standards; – clients (e.g. for the formulation of their specific requirements on reliability levels and durability); – designers and constructors; – relevant authorities.
4 see Art.3.3 and Art.12 of the CPD, as well as clauses 4.2, 4.3.1, 4.3.2 and 5.2 of ID 1.

11Numerical values for partial factors and other reliability parameters are recommended as basic values that provide an acceptable level of reliability. They have been selected assuming that an appropriate level of workmanship and of quality management applies. When EN 1994-1-1 is used as a base document by other CEN/TCs the same values need to be taken.
National annex for EN 1994-1-1
This standard gives values with notes indicating where national choices may have to be made. Therefore the National Standard implementing EN 1994-1-1 should have a National annex containing all Nationally Determined Parameters to be used for the design of buildings and civil engineering works to be constructed in the relevant country.
National choice is allowed in EN 1994-1-1 through the following clauses:
- 2.4.1.1(1) - 2.4.1.2(5) - 2.4.1.2(6) - 2.4.1.2(7) - 3.1(4) - 3.5(2) - 6.4.3(1)(h) - 6.6.3.1(1) - 6.6.3.1(3) - 6.6.4.1(3) - 6.8.2(1) - 6.8.2(2) - 9.1.1(2) - 9.6(2) - 9.7.3(4) - 9.7.3(8) - 9.7.3(9) - B.2.5(1) - B.3.6(5)

12 Section 1
General 1.1 Scope 1.1.1 Scope of Eurocode 4 (1) Eurocode 4 applies to the design of composite structures and members for buildings and civil engineering works. It complies with the principles and requirements for the safety and serviceability of structures, the basis of their design and verification that are given in EN 1990 – Basis of structural design.
(2) Eurocode 4 is concerned only with requirements for resistance, serviceability, durability and fire resistance of composite structures. Other requirements, e.g. concerning thermal or sound insulation, are not considered.
(3) Eurocode 4 is intended to be used in conjunction with: EN 1990 Eurocode: Basis of structural design EN 1991 Eurocode 1: Actions on structures ENs, hENs, ETAGs and ETAs for construction products relevant for composite structures EN 1090 Execution of steel structures and aluminium structures
EN 13670 Execution of concrete structures EN 1992 Eurocode 2: Design of concrete structures EN 1993 Eurocode 3: Design of steel structures EN 1997 Eurocode 7: Geotechnical design EN 1998 Eurocode 8: Design of structures for earthquake resistance, when composite structures are built in seismic regions.
(4) Eurocode 4 is subdivided in various parts: Part 1-1: General rules and rules for buildings
Part 1-2: Structural fire design
Part 2: Bridges.
1.1.2 Scope of Part 1-1 of Eurocode 4 (1) Part 1-1 of Eurocode 4 gives a general basis for the design of composite structures together with specific rules for buildings.
(2) The following subjects are dealt with in Part 1-1:
Section 1: General Section 2: Basis of design Section 3: Materials Section 4: Durability Section 5: Structural analysis Section 6: Ultimate limit states Section 7: Serviceability limit states Section 8: Composite joints in frames for buildings Section 9: Composite slabs with profiled steel sheeting for buildings

131.2 Normative references The following normative documents contain provisions which, through references in this text, constitute provisions of this European standard. For dated references, subsequent amendments to or revisions of any of these publications do not apply. However, parties to agreements based on this European standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references the latest edition of the normative document referred to applies.
1.2.1 General reference standards EN 1090-2 1
Execution of steel structures and aluminium structures
- Technical rules for the execution of steel structures
EN 1990: 2002
Basis of structural design.
1.2.2 Other reference standards EN 1992-1-1 1
Eurocode 2: Design of concrete structures: General rules and rules for buildings
EN 1993-1-1 1
Eurocode 3: Design of steel structures: General rules and rules for buildings
EN 1993-1-3 1
Eurocode 3: Design of steel structures: Cold-formed thin gauge members and sheeting
EN 1993-1-5 1
Eurocode 3: Design of steel structures: Plated structural elements
EN 1993-1-8 1
Eurocode 3: Design of steel structures: Design of joints
EN 1993-1-9 1
Eurocode 3: Design of steel structures: Fatigue strength of steel structures
EN 10025-1: 2002
Hot-rolled products of structural steels: General delivery conditions
EN 10025-2: 2002
Hot-rolled products of structural steels: Technical delivery conditions for non-alloy structural steels
EN 10025-3: 2002
Hot-rolled products of structural steels: Technical delivery conditions for normalized/normalized rolled weldable fine grain structural steels
EN 10025-4: 2002
Hot-rolled products of structural steels: Technical delivery conditions for thermomechanical rolled weldable fine grain structural steels
EN 10025-5: 2002
Hot-rolled products of structural steels: Technical delivery conditions for structural steels with improved atmospheric corrosion resistance
1 To be published
14 EN 10025-6: 2002
Hot-rolled products of structural steels: Technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered condition
EN 10147: 2000
Continuously hot-dip zinc coated structural steels strip and sheet: Technical delivery conditions
EN 10149-2: 1995
Hot-rolled flat products made of high yield strength steels for cold-forming: Delivery conditions for thermomechanically rolled steels
EN 10149-3: 1995
Hot-rolled flat products made of high yield strength steels for cold-forming: Delivery conditions for normalised or normalised rolled steels
1.3 Assumptions (1) In addition to the general assumptions of EN 1990 the following assumptions apply: – those given in clauses 1.3 of EN1992-1-1 and EN1993-1-1.
1.4 Distinction between principles and application rules
(1) The rules in EN 1990, 1.4 apply.
1.5 Definitions 1.5.1 General
(1) The terms and definitions given in EN 1990, 1.5, EN 1992-1-1, 1.5 and EN 1993-1-1, 1.5 apply.
1.5.2 Additional terms and definitions used in this Standard 1.5.2.1 Composite member a structural member with components of concrete and of structural or cold-formed steel, interconnected by shear connection so as to limit the longitudinal slip between concrete and steel and the separation of one component from the other
1.5.2.2 Shear connection an interconnection between the concrete and steel components of a composite member that has sufficient strength and stiffness to enable the two components to be designed as parts of a single structural member
1.5.2.3 Composite behaviour behaviour which occurs after the shear connection has become effective due to hardening of concrete
1.5.2.4 Composite beam a composite member subjected mainly to bending
1.5.2.5 Composite column a composite member subjected mainly to compression or to compression and bending

