This European Standard provides methods to determine, by means of tests, measurements and/or calculations:
-   The energy consumption of desktop computers, integrated desktop computers and notebook computers in OFF mode, with Wake-on-LAN (when available) enabled and disabled;
-   The energy consumption of desktop computers, integrated desktop computers and notebook computers in other modes of operation, including low power state(s);
-   The lowest power state of desktop computers, integrated desktop computers and notebook computers;
-   The Discrete Graphics Card (dGfx) category, when applicable;
-   The internal power supply efficiency of desktop computers, integrated desktop computers, computer thin clients, workstations, small-scale servers and computer servers;
-   The availability and the behaviour of a power management function.
NOTE   The "Discrete Graphics Card" may not be a physically separate printed circuit board but any hardware providing graphics acceleration function.
This European Standard also suggests methods to determine, when such information is not otherwise available from a trustable source:
-   The efficiency of the external power supply supplied with the computer, if applicable;
-   The noise level of desktop computers, integrated desktop computers, computer thin clients, workstations, small-scale servers and computer servers;
-   The minimum number of loading cycles that the batteries can withstand;
-   The total mercury content in the integrated display, when applicable.
This European Standard additionally provides guidance on information to be provided by manufacturers under some Ecodesign programmes or regulations, including, when applicable:
-   The results of the above mentioned energy efficiency measurements;
-   Energy efficiency parameters calculated from the above measurements (e.g. the total energy consumption, based on a pre-defined duty cycle);
-   The external power supply efficiency;
-   The noise levels (the declared A-weighted sound power level) of the computer;
-   The minimum number of loading cycles that the batteries can withstand;
-   Whether internal batteries can be "accessed and replaced by a nonprofessional user", and whether the related text is present and legible on the external packaging;
-   User information on power management functionality;
-   The total mercury content in the integrated display.
This European Standard applies to desktop computers, integrated desktop computers, notebook computers (including tablet computers, slate computers and mobile thin clients), desktop thin clients, workstations, mobile workstations, small-scale servers and computer servers, that can be powered directly from the mains alternating current (a.c.), including via an external or internal power supply.
This European Standard does not cover blade systems and components, server appliances, multi-node servers, computer servers with more than four processor sockets, game consoles and docking stations.
This European Standard may be applied to any type of computer and computer server not specifically excluded, regardless of its power demand.

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard provides methods to determine, by means of tests, measurements and/or calculations: - The energy consumption of desktop computers, integrated desktop computers and notebook computers in OFF mode, with Wake-on-LAN (when available) enabled and disabled; - The energy consumption of desktop computers, integrated desktop computers and notebook computers in other modes of operation, including low power state(s); - The lowest power state of desktop computers, integrated desktop computers and notebook computers; - The Discrete Graphics Card (dGfx) category, when applicable; - The internal power supply efficiency of desktop computers, integrated desktop computers, computer thin clients, workstations, small-scale servers and computer servers; - The availability and the behaviour of a power management function. NOTE The "Discrete Graphics Card" may not be a physically separate printed circuit board but any hardware providing graphics acceleration function. This European Standard also suggests methods to determine, when such information is not otherwise available from a trustable source: - The efficiency of the external power supply supplied with the computer, if applicable; - The noise level of desktop computers, integrated desktop computers, computer thin clients, workstations, small-scale servers and computer servers; - The minimum number of loading cycles that the batteries can withstand; - The total mercury content in the integrated display, when applicable. This European Standard additionally provides guidance on information to be provided by manufacturers under some Ecodesign programmes or regulations, including, when applicable: - The results of the above mentioned energy efficiency measurements; - Energy efficiency parameters calculated from the above measurements (e.g. the total energy consumption, based on a pre-defined duty cycle); - The external power supply efficiency; - The noise levels (the declared A-weighted sound power level) of the computer; - The minimum number of loading cycles that the batteries can withstand; - Whether internal batteries can be "accessed and replaced by a nonprofessional user", and whether the related text is present and legible on the external packaging; - User information on power management functionality; - The total mercury content in the integrated display. This European Standard applies to desktop computers, integrated desktop computers, notebook computers (including tablet computers, slate computers and mobile thin clients), desktop thin clients, workstations, mobile workstations, small-scale servers and computer servers, that can be powered directly from the mains alternating current (a.c.), including via an external or internal power supply. This European Standard does not cover blade systems and components, server appliances, multi-node servers, computer servers with more than four processor sockets, game consoles and docking stations. This European Standard may be applied to any type of computer and computer server not specifically excluded, regardless of its power demand.

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62321-4:2013 describes the use of four test methods for mercury in polymers, metals and electronics, namely CV-AAS (cold vapour atomic absorption spectrometry), CV-AFS (cold vapour atomic fluorescence spectrometry) ICP-OES (inductively coupled plasma optical emission spectrometry), and ICP-MS (inductively coupled plasma mass spectrometry) as well as several procedures for preparing the sample solution from which the most appropriate method of analysis can be selected by experts.

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62321-3-1:2013 describes the screening analysis of five substances, specifically lead (Pb), mercury (Hg), cadmium (Cd), total chromium (Cr) and total bromine (Br) in uniform materials found in electrotechnical products, using the analytical technique of X-ray fluorescence (XRF) spectrometry.

