75.060 - Natural gas
ICS 75.060 Details
Natural gas
Erdgas
Gaz naturel
Zemeljski plin
General Information
e-Library Subscription
Create subscription and get permanent access to documents within 75.060 - Natural gas
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
This document specifies the PKI method for the calculation of the methane number of a gaseous fuel, using the composition of the gas as sole input for the calculation. This document applies to natural gas (and biomethane) and their admixtures with hydrogen.
- Standard23 pagesEnglish languagesale 15% off
- Standard24 pagesFrench languagesale 15% off
This document specifies the MNC method for the calculation of the methane number of a gaseous fuel, using the composition of the gas as sole input for the calculation. This document applies to natural gas (and biomethane) and their admixtures with hydrogen.
- Standard37 pagesEnglish languagesale 15% off
- Standard40 pagesFrench languagesale 15% off
This European standard specifies gas quality characteristics, parameters and their limits, for gases classified as group H that are to be transmitted, injected into and from storages, distributed and utilized.
NOTE For information on gas families and gas groups see EN 437.
This European standard does not cover gases conveyed on isolated networks.
For biomethane, additional requirements indicated in prEN 16723 1 apply.
- Standard + National Annex and/or Foreword102 pagesForeword and/or annex in Slovenian language, body of the standard in English languagesale 10% offe-Library read for1 day
- Draft74 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the principles, instruments, materials and experimental conditions for testing Young’s modulus and Poisson’s ratio using triaxial testing method. It also specifies the sampling and mechanical testing procedures, as well as the method and precision requirements for calculating shale mechanical brittleness index based on Young’s modulus and Poisson’s ratio. This document is applicable to reservoir quality evaluation and sweet spot identification in shale gas production.
- Standard11 pagesEnglish languagesale 15% off
This document specifies the requirements, sampling, testing, inspection and accompanying documents of slick water. This document is applicable to fracturing fluid systems used in hydraulic fracturing operations in shale gas.
- Standard9 pagesEnglish languagesale 15% off
This document describes how to establish the correlation between odorant concentration in air and odour intensity, usually presented in the form of odour intensity curves, following the odour intensity scale presented in Clause 5. This document does not fix a required level of odour intensity in the natural gas: this prescription is specified by local/national regulation.
- Technical specification12 pagesEnglish languagesale 15% off
- Technical specification12 pagesFrench languagesale 15% off
This European standard specifies gas quality characteristics, parameters and their limits, for gases classified as group H that are to be transmitted, injected into and from storages, distributed and utilized.
NOTE For information on gas families and gas groups see EN 437.
This European standard does not cover gases conveyed on isolated networks.
For biomethane, additional requirements indicated in prEN 16723 1 apply.
- Standard + National Annex and/or Foreword102 pagesForeword and/or annex in Slovenian language, body of the standard in English languagesale 10% offe-Library read for1 day
- Draft74 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies methods for the continuous and intermittent sampling of liquefied natural gas (LNG) while it is being transferred through an LNG transfer line.
- Standard25 pagesEnglish languagesale 15% off
This document gives guidelines for safe fuelling operations of vehicles that use liquefied natural gas (LNG) as a fuel for propulsion, covering the activities and procedures to be followed for safe operation. It provides procedures applicable to different fuelling systems and technologies.
NOTE Regarding the responsibility surrounding the training of drivers of LNG vehicles, see the framework of Directive 89/391 EEC.
- Standard12 pagesEnglish languagesale 10% offe-Library read for1 day
This document provides requirements for operation of vehicles that use liquefied natural gas (LNG) as a fuel for propulsion, covering various aspects of LNGV workshops including activities, risk management, planning, personnel, layout, systems and operations. It provides requirements regarding the management of LNGV including use, parking, fuelling for commissioning, inspection, installation, repair and maintenance, disposal, transportation and documentation.
This document is applicable to the management of LNG vehicles.
- Standard30 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of the concentration of hydrochloric acid (HCl) and hydrofluoric acid (HF) in biomethane, after absorption on an alkali-impregnated quartz fibre filtre or in a sorbent trap, by ion chromatography (IC) with conductimetric detection.