15 1.5.2.6 Composite slab
a slab in which profiled steel sheets are used initially as permanent shuttering and subsequently combine structurally with the hardened concrete and act as tensile reinforcement in the finished floor
1.5.2.7 Composite frame a framed structure in which some or all of the elements are composite members and most of the remainder are structural steel members
1.5.2.8 Composite joint a joint between a composite member and another composite, steel or reinforced concrete member, in which reinforcement is taken into account in design for the resistance and the stiffness of the joint
1.5.2.9 Propped structure or member a structure or member where the weight of concrete elements is applied to the steel elements which are supported in the span, or is carried independently until the concrete elements are able to resist stresses
1.5.2.10 Un-propped structure or member a structure or member in which the weight of concrete elements is applied to steel elements which are unsupported in the span
1.5.2.11 Un-cracked flexural stiffness
the stiffness EaI1 of a cross-section of a composite member where I1 is the second moment of area of the effective equivalent steel section calculated assuming that concrete in tension is un-cracked
1.5.2.12 Cracked flexural stiffness
the stiffness EaI2 of a cross-section of a composite member where I2 is the second moment of area of the effective equivalent steel section calculated neglecting
concrete in tension but including reinforcement
1.5.2.13 Prestress the process of applying compressive stresses to the concrete part of a composite member, achieved by tendons or by controlled imposed deformations
1.6 Symbols For the purpose of this Standard the following symbols apply. Latin upper case letters A Cross-sectional area of the effective composite section neglecting concrete in tension Aa Cross-sectional area of the structural steel section Ab Cross-sectional area of bottom transverse reinforcement Abh
Cross-sectional area of bottom transverse reinforcement in a haunch Ac Cross-sectional area of concrete Act Cross-sectional area of the tensile zone of the concrete Afc Cross-sectional area of the compression flange Ap Cross-sectional area of profiled steel sheeting

16 Ape Effective cross-sectional area of profiled steel sheeting As Cross-sectional area of reinforcement Asf Cross-sectional area of transverse reinforcement As,r Cross-sectional area of reinforcement in row r At Cross-sectional area of top transverse reinforcement Av Shear area of a structural steel section A1 Loaded area under the gusset plate Ea Modulus of elasticity of structural steel Ec,eff Effective modulus of elasticity for concrete Ecm Secant modulus of elasticity of concrete Es Design value of modulus of elasticity of reinforcing steel (EI)eff Effective flexural stiffness for calculation of relative slenderness (EI)eff,II Effective flexural stiffness for use in second-order analysis (EI)2 Cracked flexural stiffness per unit width of the concrete or composite slab Fc,wc,c,Rd Design value of the resistance to transverse compression of the concrete encasement to a column web
Fl
Design longitudinal force per stud Ft Design transverse force per stud Ften Design tensile force per stud Ga Shear modulus of structural steel Gc Shear modulus of concrete I Second moment of area of the effective composite section neglecting concrete in tension Ia Second moment of area of the structural steel section
Iat St. Venant torsion constant of the structural steel section Ic Second moment of area of the un-cracked concrete section Ict St. Venant torsion constant of the un-cracked concrete encasement Is Second moment of area of the steel reinforcement
I1 Second moment of area of the effective equivalent steel section assuming that the concrete in tension is un-cracked I2 Second moment of area of the effective equivalent steel section neglecting concrete in tension but including reinforcement Ke , Ke,II
Correction factors to be used in the design of composite columns Ksc Stiffness related to the shear connection Kβ Parameter K0 Calibration factor to be used in the design of composite columns L Length; span; effective span Le
Equivalent span Li
Span Lo
Length of overhang
Lp
Distance from centre of a concentrated load to the nearest support
Ls
Shear span Lx
Distance from a cross-section to the nearest support M
Bending moment Ma Contribution of the structural steel section to the design plastic resistance moment of the composite section Ma,Ed
Design bending moment applied to the structural steel section Mb,Rd
Design value of the buckling resistance moment of a composite beam Mc,Ed
The part of the design bending moment applied to the composite section Mcr Elastic critical moment for lateral-torsional buckling of a composite beam