  • Standard
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62321-1:2013 refers to the sample as the object to be processed and measured. The nature of the sample and the manner in which it is acquired is defined by the entity carrying out the tests and not by this standard. It provides guidance on the disassembly procedure employed for obtaining a sample. This first edition of IEC 62321-1 is a partial replacement of IEC 62321, forming a structural revision and replacing Clauses 1 to 4.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62554:2011 specifies sample preparation methods for determining mercury levels in new tubular fluorescent lamps (including single capped, double capped, self-ballasted and CCFL for backlighting) containing 0,1 mg mercury or more. The intended resolution of the methods described in this standard is of the order of 5 %. Mercury level measurement of spent lamps is excluded, as during lamp operation, mercury gradually diffuses into the glass wall and reacts with the glass materials. The test method of this standard does not recover mercury that is diffused into or reacted with or otherwise incorporated irreversibly with the glass wall of discharge tubes. This standard does not contain information on measurement. Measurement is specified in IEC 62321.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies methods of measurement of electrical power consumption, and the reporting of results, for external power supplies. This standard is applicable to external power supplies with a rated input voltage within the range 100 V ac to 250 V ac having a single output with a rated output power not exceeding 250 W and a rated output voltage not exceeding 230 V a.c. or 325 V d.c. The output voltage may be either at a fixed voltage, or at a voltage which is user selectable, or at a voltage that is automatically selectable by the external power supply so as to be compatible with one or more product-loads.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62301:2011 specifies methods of measurement of electrical power consumption in standby mode(s) and other low power modes (off mode and network mode), as applicable. It is applicable to electrical products with a rated input voltage or voltage range that lies wholly or partly in the range 100 V a.c. to 250 V a.c. for single phase products and 130 V a.c. to 480 V a.c. for other products. The objective of this standard is to provide a method of test to determine the power consumption of a range of products in relevant low power modes (see 3.4), generally where the product is not in active mode (i.e. not performing a primary function). This standard does not specify safety requirements. It does not specify minimum performance requirements nor does it set maximum limits on power or energy consumption. This second edition cancels and replaces the first edition published in 2005 and constitutes a technical revision. The main changes from the previous edition are as follows:  - greater detail in set-up procedures and introduction of stability requirements for all measurement methods to ensure that results are as representative as possible;  - refinement of measurement uncertainty requirements for power measuring instruments, especially for more difficult loads with high crest factor and/or low power factor;  - updated guidance on product configuration, instrumentation and calculation of measurement uncertainty;  - inclusion of definitions for low power modes as requested by TC59 and use of these new definitions and more rigorous terminology throughout the standard;  - inclusion of specific test conditions where power consumption is affected by ambient illumination.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard – translation
    35 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day

This International Standard covers personal computing products. It applies to desktop and notebook computers as defined in 4.1 that are marketed as final products and that are hereafter referred to as the equipment under test (EUT) or product. This standard specifies: - a test procedure to enable the measurement of the power and/or energy consumption in each of the EUT's power modes; - formulas for calculating the typical energy consumption (TEC) for a given period (normally annual); - a majority profile that should be used with this standard which enables conversion of average power into energy within the TEC formulas; - a system of categorisation enabling like for like comparisons of energy consumption between EUTs; - a pre-defined format for the presentation of results. This standard does not set any pass/fail criteria for the EUTs. Users of the test results should define such criteria.

  • Standard
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62321-2:2013 provides strategies of sampling along with the mechanical preparation of samples from electrotechnical products, electronic assemblies and electronic components. These samples can be used for analytical testing to determine the levels of certain substances as described in the test methods in other parts of IEC 62321. Restrictions for substances will vary between geographic regions and from time to time. This Standard describes a generic process for obtaining and preparing samples prior to the determination of any substance which are under concern.

  • Standard
    53 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61960:2011 specifies performance tests, designations, markings, dimensions and other requirements for secondary lithium single cells and batteries for portable applications. The objective of this standard is to provide the purchasers and users of secondary lithium cells and batteries with a set of criteria with which they can judge the performance of secondary lithium cells and batteries offered by various manufacturers. This second edition cancels and replaces the first edition published in 2003. It is a technical revision. This edition includes the following significant technical changes with respect to the previous edition:  - 7.6 Endurance in cycles: addition of an accelerated test procedure.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 7779:2010 specifies procedures for measuring and reporting the noise emission of information technology and telecommunications equipment.
The basic emission quantity is the A-weighted sound power level which may be used for comparing equipment of the same type but from different manufacturers, or for comparing different equipment.
Three basic noise emission standards for determination of the sound power levels are specified in ISO 7779:2010 in order to avoid undue restriction on existing facilities and experience. ISO 3741 specifies comparison measurements in a reverberation test room; ISO 3744 and ISO 3745 specify measurements in an essentially free field over a reflecting plane. Any one of these three basic noise emission standards can be selected and used exclusively in accordance with ISO 7779:2010 when determining sound power levels of a machine.
The A-weighted sound power level is supplemented by the A-weighted emission sound pressure level determined at the operator position(s) or the bystander positions, based on basic noise emission standard ISO 11201. This sound pressure level is not a worker's immission rating level, but it can assist in identifying any potential problems that could cause annoyance, activity interference, or hearing damage to operators and bystanders.
Methods for determination of whether the noise emission includes prominent discrete tones or is impulsive in character are specified in annexes.
ISO 7779:2010 is suitable for type tests and provides methods for manufacturers and testing laboratories to obtain comparable results.
The methods specified in ISO 7779:2010 allow the determination of noise emission levels for a functional unit tested individually.
The procedures apply to equipment which emits broadband noise, narrowband noise and noise which contains discrete-frequency components, or impulsive noise.
The sound power and emission sound pressure levels obtained can serve noise emission declaration and comparison purposes (see ISO 9296).
If sound power levels obtained are determined for a number of functional units of the same production series, they can be used to determine a statistical value for that production series (see ISO 9296).

  • Standard
    70 pages
    English language
    sale 10% off
    e-Library read for
    1 day