The method is applicable to biomethane for concentration levels for HCl from 0,07 mg/m3 to 35 mg/m3 and for HF from 0,07 mg/m3 to 20 mg/m3.
Unless stated otherwise, all concentrations in this document are given under standard reference conditions (see ISO 13443). Other conditions can be applied.
This method is also applicable to biogas. This method is intended to support conformity assessment of biomethane and biogas according to specifications, such as the EN 16723 series.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
This document describes a method for sampling and analysis of volatile organic compounds (VOCs), including siloxanes, terpenes, organic sulfur compounds, in natural gas and biomethane matrices, using thermal desorption gas chromatography with flame ionization and/or mass spectrometry detectors (TD-GC-FID/MS).
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
This document gives general guidance for the sampling and gas chromatographic analysis of compressor oil in biomethane or compressed natural gas (CNG). The compressor oil mass fraction is determined by sampling on coalescing filters under defined operational conditions (the two first cubic meters of gas referring to standard conditions, delivered at a refuelling station).
Compressor oils are lubricants used in mechanical devices where the purpose is to reduce the volume and increase the pressure of gases for use in a variety of applications.
The method is solely applicable to compressed gas (p>18 MPa).
The compressor oil content is expressed as mass fraction. The scope of this method is from 3 mg/kg – 30 mg/kg.
- Standard21 pagesEnglish languagesale 10% offe-Library read for1 day
This document gives general guidance for the sampling and gas chromatographic analysis of compressor oil in biomethane or compressed natural gas (CNG). The compressor oil mass fraction is determined by sampling on coalescing filters under defined operational conditions (the two first cubic meters of gas referring to standard conditions, delivered at a refuelling station).
Compressor oils are lubricants used in mechanical devices where the purpose is to reduce the volume and increase the pressure of gases for use in a variety of applications.
The method is solely applicable to compressed gas (p>18 MPa).
The compressor oil content is expressed as mass fraction. The scope of this method is from 3 mg/kg – 30 mg/kg.
- Standard21 pagesEnglish languagesale 10% offe-Library read for1 day
This document gives general guidance for the sampling and gas chromatographic analysis of compressor oil in biomethane or compressed natural gas (CNG). The compressor oil mass fraction is determined by sampling on coalescing filters under defined operational conditions (the two first cubic meters of gas referring to standard conditions, delivered at a refuelling station). Compressor oils are lubricants used in mechanical devices where the purpose is to reduce the volume and increase the pressure of gases for use in a variety of applications. The method is solely applicable to compressed gas (p>18 MPa). The compressor oil content is expressed as mass fraction. The scope of this method is from 3 mg/kg – 30 mg/kg.
- Standard13 pagesEnglish languagesale 15% off
- Standard14 pagesFrench languagesale 15% off
This document specifies a method for the determination of the concentration of hydrochloric acid (HCl) and hydrofluoric acid (HF) in biomethane, after absorption on an alkali-impregnated quartz fibre filtre or in a sorbent trap, by ion chromatography (IC) with conductimetric detection.
The method is applicable to biomethane for concentration levels for HCl from 0,07 mg/m3 to 35 mg/m3 and for HF from 0,07 mg/m3 to 20 mg/m3.
Unless stated otherwise, all concentrations in this document are given under standard reference conditions (see ISO 13443). Other conditions can be applied.
This method is also applicable to biogas. This method is intended to support conformity assessment of biomethane and biogas according to specifications, such as the EN 16723 series.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of the concentration of hydrochloric acid (HCl) and hydrofluoric acid (HF) in biomethane, after absorption on an alkali-impregnated quartz fibre filtre or in a sorbent trap, by ion chromatography (IC) with conductimetric detection. The method is applicable to biomethane for concentration levels for HCl from 0,07 mg/m3 to 35 mg/m3 and for HF from 0,07 mg/m3 to 20 mg/m3. Unless stated otherwise, all concentrations in this document are given under standard reference conditions (see ISO 13443). Other conditions can be applied. This method is also applicable to biogas. This method is intended to support conformity assessment of biomethane and biogas according to specifications, such as the EN 16723 series.