17MEd
Design bending moment MEd,i
Design bending moment applied to a composite joint i MEd,max,f Maximum bending moment or internal force due to fatigue loading MEd,min,f Minimum bending moment due to fatigue loading Mel,Rd
Design value of the elastic resistance moment of the composite section Mmax,Rd Maximum design value of the resistance moment in the presence of a
compressive normal force Mpa Design value of the plastic resistance moment of the effective cross-section of the profiled steel sheeting Mperm Most adverse bending moment for the characteristic combination Mpl,a,Rd Design value of the plastic resistance moment of the structural steel section Mpl,N,Rd Design value of the plastic resistance moment of the composite section taking into account the compressive normal force Mpl,Rd Design value of the plastic resistance moment of the composite section with full shear connection Mpl,y,Rd Design value of the plastic resistance moment about the y-y axis of the composite section with full shear connection Mpl,z,Rd Design value of the plastic resistance moment about the z-z axis of the composite section with full shear connection Mpr Reduced plastic resistance moment of the profiled steel sheeting
MRd
Design value of the resistance moment of a composite section or joint MRk Characteristic value of the resistance moment of a composite section or joint My,Ed Design bending moment applied to the composite section about the y-y axis Mz,Ed Design bending moment applied to the composite section about the z-z axis N Compressive normal force; number of stress range cycles; number of shear connectors Na Design value of the normal force in the structural steel section of a composite beam
Nc Design value of the compressive normal force in the concrete flange
Nc,f Design value of the compressive normal force in the concrete flange with full shear connection Nc,el
Compressive normal force in the concrete flange corresponding to Mel,Rd Ncr,eff Elastic critical load of a composite column corresponding to an effective flexural stiffness Ncr
Elastic critical normal force
Nc1
Design value of normal force calculated for load introduction NEd
Design value of the compressive normal force NG,Ed Design value of the part of the compressive normal force that is permanent Np Design value of the plastic resistance of the profiled steel sheeting to normal force
Npl,a Design value of the plastic resistance of the structural steel section to normal force
Npl,Rd Design value of the plastic resistance of the composite section to compressive normal force Npl,Rk Characteristic value of the plastic resistance of the composite section to compressive normal force Npm,Rd Design value of the resistance of the concrete to compressive normal force NR Number of stress-range cycles Ns Design value of the plastic resistance of the steel reinforcement to normal force Nsd Design value of the plastic resistance of the reinforcing steel to tensile normal force Pl,Rd Design value of the shear resistance of a single stud connector corresponding to Fl
Ppb,Rd
Design value of the bearing resistance of a stud PRd
Design value of the shear resistance of a single connector

18 PRk
Characteristic value of the shear resistance of a single connector Pt,Rd Design value of the shear resistance of a single stud connector corresponding to Ft REd Design value of a support reaction Sj Rotational stiffness of a joint Sj,ini Initial rotational stiffness of a joint Va,Ed Design value of the shear force acting on the structural steel section
Vb,Rd
Design value of the shear buckling resistance of a steel web Vc,Ed Design value of the shear force acting on the reinforced concrete web encasement
VEd
Design value of the shear force acting on the composite section
Vld
Design value of the resistance of the end anchorage Vl,Rd
Design value of the resistance to shear Vpl,Rd Design value of the plastic resistance of the composite section to vertical shear Vpl,a,Rd Design value of the plastic resistance of the structural steel section to vertical shear Vp,Rd Design value of the resistance of a composite slab to punching shear VRd Design value of the resistance of the composite section to vertical shear Vt
Support reaction
Vv,Rd Design value of the resistance of a composite slab to vertical shear Vwp,c,Rd Design value of the shear resistance of the concrete encasement to a column web panel Wt Measured failure load Latin lower case letters a Spacing between parallel beams; diameter or width; distance b Width of the flange of a steel section; width of slab bb Width of the bottom of the concrete rib
bc Width of the concrete encasement to a steel section beff Total effective width
beff,1 Effective width at mid-span for a span supported at both ends beff,2 Effective width at an internal support beff,c,wc Effective width of the column web in compression bei Effective width of the concrete flange on each side of the web bem Effective width of a composite slab bf Width of the flange of a steel section bi Geometric width of the concrete flange on each side of the web bm Width of a composite slab over which a load is distributed bp Length of concentrated line load br Width of rib of profiled steel sheeting bs Distance between centres of adjacent ribs of profiled steel sheeting b0 Distance between the centres of the outstand shear connectors; mean width of a concrete rib (minimum width for re-entrant shee
...



6/29(16.,  6,67(1

67$1'$5' 
PDM

   
   
   
   

(YURNRG3URMHNWLUDQMHVRYSUHåQLKNRQVWUXNFLML]MHNODLQEHWRQD±
GHO6SORãQDSUDYLODLQSUDYLOD]DVWDYEH

(XURFRGH'HVLJQRIFRPSRVLWHVWHHODQGFRQFUHWHVWUXFWXUHV±
3DUW*HQHUDOUXOHVDQGUXOHVIRUEXLOGLQJV
(XURFRG&DOFXOGHVVWUXFWXUHVPL[WHVDFLHUEpWRQ±
3DUWLH5qJOHVJpQpUDOHVHWUqJOHVSRXUOHVEkWLPHQWV
(XURFRGH%HPHVVXQJXQG.RQVWUXNWLRQYRQ9HUEXQGWUDJZHUNHQDXV6WDKOXQG
%HWRQ±7HLO$OOJHPHLQH%HPHVVXQJVUHJHOQXQG$QZHQGXQJVUHJHOQIUGHQ
+RFKEDX
 













