Method of testing cement - Part 2: Chemical analysis of cement

This European Standard specifies the methods for the chemical analysis of cement. This document describes the reference methods and, in certain cases, an alternative method which can be considered to be equivalent. In the case of a dispute, only the reference methods are used. An alternative performance-based method using X-ray fluorescence (XRF) is described for SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, K2O, Na2O, TiO2, P2O5, Mn2O3, SrO, Cl and Br. When correctly calibrated according to the specified procedures and reference materials, it provides a method equivalent to the reference methods but has not been validated for use yet as a reference procedure for conformity and dispute purposes. It can be applied to other relevant elements when adequate calibrations have been established. This method is based on beads of fused sample and analytical validation using certified reference materials, together with performance criteria. A method based on pressed pellets of un-fused sample can be considered as equivalent, providing that the analytical performance satisfies the same criteria. Any other methods may be used provided they are calibrated, either against the reference methods or against internationally accepted reference materials, in order to demonstrate their equivalence. This document describes methods which apply principally to cements, but which can also be applied to their constituent materials. They can also be applied to other materials, the standards for which call up these methods. Standard specifications state which methods are to be used.

Prüfverfarhen für Zement - Teil 2: Chemische Analyse von Zement

Dieses Dokument legt die Verfahren zur Durchführung der chemischen Analyse von Zement fest.
Dieses Dokument beschreibt die Referenzverfahren und in einigen Fällen Alternativverfahren, deren Ergebnisse denen des Referenzverfahrens entsprechen. Im Streitfall sind die Referenzverfahren maßgebend.
Ein alternatives leistungsbasiertes Verfahren unter Anwendung der Röntgenfluoreszenzanalyse ist für SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, K2O, Na2O, TiO2, P2O5, Mn2O3, SrO, Cl und Br beschrieben. Dieses Verfahren ist bei korrekter Kalibrierung gegen festgelegte Verfahrensweisen und Referenzmaterialien den Referenzverfahren gleichwertig, ist jedoch noch nicht für die Anwendung als Referenzverfahren für Konformitätszwecke oder Streitfälle validiert worden. Nach Festlegung angemessener Kalibrierungen ist es für andere Elemente anwendbar. Dieses Verfahren beruht auf Schmelz-Aufschluss-Proben und der analytischen Validierung unter Verwendung zertifizierter Referenzmaterialien in Zusammenhang mit Leistungskriterien. Ein Verfahren auf der Grundlage von Pulverpresslingen aus unaufgeschlossenen Proben kann als gleichwertig angesehen werden, sofern die analytische Leistung dieselben Kriterien erfüllt.
Werden andere Verfahren angewendet, so sind diese gegen die Referenzverfahren oder gegen international anerkannte Referenzmaterialien zu kalibrieren, um ihre Gleichwertigkeit nachzuweisen.
Dieses Dokument legt Verfahren fest, die in erster Linie für Zemente gelten. Die Verfahren können jedoch auch auf deren Bestandteile angewendet werden. Die Verfahren gelten auch für andere Stoffe, sofern in den entsprechenden Normen darauf verwiesen wird. In den Anwendungsnormen ist festgelegt, welche Verfahren anzuwenden sind.