- Standard13 pagesEnglish languagesale 15% off
- Standard13 pagesFrench languagesale 15% off
This document describes a method for sampling and analysis of volatile organic compounds (VOCs), including siloxanes, terpenes, organic sulfur compounds, in natural gas and biomethane matrices, using thermal desorption gas chromatography with flame ionization and/or mass spectrometry detectors (TD-GC-FID/MS).
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
This document describes a method for sampling and analysis of volatile organic compounds (VOCs), including siloxanes, terpenes, organic sulfur compounds, in natural gas and biomethane matrices, using thermal desorption gas chromatography with flame ionization and/or mass spectrometry detectors (TD-GC-FID/MS).
- Standard8 pagesEnglish languagesale 15% off
- Standard9 pagesFrench languagesale 15% off
This document describes the test method for the determination of hydrogen sulfide content in natural gas by ultraviolet (UV) absorption method. This document applies to the determination of hydrogen sulfide content in natural gas, in the range from 1 mg/m3 to 50 mg/m3.
- Standard12 pagesEnglish languagesale 15% off
- Standard12 pagesFrench languagesale 15% off
This document describes several test methods for measuring the ammonia amount fraction in natural gas and biomethane at the trace level (µmol mol-1). The suitable handling and sampling of pressurised mixtures of ammonia in methane that are applied to several different ammonia measurement systems are described. The measurement systems are comprised of readily available commercial spectroscopic analysers that are specific to ammonia. These NH3 analysers are considered as a black box in terms of their operation, which is dependent on the instructions of the manufacturer. The document describes suitable calibration and measurement strategies to quantify ammonia in (bio)methane around and above the 10 mg m-3 (14 µmol mol-1) level and applies to analysis within absolute pressure ranges of 1 bar – 2 bar, temperatures of 0 °C – 40 °C and relative humidity <90 %.
References are also made to additional standards that are applied either to natural gas analysis or air quality measurements. In this document the matrix gas is always methane or biomethane and the measurand is the amount fraction NH3.
NOTE 1 bar = 0,1 MPa =105 Pa; 1 MPa = 1 N/mm2.
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
This document describes a gas chromatography – ion mobility spectroscopy (GC-IMS) method for the determination of the concentration of siloxanes in biomethane. The method is applicable to the following siloxanes:
— hexamethyldisiloxane (L2);
— octamethyltrisiloxane (L3);
— decamethyltetrasiloxane (L4);
— dodecamethylpentasiloxane (L5);
— hexamethylcyclotrisiloxane (D3);
— octamethylcyclotetrasiloxane (D4);
— decamethylcyclopentasiloxane (D5);
— dodecamethylcyclohexasiloxane (D6).
This document describes suitable calibration and measurement strategies to quantify siloxanes in (bio)methane around and above the 0,3 mg m-3 (14 µmol mol-1) level and applies to analyses within absolute pressure ranges of 1 bar – 2 bar, temperatures of 0 °C – 40 °C and relative humidity < 90 %.
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a micro gas chromatography method for the on-line or offline determination of the content of five terpenes in biomethane, namely:
— alpha-pinene,
— beta-pinene,
— para-cymene,
— limonene,
— 3-carene.
The method is specifically developed for these five compounds. Information about the compounds is given in Annex A.
The method is applicable to the determination of individual amount fractions of the five terpenes from 1 µmol/mol up to and including 10 µmol/mol. With minor modifications it can also be used for terpene amount fractions above 10 µmol/mol.
- Standard15 pagesEnglish languagesale 10% offe-Library read for1 day
This document introduces the production process, the distribution and quality designation of coal-based synthetic natural gas (CBSNG) in many places around the world, and examines whether ISO/TC 193 standards for sampling, test and calculation methods are applicable to the CBSNG product.