  



 
 5HIHUHQþQDR]QDND
 ,&6  6,67(1 VO 
 

 1DGDOMHYDQMHQDVWUDQHK,,LQ,,,LQRGGR
 


! "#$%&’#"( )*+ ! ,( #
6,67(1
1$&,21$/1,892'
6WDQGDUG6,67(1 VO (YURNRG3URMHNWLUDQMHVRYSUHåQLKNRQVWUXNFLML]MHNODLQEHWRQD±
GHO6SORãQDSUDYLODLQSUDYLOD]DVWDYEHLPDVWDWXVVORYHQVNHJDVWDQGDUGDLQMHLVWRYHWHQ
HYURSVNHPXVWDQGDUGX(1 HQ  (XURFRGH'HVLJQ RIFRPSRVLWHVWHHODQGFRQFUHWH
VWUXFWXUHV±3DUW*HQHUDOUXOHVDQGUXOHVIRUEXLOGLQJV

1$&,21$/1,35('*2925
(YURSVNL VWDQGDUG (1  MH SULSUDYLO WHKQLþQL RGERU (YURSVNHJD NRPLWHMD ]D
VWDQGDUGL]DFLMR&(17&.RQVWUXNFLMVNLHYURNRGLNDWHUHJDWDMQLãWYRMHYSULVWRMQRVWL%6,
6ORYHQVNLVWDQGDUG6,67(1MHSUHYRGHYURSVNHJDVWDQGDUGD(19
SULPHUXVSRUDJOHGHEHVHGLODVORYHQVNHJDSUHYRGDYWHPVWDQGDUGXMHRGORþLOHQL]YLUQLHYURSVNL
VWDQGDUGYDQJOHãNHPMH]LNX6ORYHQVNRL]GDMRVWDQGDUGDMHSULSUDYLOWHKQLþQLRGERU6,677&.21
.RQVWUXNFLMH
=9(=$=1$&,21$/1,0,67$1'$5',
9VWDQGDUGX6,67(1SRPHQLVNOLFHYDQMHQDHYURSVNHLQPHGQDURGQHVWDQGDUGHNLMH
YNOMXþHQRYWDHYURSVNLVWDQGDUGVNOLFHYDQMHQDHQDNRYUHGQHVORYHQVNHVWDQGDUGHQSU
(1SRPHQL6,67(1
1$&,21$/1,'2'$7(.

9VNODGXVVWDQGDUGRP(1ERSULSUDYOMHQQDFLRQDOQLGRGDWHNNVWDQGDUGX6,67(1
1DFLRQDOQLGRGDWHNYVHEXMHDOWHUQDWLYQHSRVWRSNHYUHGQRVWLLQSULSRURþLOD]DUD]UHGH
]RSRPEDPLNLNDåHMRNMHVHODKNRXYHOMDYLQDFLRQDOQDL]ELUD=DWRERQDFLRQDOQLGRGDWHN6,67(1
$YVHERYDOQDFLRQDOQRGRORþHQHSDUDPHWUHNLMLKMHWUHEDXSRUDELWLSULSURMHNWLUDQMX
VWDYELQJUDGEHQLKLQåHQLUVNLKREMHNWRYNLERGR]JUDMHQLY5HSXEOLNL6ORYHQLML

1DFLRQDOQDL]ELUDMHY6,67(1GRYROMHQDY
±    ±   
±    ±   
±    ±   
±    ±   
±    ±   
±    ±   
±   K  ±   
±    ± %  
±    ± %  
±    

26129$=$,='$-267$1'$5'$
± SULY]HPVWDQGDUGD(1
35('+2'1(,='$-(
6,67(19
,,
6,67(1
2320%(
 3RYVRG NMHU VH Y EHVHGLOX VWDQGDUGD XSRUDEOMD L]UD] ³HYURSVNL VWDQGDUG´ Y
6,67(1WRSRPHQL³VORYHQVNLVWDQGDUG´
 1DFLRQDOQLXYRGLQQDFLRQDOQLSUHGJRYRUQLVWDVHVWDYQLGHOVWDQGDUGD
 7DQDFLRQDOQLGRNXPHQWMHLVWRYHWHQ(1LQMHREMDYOMHQ]GRYROMHQMHP
   &(1
   5XHGH6WDVVDUW
   %UXVHOM
   %HOJLMD

7KLVQDWLRQDOGRFXPHQWLVLGHQWLFDOZLWK(1DQGLVSXEOLVKHGZLWKWKHSHUPLVVLRQRI

   &(1
   5XHGH6WDVVDUW
   %UX[HOOHV
   %HOJLXP


,,,
6,67(1









3UD]QDVWUDQ 

,9
(95236.,67$1'$5' (1
(8523($167$1'$5'
1250((8523e(11(
(8523b,6&+(1250 'HFHPEHU
,&6 1DGRPHãþD(19