Méthodes d'essais des ciments - Partie 2: Analyse chimique des ciments

Le présent document spécifie les méthodes d'analyse chimique des ciments.
Le présent document décrit les méthodes de référence et, dans certains cas, une variante qui peut être considérée comme une méthode équivalente. En cas de litige, seules les méthodes de référence sont utilisées.
Une variante fondée sur la performance, utilisant la fluorescence X (XRF) est décrite pour SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, K2O, Na2O, TiO2, P2O5, Mn2O3, SrO, Cl et Br. Lorsqu'elle est correctement étalonnée par rapport aux méthodes et aux matériaux de référence spécifiés, cette méthode est équivalente aux méthodes de référence, mais elle n'a pas encore été validée comme une méthode de référence à des fins de conformité ou en cas de litige. Cette méthode peut être appliquée à d'autres éléments pertinents, lorsque des étalonnages corrects ont été effectués. Cette méthode est basée sur des perles d'échantillon fondu et la validation analytique au moyen de matériaux de référence certifiés, ainsi que sur des critères de performance. Une méthode fondée sur des pastilles compactées d'échantillon non fondu peut être considérée comme équivalente, sous réserve que les performances analytiques répondent aux mêmes critères.
D'autres méthodes encore peuvent être utilisées, à condition qu’elles soient étalonnées, soit par rapport à des méthodes de référence, soit par rapport à des matériaux de référence acceptés internationalement, pour démontrer leur équivalence.
Le présent document décrit les méthodes qui s’appliquent principalement aux ciments, mais qui peuvent être aussi appliquées à leurs constituants. Elles peuvent être également appliquées à d’autres matériaux, pour lesquels les normes prescrivent ces méthodes. Les spécifications des normes indiquent les méthodes qui doivent être utilisées.

Metode preskušanja cementa - 2. del: Kemijska analiza cementa

Ta evropski standard določa metode za kemijsko analizo cementa. V tem dokumentu so opisane referenčne metode in v nekaterih primerih alternativna metoda, s katero lahko pridobimo enakovredne rezultate. V primeru spora se uporabijo le referenčne metode. Alternativna rentgenska fluorescenčna metoda, ki temelji na rezultatih, je opisana za SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, K2O, Na2O, TiO2, P2O5, Mn2O3, SrO, Cl in Br. Ob ustrezni kalibraciji v skladu z določenimi postopki in referenčnimi materiali predstavlja metodo, ki je enakovredna referenčnim metodam, vendar še ni bila potrjena za uporabo kot referenčni postopek za namene skladnosti in spora. Uporabi se lahko za druge ustrezne elemente, ko so izvedene ustrezne kalibracije. Ta metoda temelji na kroglicah taljenega vzorca in analitični validaciji s certificiranimi referenčnimi materiali in merili delovanja. Z metodo, ki temelji na stisnjenih peletih netaljenega vzorca, lahko pridobimo enakovredne rezultate, če analitično delovanje ustreza enakim merilom. Uporabijo se lahko tudi druge metode, če so kalibrirane glede na referenčne metode ali mednarodno sprejete referenčne materiale, s čimer se dokaže njihova enakovrednost. V tem dokumentu so opisane metode, ki v osnovi veljajo za cemente, vendar lahko veljajo tudi za njihove sestavne materiale. Veljajo lahko tudi za druge materiale, katerih standardi vključujejo te metode. Standardne specifikacije določajo, katere metode morajo biti uporabljene.

General Information

Status
Published
Public Enquiry End Date
14-Jan-2013
Publication Date
15-Sep-2013
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
04-Sep-2013
Due Date
09-Nov-2013
Completion Date
16-Sep-2013

Relations

Buy Standard

Standard
EN 196-2:2013
English language
73 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Metode preskušanja cementa - 2. del: Kemijska analiza cementaPrüfverfarhen für Zement - Teil 2: Chemische Analyse von ZementMéthodes d'essais des ciments - Partie 2: Analyse chimique des cimentsMethod of testing cement - Part 2: Chemical analysis of cement91.100.10Cement. Mavec. Apno. MaltaCement. Gypsum. Lime. Mortar71.040.40Kemijska analizaChemical analysisICS:Ta slovenski standard je istoveten z:EN 196-2:2013SIST EN 196-2:2013en,fr,de01-oktober-2013SIST EN 196-2:2013SLOVENSKI
STANDARDSIST EN 196-2:20051DGRPHãþD