- Technical report22 pagesEnglish languagesale 15% off
This document describes several test methods for measuring the ammonia amount fraction in natural gas and biomethane at the trace level (µmol mol-1). The suitable handling and sampling of pressurised mixtures of ammonia in methane that are applied to several different ammonia measurement systems are described. The measurement systems are comprised of readily available commercial spectroscopic analysers that are specific to ammonia. These NH3 analysers are considered as a black box in terms of their operation, which is dependent on the instructions of the manufacturer. The document describes suitable calibration and measurement strategies to quantify ammonia in (bio)methane around and above the 10 mg m-3 (14 µmol mol-1) level and applies to analysis within absolute pressure ranges of 1 bar – 2 bar, temperatures of 0 °C – 40 °C and relative humidity <90 %.
References are also made to additional standards that are applied either to natural gas analysis or air quality measurements. In this document the matrix gas is always methane or biomethane and the measurand is the amount fraction NH3.
NOTE 1 bar = 0,1 MPa =105 Pa; 1 MPa = 1 N/mm2.
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
This document describes several test methods for measuring the ammonia amount fraction in natural gas and biomethane at the trace level (µmol mol-1). The suitable handling and sampling of pressurised mixtures of ammonia in methane that are applied to several different ammonia measurement systems are described. The measurement systems are comprised of readily available commercial spectroscopic analysers that are specific to ammonia. These NH3 analysers are considered as a black box in terms of their operation, which is dependent on the instructions of the manufacturer. The document describes suitable calibration and measurement strategies to quantify ammonia in (bio)methane around and above the 10 mg m-3 (14 µmol mol-1) level and applies to analysis within absolute pressure ranges of 1 bar – 2 bar, temperatures of 0 °C – 40 °C and relative humidity References are also made to additional standards that are applied either to natural gas analysis or air quality measurements. In this document the matrix gas is always methane or biomethane and the measurand is the amount fraction NH3. NOTE 1 bar = 0,1 MPa =105 Pa; 1 MPa = 1 N/mm2.
- Standard11 pagesEnglish languagesale 15% off
- Standard12 pagesFrench languagesale 15% off
This document describes a gas chromatography – ion mobility spectroscopy (GC-IMS) method for the determination of the concentration of siloxanes in biomethane. The method is applicable to the following siloxanes:
— hexamethyldisiloxane (L2);
— octamethyltrisiloxane (L3);
— decamethyltetrasiloxane (L4);
— dodecamethylpentasiloxane (L5);
— hexamethylcyclotrisiloxane (D3);
— octamethylcyclotetrasiloxane (D4);
— decamethylcyclopentasiloxane (D5);
— dodecamethylcyclohexasiloxane (D6).
This document describes suitable calibration and measurement strategies to quantify siloxanes in (bio)methane around and above the 0,3 mg m-3 (14 µmol mol-1) level and applies to analyses within absolute pressure ranges of 1 bar – 2 bar, temperatures of 0 °C – 40 °C and relative humidity < 90 %.
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
This document describes a gas chromatography – ion mobility spectroscopy (GC-IMS) method for the determination of the concentration of siloxanes in biomethane. The method is applicable to the following siloxanes: — hexamethyldisiloxane (L2); — octamethyltrisiloxane (L3); — decamethyltetrasiloxane (L4); — dodecamethylpentasiloxane (L5); — hexamethylcyclotrisiloxane (D3); — octamethylcyclotetrasiloxane (D4); — decamethylcyclopentasiloxane (D5); — dodecamethylcyclohexasiloxane (D6). This document describes suitable calibration and measurement strategies to quantify siloxanes in (bio)methane around and above the 0,3 mg m-3 (14 µmol mol-1) level and applies to analyses within absolute pressure ranges of 1 bar – 2 bar, temperatures of 0 °C – 40 °C and relative humidity
- Standard10 pagesEnglish languagesale 15% off
- Standard12 pagesFrench languagesale 15% off
This document specifies a micro gas chromatography method for the on-line or offline determination of the content of five terpenes in biomethane, namely:
— alpha-pinene,
— beta-pinene,
— para-cymene,
— limonene,
— 3-carene.
The method is specifically developed for these five compounds. Information about the compounds is given in Annex A.
The method is applicable to the determination of individual amount fractions of the five terpenes from 1 µmol/mol up to and including 10 µmol/mol. With minor modifications it can also be used for terpene amount fractions above 10 µmol/mol.