6ORYHQVNDL]GDMD

(YURNRG3URMHNWLUDQMHVRYSUHåQLKNRQVWUXNFLML]MHNODLQEHWRQD±
GHO6SORãQDSUDYLODLQSUDYLOD]DVWDYEH

(XURFRGH'HVLJQRIFRPSRVLWH (XURFRG&DOFXOGHV (XURFRGH%HPHVVXQJXQG
VWHHODQGFRQFUHWHVWUXFWXUHV± VWUXFWXUHVPL[WHVDFLHUEpWRQ± .RQVWUXNWLRQYRQ
3DUW  *HQHUDO UXOHV DQG 3DUWLH5qJOHVJpQpUDOHV 9HUEXQGWUDJZHUNHQDXV6WDKOXQG
UXOHVIRUEXLOGLQJV HWUqJOHVSRXUOHVEkWLPHQWV %HWRQ±7HLO$OOJHPHLQH
%HPHVVXQJVUHJHOQXQG
  $QZHQGXQJVUHJHOQIUGHQ+RFKEDX




7DHYURSVNLVWDQGDUGMH&(1VSUHMHOPDMD

ýODQLFH&(1PRUDMRL]SROQMHYDWLQRWUDQMHSUHGSLVH&(1&(1(/(&VNDWHULPMHSUHGSLVDQRGDPRUD
ELWLWDVWDQGDUGEUH]NDNUãQLKNROLVSUHPHPEVSUHMHWNRWQDFLRQDOQLVWDQGDUG1DMQRYHMãLVH]QDPLWHK
QDFLRQDOQLKVWDQGDUGRY]QMLKRYLPLELEOLRJUDIVNLPLSRGDWNLVHQD]DKWHYRODKNRGRELMRSUL&HQWUDOQHP
VHNUHWDULDWXDOLNDWHULNROLþODQLFL&(1

7DHYURSVNLVWDQGDUGREVWDMDYWUHKL]YLUQLKL]GDMDK DQJOHãNLIUDQFRVNLLQQHPãNL ,]GDMHYGUXJLK
MH]LNLKNLMLKþODQLFH&(1QDODVWQRRGJRYRUQRVWSUHYHGHMRLQL]GDMRWHUSULMDYLMRSUL8SUDYQHPFHQWUX
&(1YHOMDMRNRWXUDGQHL]GDMH

ýODQLFH&(1VRQDFLRQDOQLRUJDQL]DVWDQGDUGH$YVWULMH%HOJLMH&LSUDýHãNHUHSXEOLNH'DQVNH
(VWRQLMH)LQVNH)UDQFLMH*UþLMH,UVNH,VODQGLMH,WDOLMH/DWYLMH/LWYH/XNVHPEXUJD0DGåDUVNH0DOWH
1HPþLMH1L]R]HPVNH1RUYHãNH3ROMVNH3RUWXJDOVNH6ORYDãNH6ORYHQLMHâSDQLMHâYHGVNHâYLFHLQ
=GUXåHQHJDNUDOMHVWYD








&(1
(YURSVNLNRPLWH]DVWDQGDUGL]DFLMR
(XURSHDQ&RPPLWWHHIRU6WDQGDUGLVDWLRQ
&RPLWp(XURSpHQGH1RUPDOLVDWLRQ
(XURSlLVFKHV.RPLWHHIU1RUPXQJ

&HQWUDOQLVHNUHWDULDW5XHGH6WDVVDUW%%UXVVHOV
-.0/)1234",!5,6!"+& 7!’&8",/)129$:;12<=<>.?>1

6,67(1
96(%,1$ VWUDQ
3UHGJRYRU
6SORãQR
3RGURþMHXSRUDEH
3RGURþMHXSRUDEHHYURNRGD
3RGURþMHXSRUDEHGHODHYURNRGD
=YH]D]GUXJLPLVWDQGDUGL
6SORãQLVWDQGDUGL
'UXJLVWDQGDUGL
3UHGSRVWDYNH
5D]OLNRYDQMHPHGQDþHOLLQSUDYLOL]DXSRUDER
'HILQLFLMH
6SORãQR
'UXJLL]UD]LLQGHILQLFLMHXSRUDEOMHQLYWHPVWDQGDUGX
6RYSUHåQLHOHPHQW
6WULåQDSRYH]DYD
6RYSUHåQRREQDãDQMH
6RYSUHåQLQRVLOHF
6RYSUHåQLVWHEHU
6RYSUHåQDSORãþD
6RYSUHåQLRNYLU
6RYSUHåQLVSRM
3RGSUWDNRQVWUXNFLMDDOLHOHPHQW
1HSRGSUWDNRQVWUXNFLMDDOLHOHPHQW
1HUD]SRNDQDXSRJLEQDWRJRVW
5D]SRNDQDXSRJLEQDWRJRVW
3UHGQDSHQMDQMH
6LPEROL
2VQRYHSURMHNWLUDQMD
=DKWHYH
1DþHODSURMHNWLUDQMDSRPHWRGLPHMQLKVWDQM
2VQRYQHVSUHPHQOMLYNH
9SOLYLQDNRQVWUXNFLMHLQYSOLYLRNROMD
/DVWQRVWLPDWHULDORYLQSURL]YRGRY
5D]YUVWLWHYYSOLYRY
3UHYHUMDQMH]PHWRGRGHOQLKIDNWRUMHY
3URMHNWQHYUHGQRVWL
3URMHNWQHYUHGQRVWLYSOLYRY
3URMHNWQHYUHGQRVWLODVWQRVWLPDWHULDORYLQSURL]YRGRY
3URMHNWQHYUHGQRVWLJHRPHWULMVNLKSRGDWNRY