SIST EN 196-2:2013



EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 196-2
June 2013 ICS 91.100.10 Supersedes EN 196-2:2005English Version
Method of testing cement - Part 2: Chemical analysis of cement Méthodes d'essais des ciments - Partie 2: Analyse chimique des ciments
Prüfverfarhen für Zement - Teil 2: Chemische Analyse von Zement This European Standard was approved by CEN on 5 April 2013.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
Management Centre:
Avenue Marnix 17,
B-1000 Brussels © 2013 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 196-2:2013: ESIST EN 196-2:2013



EN 196-2:2013 (E) 2 Contents Page Foreword . 3 1 Scope . 4 2 Normative references . 4 3 General requirements for testing . 4 3.1 Number of tests . 4 3.2 Repeatability and reproducibility . 5 3.3 Expression of masses, volumes, factors and results . 5 4 Analysis by wet chemistry . 5 4.1 General . 5 4.2 Reagents . 6 4.3 Apparatus . 18 4.4 Analysis procedure . 22 4.5 Determination of major elements . 28 5 Chemical analysis by X-ray fluorescence . 49 5.1 Reagents and reference materials . 49 5.2 Apparatus . 50 5.3 Flux . 51 5.4 Determination of loss on ignition and the change in mass on fusion of the cement . 53 5.5 Factoring test results and correcting total analyses for presence of sulfides and halides . 54 5.6 Preparation of fused beads and pressed pellets . 56 5.7 Calibration and validation . 59 5.8 Calculation and expression of results . 68 5.9 Performance criteria (repeatability, accuracy and reproducibility limits) . 69 Annex A (informative)
Examples of fluxes . 70 Annex B (informative)
Sources of certified reference materials . 71 Annex C (informative)
Examples of calibration standards and monitor beads and pellets . 72 Bibliography. 73
SIST EN 196-2:2013



EN 196-2:2013 (E) 3 Foreword This document (EN 196-2:2013) has been prepared by Technical Committee CEN/TC 51 “Cement and building limes”, the secretariat of which is held by NBN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2013, and conflicting national standards shall be withdrawn at the latest by December 2013. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document supersedes EN 196-2:2005. This edition adds, to the previous version EN 196-2:2005, provisions for the use of X-ray fluorescence (XRF) analysis as an alternative method. In relation to correctly calibrating the method, specified procedures, reference materials and performance criteria are included in order to attain and maintain suitable accuracy and precision for equivalence. The method has not been validated for use yet as a reference procedure for conformity or dispute purposes. This European Standard on the methods of testing cement is comprised of the following parts:  Part 1: Determination of strength  Part 2: Chemical analysis of cement  Part 3: Determination of setting times and soundness  Part 5: Pozzolanicity test for pozzolanic cement  Part 6: Determination of fineness  Part 7: Methods of taking and preparing samples of cement  Part 8: Heat of hydration — Solution method  Part 9: Heat of hydration — Semi-adiabatic method  Part 10: Determination of the water-soluble chromium (VI) content of cement NOTE Another document, CEN/TR 196-4 Methods of testing cement — Part 4: Quantitative determination of constituents, has been published as a CEN Technical Report. According to the CEN-CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. SIST EN 196-2:2013