- Standard15 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a micro gas chromatography method for the on-line or offline determination of the content of five terpenes in biomethane, namely: — alpha-pinene, — beta-pinene, — para-cymene, — limonene, — 3-carene. The method is specifically developed for these five compounds. Information about the compounds is given in Annex A. The method is applicable to the determination of individual amount fractions of the five terpenes from 1 µmol/mol up to and including 10 µmol/mol. With minor modifications it can also be used for terpene amount fractions above 10 µmol/mol.
- Standard7 pagesEnglish languagesale 15% off
- Standard8 pagesFrench languagesale 15% off
This document specifies a method for the determination of drag reduction of slick water, which is mainly used to evaluate the drag reduction performance of slick water. This document uses the pipeline method to evaluate the drag reduction, which is currently recognized as the best method to evaluate the drag reduction performance. This document describes the device, experimental conditions and operating steps in detail. The drag reduction value obtained by evaluation according to this document can effectively represent the on-site drag reduction performance.
- Standard5 pagesEnglish languagesale 15% off
This document specifies the determination of the concentration of alkanolamines in biomethane. The measurement method involves thermal desorption gas chromatography with flame ionization and/or mass spectrometry detectors (TD-GC-MS/FID). The described method is specifically developed for the analysis of five amine compounds, namely:
— monoethanolamine (MEA);
— diglycolamine (DGA);
— diethanolamine (DEA);
— N-methyldiethanolamine (MDEA);
— piperazine (PZ).
Information about the compounds is given in Annex A.
- Technical specification17 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the determination of the concentration of alkanolamines in biomethane. The measurement method involves thermal desorption gas chromatography with flame ionization and/or mass spectrometry detectors (TD-GC-MS/FID). The described method is specifically developed for the analysis of five amine compounds, namely:
— monoethanolamine (MEA);
— diglycolamine (DGA);
— diethanolamine (DEA);
— N-methyldiethanolamine (MDEA);
— piperazine (PZ).
Information about the compounds is given in Annex A.
- Technical specification17 pagesEnglish languagesale 10% offe-Library read for1 day
This document is applicable to the measurement of the total silicon content in gaseous matrices such as biomethane and biogas. Silicon is present in a gas phase contained predominantly in siloxane compounds, trimethylsilane and trimethylsilanol. The analytical form of the silicon measured in liquid phase after conducted sampling and derivatization procedure is soluble hexafluorosilicate anion stable in slightly acidified media. Total silicon is expressed as a mass of silicon in the volume of the analysed gas.
This document is applicable to stated gaseous matrices with silicon concentrations up to 5 mg/m3, and it is prevalently intended for the biomethane matrices with Si mass concentration of 0,1 mg/m3 to 0,5 mg/m3.
With adaptation to ensure appropriate absorption efficiency, it can be used for higher concentrations. The detection limit of the method is estimated as 0,05 mg/m3 based on a gas sample volume of 0,020 m3. All compounds present in the gas phase are volatile at the absorption and derivatization temperature and gaseous organosilicon species are trapped in absorbance media and derivatized into analytical silicon that is measured by this method. The concentration of the silicon is measured in diluted derivatization media using atomic emission spectrometry upon atomisation/ionisation in microwave or inductively coupled plasma.
Unless specified otherwise, all volumes and concentrations refer to standard reference conditions (temperature, 273 K, and pressure, 101,325 kPa).
NOTE When using appropriate dilution factors, the method can also be applied for silicon concentrations above 5 mg/m3.
- Standard21 pagesEnglish languagesale 10% offe-Library read for1 day
This document is applicable to the measurement of the total silicon content in gaseous matrices such as biomethane and biogas. Silicon is present in a gas phase contained predominantly in siloxane compounds, trimethylsilane and trimethylsilanol. The analytical form of the silicon measured in liquid phase after conducted sampling and derivatization procedure is soluble hexafluorosilicate anion stable in slightly acidified media. Total silicon is expressed as a mass of silicon in the volume of the analysed gas.