6,67(1
3URMHNWQDQRVLOQRVW
.RPELQDFLMHYSOLYRY
3UHYHUMDQMHVWDWLþQHJDUDYQRWHåMD (48 
0DWHULDOL
%HWRQ
$UPDWXUQRMHNOR
.RQVWUXNFLMVNRMHNOR
6SRMQDVUHGVWYD
6SORãQR
ýHS]JODYRNRWVWULåQRYH]QRVUHGVWYR
3URILOLUDQDMHNOHQDSORþHYLQD]DVRYSUHåQHSORãþHYVWDYEDK
7UDMQRVW
6SORãQR
3URILOLUDQDMHNOHQDSORþHYLQD]DVRYSUHåQHSORãþHYVWDYEDK
$QDOL]DNRQVWUXNFLM
0RGHOLUDQMHNRQVWUXNFLMH]DDQDOL]R
0RGHOLUDQMHNRQVWUXNFLMHLQRVQRYQHSUHGSRVWDYNH
0RGHOLUDQMHVSRMHY
,QWHUDNFLMDPHGNRQVWUXNFLMRLQWHPHOMQLPLWOHPL
6WDELOQRVWNRQVWUXNFLM
9SOLYLGHIRUPLUDQHJHRPHWULMHNRQVWUXNFLMH
0HWRGHDQDOL]H]DVWDYEH
1HSRSROQRVWL
2VQRYH
1HSRSROQRVWLSULVWDYEDK
6SORãQR
*OREDOQHQHSRSROQRVWL
1HSRSROQRVWLHOHPHQWRY
,]UDþXQQRWUDQMLKVWDWLþQLKNROLþLQLQSRPLNRY
0HWRGHJOREDOQHDQDOL]H
6SORãQR
6RGHOXMRþDãLULQDSDVQLF]DUDGLVWULåQHSRGDMQRVWL
/LQHDUQDHODVWLþQDDQDOL]D
6SORãQR
7HþHQMHLQNUþHQMH
9SOLYLUD]SRNDQRVWLEHWRQD
)D]HLQ]DSRUHGMHJUDGQMH
7HPSHUDWXUQLYSOLYL
3UHGQDSHQMDQMHVNRQWUROLUDQLPLYVLOMHQLPLGHIRUPDFLMDPL
1HOLQHDUQDJOREDOQDDQDOL]D
/LQHDUQDHODVWLþQDDQDOL]D]DVWDYEH]RPHMHQRSUHUD]SRUHGLWYLMRQRWUDQMLKVLO

6,67(1
7RJDSODVWLþQDJOREDOQDDQDOL]D]DVWDYEH
5D]YUãþDQMHSUHþQLKSUHUH]RY
6SORãQR
5D]YUãþDQMHVRYSUHåQLKSUHUH]RYEUH]REEHWRQLUDQMD
5D]YUãþDQMHVRYSUHåQLKSUHUH]RY]REEHWRQLUDQMHP]DVWDYEH
0HMQDVWDQMDQRVLOQRVWL
1RVLOFL
1RVLOFLYVWDYEDK
6RGHOXMRþDãLULQD]DNRQWURORSUHþQLKSUHUH]RY
1RVLOQRVWSUHþQLKSUHUH]RYQRVLOFHY
8SRJLEQDQRVLOQRVW
6SORãQR
3ODVWLþQDXSRJLEQDQRVLOQRVW0@ABCEDVRYSUHåQHJDSUHþQHJDSUHUH]D
3ODVWLþQDXSRJLEQDQRVLOQRVWSUHUH]RY]GHOQRVWULåQRSRYH]DYRSULVWDYEDK
1HOLQHDUQDXSRJLEQDQRVLOQRVW
(ODVWLþQDXSRJLEQDQRVLOQRVW
1RVLOQRVWQDQDYSLþQLVWULJ
3RGURþMHXSRUDEH
3ODVWLþQDQRVLOQRVWQDQDYSLþQLVWULJ
1RVLOQRVWSULVWULåQHPXL]ERþHQMX
8SRJLELQQDYSLþQLVWULJ
1RVLOQRVWGHOQRREEHWRQLUDQLKSUHþQLKSUHUH]RYQRVLOFHY]DVWDYEH
3RGURþMHXSRUDEH
8SRJLEQDQRVLOQRVW
1RVLOQRVWQDQDYSLþQLVWULJ
8SRJLELQQDYSLþQLVWULJ
%RþQD]YUQLWHYVRYSUHåQLKQRVLOFHY
6SORãQR
3UHYHUMDQMHERþQH]YUQLWYHNRQWLQXLUQLKQRVLOFHYVSUHþQLPSUHUH]RPLQUD]UHGD
NRPSDNWQRVWLSULVWDYEDK
3RHQRVWDYOMHQDPHWRGDSULVWDYEDKEUH]QHSRVUHGQHJDUDþXQDQMD
3UHþQHNRQFHQWULUDQHVLOHQDVWRMLQH
6SORãQR
,]ERþHQMHVWRMLQH]DUDGLL]ERþHQMDSDVQLFH
6WULåQDSRYH]DYD
6SORãQR
2VQRYHSURMHNWLUDQMD
2PHMLWYHXSRUDEHGHOQHVWULåQHSRYH]DYHSULQRVLOFLKVWDYE
5D]PLNPHGVWULåQLPLYH]QLPLVUHGVWYLSULQRVLOFLKVWDYE
9]GROåQDVWULåQDVLODQRVLOFHYVWDYE