EN 196-2:2013 (E) 4 1 Scope This European Standard specifies the methods for the chemical analysis of cement. This document describes the reference methods and, in certain cases, an alternative method which can be considered to be equivalent. In the case of a dispute, only the reference methods are used. An alternative performance-based method using X-ray fluorescence (XRF) is described for SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, K2O, Na2O, TiO2, P2O5, Mn2O3, SrO, Cl and Br. When correctly calibrated according to the specified procedures and reference materials, it provides a method equivalent to the reference methods but has not been validated for use yet as a reference procedure for conformity and dispute purposes. It can be applied to other relevant elements when adequate calibrations have been established. This method is based on beads of fused sample and analytical validation using certified reference materials, together with performance criteria. A method based on pressed pellets of un-fused sample can be considered as equivalent, providing that the analytical performance satisfies the same criteria. Any other methods may be used provided they are calibrated, either against the reference methods or against internationally accepted reference materials, in order to demonstrate their equivalence. This document describes methods which apply principally to cements, but which can also be applied to their constituent materials. They can also be applied to other materials, the standards for which call up these methods. Standard specifications state which methods are to be used. 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 196-7, Methods of testing cement — Part 7: Methods of taking and preparing samples of cement ISO 385, Laboratory glassware — Burettes ISO 835, Laboratory glassware — Graduated pipettes ISO Guide 30, Terms and definitions used in connection with reference materials ISO Guide 31, Reference materials — Contents of certificates and labels 3 General requirements for testing 3.1 Number of tests Analysis of a cement may require the determination of a number of its chemical properties. For each determination, one or more tests shall be carried out in which the number of measurements to be taken shall be as specified in the relevant clause of this document. Where the analysis is one of a series subject to statistical control, the determination of each chemical property by a single test shall be the minimum required. Where the analysis is not part of a series subject to statistical control, the number of tests for determination of each chemical property shall be two (see also 3.3 and 5.8). In the case of a dispute, the number of tests for determination of each chemical property shall be two (see also 3.3). SIST EN 196-2:2013



EN 196-2:2013 (E) 5 3.2 Repeatability and reproducibility Repeatability: Precision under repeatability conditions where independent test results are obtained with the same method on identical test items (material) in the same laboratory by the same operator using the same equipment within short intervals of time. Reproducibility: Precision under reproducibility conditions where test results are obtained with the same method on identical test items (material) in different laboratories with different operators using different equipment. Repeatability and reproducibility in this document are expressed as repeatability standard deviation(s) and reproducibility standard deviation(s) in e.g. absolute percent, grams, etc., according to the property tested. 3.3 Expression of masses, volumes, factors and results Express masses in grams to the nearest 0,000 1 g and volumes from burettes in millilitres to the nearest 0,05 ml. Express the factors of solutions, given by the mean of three measurements, to three decimal places. Express the results, where a single test result has been obtained, as a percentage generally to two decimal places. Express the results, where two test results have been obtained, as the mean of the results, as a percentage generally to two decimal places. If the two test results differ by more than twice the standard deviation of repeatability, repeat the test and take the mean of the two closest test results. The results of all individual tests shall be recorded. 4 Analysis by wet chemistry 4.1 General 4.1.1 Ignitions Carry out ignitions as follows. Place the filter paper and its contents into a crucible which has been previously ignited and tared. Dry it, then incinerate slowly in an oxidising atmosphere in order to avoid immediate flaming, while ensuring complete combustion. Ignite the crucible and its contents at the stated temperature then allow to cool to the laboratory temperature in a desiccator. Weigh the crucible and its contents. 4.1.2 Determination of constant mass Determine constant mass by making successive 15 min ignitions followed each time by cooling and then weighing. Constant mass is reached when the difference between two successive weighings is less than 0,000 5 g. 4.1.3 Check for absence of chloride ions (silver nitrate test) After generally five to six washes of a precipitate, rinse the base of the filter stem with a few drops of water. Wash the filter paper and its contents with several millilitres of water and collect this in a test tube. Add several drops of silver nitrate solution (4.2.44). Check the absence of turbidity or precipitate in the solution. If present, continue washing while carrying out periodic checks until the silver nitrate test is negative. SIST EN 196-2:2013