This document is applicable to stated gaseous matrices with silicon concentrations up to 5 mg/m3, and it is prevalently intended for the biomethane matrices with Si mass concentration of 0,1 mg/m3 to 0,5 mg/m3.
With adaptation to ensure appropriate absorption efficiency, it can be used for higher concentrations. The detection limit of the method is estimated as 0,05 mg/m3 based on a gas sample volume of 0,020 m3. All compounds present in the gas phase are volatile at the absorption and derivatization temperature and gaseous organosilicon species are trapped in absorbance media and derivatized into analytical silicon that is measured by this method. The concentration of the silicon is measured in diluted derivatization media using atomic emission spectrometry upon atomisation/ionisation in microwave or inductively coupled plasma.
Unless specified otherwise, all volumes and concentrations refer to standard reference conditions (temperature, 273 K, and pressure, 101,325 kPa).
NOTE When using appropriate dilution factors, the method can also be applied for silicon concentrations above 5 mg/m3.
- Standard21 pagesEnglish languagesale 10% offe-Library read for1 day
This document is applicable to the measurement of the total silicon content in gaseous matrices such as biomethane and biogas. Silicon is present in a gas phase contained predominantly in siloxane compounds, trimethylsilane and trimethylsilanol. The analytical form of the silicon measured in liquid phase after conducted sampling and derivatization procedure is soluble hexafluorosilicate anion stable in slightly acidified media. Total silicon is expressed as a mass of silicon in the volume of the analysed gas. This document is applicable to stated gaseous matrices with silicon concentrations up to 5 mg/m3, and it is prevalently intended for the biomethane matrices with Si mass concentration of 0,1 mg/m3 to 0,5 mg/m3. With adaptation to ensure appropriate absorption efficiency, it can be used for higher concentrations. The detection limit of the method is estimated as 0,05 mg/m3 based on a gas sample volume of 0,020 m3. All compounds present in the gas phase are volatile at the absorption and derivatization temperature and gaseous organosilicon species are trapped in absorbance media and derivatized into analytical silicon that is measured by this method. The concentration of the silicon is measured in diluted derivatization media using atomic emission spectrometry upon atomisation/ionisation in microwave or inductively coupled plasma. Unless specified otherwise, all volumes and concentrations refer to standard reference conditions (temperature, 273 K, and pressure, 101,325 kPa). NOTE When using appropriate dilution factors, the method can also be applied for silicon concentrations above 5 mg/m3.
- Standard13 pagesEnglish languagesale 15% off
- Standard13 pagesFrench languagesale 15% off
This document gives means for ensuring that samples of natural gas and natural gas substitutes that are conveyed into transmission and distribution grids are representative of the mass to which they are allocated.
NOTE To ensure that a particular gas is taken into account in the standard, please see Annex A.
This document is applicable for sampling at sites and locations where interchangeability criteria, energy content and network entry conditions are measured and monitored and is particularly relevant at cross border and fiscal measurement stations. It serves as an important source for control applications in natural gas processing and the measurement of trace components.
This document is applicable to natural dry gas (single phase - typically gas transiting through natural gas pipelines) sampling only. On occasion a natural gas flow can have entrained liquid hydrocarbons. Attempting to sample a wet natural gas flow introduces the possibility of extra unspecified uncertainties in the resulting flow composition analysis. Sampling a wet gas (two or three phases) flow is outside the scope of this document.
This document does not apply to the safety issues associated with gas sampling.
- Standard80 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies methods to calculate (dynamic) viscosity, Joule-Thomson coefficient, isentropic exponent, and speed of sound, excluding density, for use in the metering of natural gas flow.
- Standard25 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies general requirements for the determination of water in natural gas using the Karl Fischer method (see Reference [1]).
ISO 10101-2 and ISO 10101-3 specify two individual methods of determination, a titration procedure and a coulometric procedure, respectively.
- Standard12 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a coulometric procedure for the determination of water content by the Karl Fischer method. The method is applicable to natural gas and other gases which do not react with Karl Fischer (KF) reagents.
It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3. Volumes are expressed at temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa (1 atm).
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a volumetric procedure for the determination of water content in natural gas. Volumes are expressed in cubic metres at a temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa (1 atm). It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3.