6,67(1
1RVLOFLSULNDWHULKMH]DL]UDþXQQRVLOQRVWLHQHJDDOLYHþSUHþQLKSUHUH]RYXSRUDEOMHQD
QHOLQHDUQDDOLHODVWLþQDWHRULMD
1RVLOFLSULNDWHULKMH]DL]UDþXQQRVLOQRVWLSUHþQLKSUHUH]RYXSRUDEOMHQDSODVWLþQDWHRULMD
ýHSL]JODYRNRWVWULåQDYH]QDVUHGVWYDYSORãþDKLQREEHWRQLUDQMX
3URMHNWQDQRVLOQRVW
9SOLYQDWHJDQDVWULåQRQRVLOQRVW
3URMHNWQDQRVLOQRVWþHSRY]JODYRXSRUDEOMHQLKVNXSDMVSURILOLUDQRMHNOHQRSORþHYLQR
YVWDYEDK
3ORþHYLQD]YDORYLY]SRUHGQLPLSRGSRUQHPXQRVLOFX
3ORþHYLQD]YDORYLSUHþQRQDSRGSRUQLQRVLOHF
'YRRVQDREUHPHQLWHYVWULåQLKYH]QLKVUHGVWHY
'HWDMOLVWULåQHSRYH]DYHLQYSOLYL]YHGEH
1RVLOQRVWQDUD]PLN
=DãþLWQLVORMLLQEHWRQLUDQMHSULVWDYEDK
/RNDOQDDUPDWXUDSORãþH
9XWHNLQLVRREOLNRYDQHVSRPRþMRSURILOLUDQHMHNOHQHSORþHYLQH
5D]PDNPHGVWULåQLPLYH]QLPLVUHGVWYL
'LPHQ]LMHMHNOHQHSDVQLFH
ýHSL]JODYRNRWVWULåQDYH]QDVUHGVWYD
ýHSL]JODYRXSRUDEOMHQLVNXSDMVSURILOLUDQRMHNOHQRSORþHYLQRSULVWDYEDK
9]GROåQLVWULJYEHWRQVNLKSORãþDK
6SORãQR
3URMHNWQDY]GROåQDVWULåQDQRVLOQRVW
1DMPDQMãDSUHþQDDUPDWXUD
9]GROåQDVWULåQDLQSUHþQDDUPDWXUDQRVLOFHYVWDYE
6RYSUHåQLVWHEULLQVRYSUHåQLWODþQLHOHPHQWL
6SORãQR
6SORãQDPHWRGDSURMHNWLUDQMD
3RHQRVWDYOMHQDPHWRGDSURMHNWLUDQMD
6SORãQRLQSRGURþMHXSRUDEH
1RVLOQRVWSUHþQHJDSUHUH]D
6RGHOXMRþDXSRJLEQDWRJRVWUD]PHUMHSULVSHYNDMHNODLQUHODWLYQDYLWNRVW
0HWRGHDQDOL]HLQQHSRSROQRVWLHOHPHQWRY
1RVLOQRVWRVQRWODþQLKHOHPHQWRY
1RVLOQRVWHOHPHQWRYREUHPHQMHQLKVWODNRPLQHQRRVQLPXSRJLERP
.RPELQDFLMDWODNDLQGYRRVQHJDXSRJLED
6WULåQDSRYH]DYDLQYQRVREWHåEH
6SORãQR
9QRVREWHåEH
9]GROåQLVWULJL]YHQSRGURþLMYQRVDREWHåEH
3RJRMLGHWDMOLUDQMD

6,67(1
%HWRQVNL]DãþLWQLVORMMHNOHQLKSURILORYLQDUPDWXUH
9]GROåQDLQSUHþQDDUPDWXUD
8WUXMDQMH
6SORãQR
'HOQLIDNWRUMLSULNRQWUROLRGSRUQRVWLSURWLXWUXMDQMXSULVWDYEDK
2GSRUQRVWSURWLXWUXMDQMX
1RWUDQMHVLOHLQREWHåEHXWUXMDQMD
1DSHWRVWL
6SORãQR
%HWRQ
.RQVWUXNFLMVNRMHNOR
$UPDWXUD
6WULåQDSRYH]DYD
5D]OLNDQDSHWRVWL
.RQVWUXNFLMVNRMHNORLQDUPDWXUD
6WULåQDSRYH]DYD
.RQWURODXWUXMDQMDWHPHOMHþDQDQD]LYQLQDSHVWQLUD]OLNL
.RQVWUXNFLMVNRMHNORDUPDWXUDLQEHWRQ
6WULåQDSRYH]DYD
0HMQDVWDQMDXSRUDEQRVWL
6SORãQR
1DSHWRVWL
6SORãQR
2PHMLWYHQDSHWRVWLSULVWDYEDK
'HIRUPDFLMHYVWDYEDK
3RPLNL
9LEUDFLMH
5D]SRNHYEHWRQX
6SORãQR
1DMPDQMãDDUPDWXUD
.RQWURODUD]SRN]DUDGLQHSRVUHGQHREWHåEH
6RYSUHåQLVSRMLRNYLUMHYYVWDYEDK
3RGURþMHXSRUDEH
$QDOL]DPRGHOLUDQMHLQUD]YUVWLWHY
6SORãQR
(ODVWLþQDJOREDOQDDQDOL]D
5D]YUVWLWHYVSRMHY
0HWRGHGLPHQ]LRQLUDQMD
2VQRYHLQSRGURþMHXSRUDEH
1RVLOQRVW
5RWDFLMVNDWRJRVW