EN 196-2:2013 (E) 6 4.1.4 Blank determinations Carry out a blank determination without a sample, where relevant, following the same procedure and using the same amounts of reagents. Correct the results obtained for the analytical determination accordingly. 4.1.5 Preparation of a test sample of cement Before chemical analysis, treat the laboratory sample, taken in accordance with EN 196-7, as follows to obtain a homogeneous test sample. Take approximately 100 g of the laboratory sample by means of a sample divider or by quartering. Sieve this material retained on the sieve by means of a magnet (see Note 1). Then grind the iron-free fraction of the retained material so that it completely passes container with an airtight closure and shake vigorously to mix it thoroughly. Carry out all operations as quickly as possible to ensure that the test sample is exposed to ambient air only for the minimum time. NOTE 1 Where the analysis is one of a series subject to statistical control and the level of the metallic iron content has been shown to be insignificant in relation to the chemical properties to be determined then it is not necessary to remove metallic iron. NOTE 2 Where the sample is to be used for XRF analysis and it contains quartz, it might be necessary to grind the sample to pass a 90 µm sieve in order to obtain a satisfactory fusion (see 5.6). The time and temperature required to obtain a satisfactory fusion is affected by the fineness of the sample. NOTE 3 Where the sample is to be used for XRF analysis using pressed pellets, accuracy can be improved by grinding the sample more finely. 4.2 Reagents 4.2.1 General Use only reagents of analytical quality. References to water mean distilled or de-ionised water having an electrical conductivity ≤ 0fo mpimh Unless otherwise stated, percent means percent by mass. Unless otherwise stated, the concentrated liquid reagents used in this document have the following densities 3 at 20 °C): hydrochloric acid 1,18 to 1,19 acetic acid 1,05 to 1,06 nitric acid 1,40 to 1,42 phosphoric acid 1,71 to 1,75 perchloric acid 1,60 to 1,67 ammonium hydroxide 0,88 to 0,91 The degree of dilution is always given as a volumetric sum, for example: dilute hydrochloric acid 1 + 2 means that 1 volume of concentrated hydrochloric acid is to be mixed with 2 volumes of water. 4.2.2 Concentrated hydrochloric acid (HCl) 4.2.3 Dilute hydrochloric acid (1 + 1) 4.2.4 Dilute hydrochloric acid (1 + 2)
SIST EN 196-2:2013



EN 196-2:2013 (E) 7 4.2.5 Dilute hydrochloric acid (1 + 3) 4.2.6 Dilute hydrochloric acid (1 + 9) 4.2.7 Dilute hydrochloric acid (1 + 11) 4.2.8 Dilute hydrochloric acid (1 + 19) 4.2.9 Dilute hydrochloric acid (1 + 99) 4.2.10 Dilute hydrochloric acid of pH (1,60 ± 0,05) Prepare by adjusting the pH of two litres of water to (1,60 ± 0,05) by adding five or six drops of concentrated hydrochloric acid. Control using the pH meter (4.3.18.1). Store the solution in a polyethylene container. 4.2.11 Concentrated hydrofluoric acid (> 40 %) (HF) 4.2.12 Dilute hydrofluoric acid (1 + 3) 4.2.13 Concentrated nitric acid (HNO3) 4.2.14 Dilute nitric acid (1 + 2) 4.2.15 Dilute nitric acid (1 + 100) 4.2.16 Concentrated sulfuric acid (>98 %) (H2SO4) 4.2.17 Dilute sulfuric acid (1 + 1) 4.2.18 Dilute sulfuric acid (1 + 4) 4.2.19 Concentrated perchloric acid (HClO4) 4.2.20 Concentrated phosphoric acid (H3PO4) 4.2.21 Dilute phosphoric acid (1 + 19) Store this solution in a polyethylene container. 4.2.22 Boric acid (H3BO3) 4.2.23 Concentrated acetic acid (CH3COOH) 4.2.24 Amino-acetic acid (NH2CH2COOH) 4.2.25 Metallic chromium (Cr), in powder form 4.2.26 Concentrated ammonium hydroxide (NH4OH) 4.2.27 Dilute ammonium hydroxide (1 + 1)
SIST EN 196-2:2013