- Standard19 pagesEnglish languagesale 10% offe-Library read for1 day
This document gives means for ensuring that samples of natural gas and natural gas substitutes that are conveyed into transmission and distribution grids are representative of the mass to which they are allocated.
NOTE To ensure that a particular gas is taken into account in the standard, please see Annex A.
This document is applicable for sampling at sites and locations where interchangeability criteria, energy content and network entry conditions are measured and monitored and is particularly relevant at cross border and fiscal measurement stations. It serves as an important source for control applications in natural gas processing and the measurement of trace components.
This document is applicable to natural dry gas (single phase - typically gas transiting through natural gas pipelines) sampling only. On occasion a natural gas flow can have entrained liquid hydrocarbons. Attempting to sample a wet natural gas flow introduces the possibility of extra unspecified uncertainties in the resulting flow composition analysis. Sampling a wet gas (two or three phases) flow is outside the scope of this document.
This document does not apply to the safety issues associated with gas sampling.
- Standard80 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a coulometric procedure for the determination of water content by the Karl Fischer method. The method is applicable to natural gas and other gases which do not react with Karl Fischer (KF) reagents.
It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3. Volumes are expressed at temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa (1 atm).
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
This document gives means for ensuring that samples of natural gas and natural gas substitutes that are conveyed into transmission and distribution grids are representative of the mass to which they are allocated. NOTE To ensure that a particular gas is taken into account in the standard, please see Annex A. This document is applicable for sampling at sites and locations where interchangeability criteria, energy content and network entry conditions are measured and monitored and is particularly relevant at cross border and fiscal measurement stations. It serves as an important source for control applications in natural gas processing and the measurement of trace components. This document is applicable to natural dry gas (single phase - typically gas transiting through natural gas pipelines) sampling only. On occasion a natural gas flow can have entrained liquid hydrocarbons. Attempting to sample a wet natural gas flow introduces the possibility of extra unspecified uncertainties in the resulting flow composition analysis. Sampling a wet gas (two or three phases) flow is outside the scope of this document. This document does not apply to the safety issues associated with gas sampling.
- Standard70 pagesEnglish languagesale 15% off
- Standard75 pagesFrench languagesale 15% off
This document specifies a volumetric procedure for the determination of water content in natural gas. Volumes are expressed in cubic metres at a temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa (1 atm). It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3.
- Standard19 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies general requirements for the determination of water in natural gas using the Karl Fischer method (see Reference [1]).
ISO 10101-2 and ISO 10101-3 specify two individual methods of determination, a titration procedure and a coulometric procedure, respectively.
- Standard12 pagesEnglish languagesale 10% offe-Library read for1 day
This document gives the specifications and guidelines for the methods to be used in the odorization of natural gas and other methane rich gases delivered through natural gas networks to gas applications under a safety point of view. This document also specifies the principles for the odorization technique (including handling and storage of odorants) and the control of odorization of natural gas and other methane rich gases. NOTE The general requirements for odorants, and the physical and chemical properties of commonly used odorants are specified in ISO 13734.
- Technical specification12 pagesEnglish languagesale 15% off
- Technical specification13 pagesFrench languagesale 15% off
This document specifies a coulometric procedure for the determination of water content by the Karl Fischer method. The method is applicable to natural gas and other gases which do not react with Karl Fischer (KF) reagents. It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3. Volumes are expressed at temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa (1 atm).
- Standard9 pagesEnglish languagesale 15% off
This document specifies general requirements for the determination of water in natural gas using the Karl Fischer method (see Reference [1]). ISO 10101-2 and ISO 10101-3 specify two individual methods of determination, a titration procedure and a coulometric procedure, respectively.
- Standard4 pagesEnglish languagesale 15% off
This document specifies a volumetric procedure for the determination of water content in natural gas. Volumes are expressed in cubic metres at a temperature of 273,15 K (0 °C) and a pressure of 101,325 kPa (1 atm). It applies to water concentrations between 5 mg/m3 and 5 000 mg/m3.
- Standard11 pagesEnglish languagesale 15% off