6,67(1
5RWDFLMVNDNDSDFLWHWD
1RVLOQRVWGHORY
3RGURþMHXSRUDEH
2VQRYQLGHOLVSRMHY
9]GROåQDMHNOHQDDUPDWXUDYQDWHJX
-HNOHQDNRQWDNWQDSORãþDYWODNX
6WRMLQDVWHEUDYSUHþQHPWODNX
$UPLUDQLGHOL
3DQHOVWRMLQHVWHEUDYVWULJX
6WRMLQDVWHEUDYSUHþQHPWODNX
6RYSUHåQHSORãþHVSURILOLUDQRMHNOHQRSORþHYLQRYVWDYEDK
6SORãQR
3RGURþMHXSRUDEH
'HILQLFLMH
9UVWHVWULåQLKSRYH]DY
3ROQDVWULåQDSRYH]DYDLQGHOQDVWULåQDSRYH]DYD
3RJRMLGHWDMOLUDQMD
'HEHOLQDSORãþHLQDUPDWXUD
$JUHJDW
=DKWHYH]DOHåLãþD
9SOLYLLQREWHåEH
3URMHNWQHVLWXDFLMH
2EWHåEDSURILOLUDQHMHNOHQHSORþHYLQHNLVOXåLNRWRSDå
2EWHåEHVRYSUHåQHSORãþH
$QDOL]DQRWUDQMLKVLOLQPRPHQWRY
3URILOLUDQDMHNOHQDSORþHYLQDNRWRSDå
$QDOL]DVRYSUHåQHSORãþH
6RGHOXMRþDãLULQDVRYSUHåQHSORãþHSULNRQFHQWULUDQLWRþNRYQLLQOLQLMVNLREWHåEL
3UHYHUMDQMHSURILOLUDQHMHNOHQHSORþHYLQHNRWRSDåDYPHMQHPVWDQMXQRVLOQRVWL
3UHYHUMDQMHSURILOLUDQHMHNOHQHSORþHYLQHNRWRSDåDYPHMQHPVWDQMXXSRUDEQRVWL
3UHYHUMDQMHVRYSUHåQLKSORãþYPHMQHPVWDQMXQRVLOQRVWL
0HULODSURMHNWLUDQMD
8SRJLE
9]GROåQLVWULJSULSORãþDKEUH]NRQþQHJDVLGUDQMD
9]GROåQLVWULJSULSORãþDKVNRQþQLPVLGUDQMHP
1DYSLþQLVWULJ
3UHERMSORãþH
3UHYHUMDQMHVRYSUHåQLKSORãþSULPHMQHPVWDQMXXSRUDEQRVWL
3UHYHUMDQMHUD]SRNDQRVWLEHWRQD
3RPLNL
'RGDWHN$ LQIRUPDWLYQL 7RJRVWGHORYVSRMDSULVWDYEDK

6,67(1
$3RGURþMHXSRUDEH
$.RHILFLHQWLWRJRVWL
$2VQRYQLGHOLVSRMD
$9]GROåQDMHNOHQDDUPDWXUDYQDWHJX
$-HNOHQDNRQWDNWQDSORãþDYWODNX
$2VWDOLGHOLYVRYSUHåQLKVSRMLK
$3DQHOVWRMLQHVWHEUDYVWULJX
$6WRMLQDVWHEUDYSUHþQHPWODNX
$$UPLUDQLGHOL
$3DQHOVWRMLQHVWHEUDYVWULJX
$6WRMLQDVWHEUDYSUHþQHPWODNX
$'HIRUPDFLMHVWULåQHSRYH]DYH
'RGDWHN% LQIRUPDWLYQL 6WDQGDUGQLSUHVNXVL
%6SORãQR
%6SORãQR
%3ULSUDYDSUHVNXVRY
%3ULSUDYDSUHVNXãDQFHY
%3URFHGXUDSUHVNXãDQMD
%9UHGQRWHQMHUH]XOWDWRYSUHVNXVRY
%3UHVNXãDQMHVRYSUHåQLKHWDåQLKSORãþ
%6SORãQR
%3URFHGXUDSUHVNXãDQMD
%3ULSUDYDSUHVNXãDQFHY
%3URFHGXUDREWHåEHSULSUHVNXVX
%'RORþLWHYSURMHNWQLKYUHGQRVWL]DPLQN
%'RORþLWHYSURMHNWQLKYUHGQRVWL]DWFBCGD
'RGDWHN& LQIRUPDWLYQL .UþHQMHEHWRQDVRYSUHåQLKNRQVWUXNFLMYVWDYEDK
%LEOLRJUDILMD



6,67(1
3UHGJRYRU

7DGRNXPHQW (1 (YURNRG3URMHNWLUDQMHVRYSUHåQLKNRQVWUXNFLML]MHNODLQEHWRQD±
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...