EN 196-2:2013 (E) 8 4.2.28 Dilute ammonium hydroxide (1 + 10) 4.2.29 Dilute ammonium hydroxide (1 + 16) 4.2.30 Sodium hydroxide (NaOH) 4.2.31 Sodium hydroxide solution (4 mol/l) Dissolve 160 g of sodium hydroxide (4.2.30) in water and make up to 1 000 ml. Store in a polyethylene container. 4.2.32 Sodium hydroxide solution (2 mol/l) Dissolve 80 g of sodium hydroxide (4.2.30) in water and make up to 1 000 ml. Store in a polyethylene container. 4.2.33 Ammonium chloride (NH4Cl) 4.2.34 Tin (II) chloride (SnCl2.2H2O) 4.2.35 Potassium iodate (KIO3) dried to constant mass at (120 ± 5) °C 4.2.36 Potassium periodate (KIO4) 4.2.37 Sodium peroxide (Na2O2) in powder form 4.2.38 Sodium chloride (NaCl) dried to constant mass at (110 ± 5) °C 4.2.39 Potassium chloride (KCl) dried to constant mass at (110 ± 5) °C 4.2.40 Sodium carbonate (Na2CO3) dried to constant mass at (250 ± 10) °C 4.2.41 Mixture of sodium carbonate and sodium chloride Mix 7 g of sodium carbonate (4.2.40) with 1 g sodium chloride (NaCl) (4.2.38). 4.2.42 Barium chloride solution Dissolve 120 g of barium chloride (BaCl2.2H2O) in water and make up to 1 000 ml. 4.2.43 Silver nitrate (AgNO3) dried to constant mass at (150 ± 5) °C 4.2.44 Silver nitrate solution Dissolve 5 g of silver nitrate (AgNO3) (4.2.43) in water, add 10 ml of concentrated nitric acid (HNO3) (4.2.14) and make up to 1 000 ml with water. 4.2.45 Silver nitrate solution (0,05 mol/l) Dissolve (8,494 0 ± 0,000 5) g of silver nitrate (AgNO3) (4.2.43) in water in a 1 000 ml volumetric flask and make up to the mark. Store in a brown glass container and protect from the light. SIST EN 196-2:2013



EN 196-2:2013 (E) 9 4.2.46 Sodium carbonate solution Dissolve 50 g of anhydrous sodium carbonate (4.2.40) in water and make up to 1 000 ml. 4.2.47 Potassium hydroxide solution Dissolve 250 g of potassium hydroxide (KOH) in water and make up to 1 000 ml. Store in a polyethylene container. 4.2.48 Ammoniacal zinc sulfate solution Dissolve 50 g of zinc sulfate (ZnSO4.7H2O) in 150 ml water and add 350 ml of concentrated ammonium hydroxide (4.2.26). Leave to stand for at least 24 h and filter. 4.2.49 Lead acetate solution Dissolve approximately 0,2 g of lead acetate (Pb(CH3COO)2.3H2O) in water and make up to 100 ml. 4.2.50 Starch solution To 1 g of starch (water soluble), add 1g of potassium iodide (KI), dissolve in water and make up to 100 ml. Use within two weeks. 4.2.51 Polyethylene oxide solution Dissolve 0,25 g of polyethylene oxide (-CH2-CH2-O-)n of average molecular mass 200 000 to 600 000, in
100 ml water while stirring vigorously. Use within two weeks. 4.2.52 Boric acid solution, saturated Dissolve approximately 50 g of boric acid (H3BO3) in water and make up to 1 000 ml. 4.2.53 Citric acid solution Dissolve 10 g of citric acid (C6H8O7.H2O) in water and make up to 100 ml. 4.2.54 Calcium carbonate (CaCO3) dried to constant mass at (200 ± 10) °C (of purity > 99,9 %) 4.2.55 Ammonium molybdate solution Dissolve 10 g of ammonium molybdate (NH4)6Mo7O24.4H2O in water and make up to 100 ml. Store the solution in a polyethylene flask. Use within one week. 4.2.56 Copper sulfate solution Dissolve 0,45 g of copper sulfate (CuSO4.5H2O) in water and make up to 50 ml in a volumetric flask. 4.2.57 Ammonium acetate solution Dissolve 250 g of ammonium acetate (CH3COONH4) in water and make up to 1 000 ml. SIST EN 196-2:2013



EN 196-2:2013 (E) 10 4.2.58 Triethanolamine [N(CH2CH2OH)3], (>99 %) diluted to 1 + 4 solution 4.2.59 Reducing solution Dissolve 1 g of tin (II) chloride (SnCl2.2H2O) (4.2.34) in water to which has been added 1 ml of concentrated hydrochloric acid (4.2.2). Make up to 100 ml with water. Use within one day. 4.2.60 Buffer solution of pH 1,40 Dissolve (7,505 ± 0,001) g of amino-acetic acid (4.2.24) and (5,850 ± 0,001) g of sodium chloride (NaCl) (4.2.38) in water and make up to 1 000 ml. Dilute 300 ml of this solution to 1 000 ml with hydrochloric acid 1 + 99 (4.2.9). 4.2.61 Standard potassium iodate solution, approximately 0,016 6 mol/l Weigh, to ± 0,000 5 g, (3,6 ± 0,1) g, of potassium iodate (KIO3) (4.2.35) (m1) and place in a 1 000 ml volumetric flask. Add 0,2 g of sodium hydroxide (4.2.30), 25 g of potassium iodide (KI), dissolve all the solids in freshly boiled and cooled water and make up to the mark using the same water. Calculate the factor F of the potassium iodate solution from the following formula: 856631,m
=F (1) where m1 is the mass of the portion of potassium iodate, in grams. 4.2.62 Sodium thiosulfate solution, approximately 0,1 mol/l 4.2.62.1 Preparation Dissolve (24,82 ± 0,01) g of sodium thiosulfate (Na2S2O3.5H2O) in water and make up to 1 000 ml. Before each test series, determine the factor f of this solution as described in 4.2.62.2. 4.2.62.2 Standardization 4.2.62.2.1 Standardization using potassium iodate solution This standardization is carried out preferably using the standard potassium iodate solution (4.2.61). For this standardization, pipette 20 ml of the standard potassium iodate solution (4.2.61) into a 500 ml conical flask and dilute with approximately 150 ml of water. Acidify with 25 ml of hydrochloric acid 1+1 (4.2.3) and titrate with the approximately 0,1 mol/l sodium thiosulfate solution (4.2.62.1) to a pale yellow colour. Add 2 ml of the starch solution (4.2.50) and continue the titration until the colour changes from blue to colourless. Calculate the factor f of the sodium thiosulfate solution from the formula: VF
=V
,F
,
,
=f1201856630121467016020××××× (2) where F is the factor of the standard potassium iodate solution (4.2.61); V1 is the volume of the approximately 0,1 mol/l sodium thiosulfate solution used for the titration, in millilitres; SIST EN 196-2:2013



EN 196-2:2013 (E) 11 3,566 8 is the mass of potassium iodate corresponding to a solution with exactly 0,016 67 mol/l of potassium iodate, in grams; 214,01 is the molecular mass of KIO3, in grams. 4.2.62.2.2 Standardisation using a known quantity of potassium iodate The standardization may alternatively be carried out using a known quantity of potassium iodate. For this standardization, weigh, to ± 0,000 5 g, (0,070 ± 0,005) g of potassium iodate (4.2.35) (m2) and place in a 500 ml conical flask. Dissolve in approximately 150 ml of water. Add about 1 g of potassium iodide, acidify with 25 ml of hydrochloric acid 1+1 (4.2.3) and titrate with the approximately 0,1 mol/l sodium thiosulfate solution (4.2.62.1) until a pale yellow colour is obtained. Then add 2 ml of the starch solution (4.2.50) and titrate until the colour changes from blue to colourless. Calculate the factor f of the sodium thiosulfate solution from the formula: Vm
, =V,m
=f22436328028566320001××× (3) where m2 is the mass of potassium iodate, in grams; V2 is the volume of the approximately 0,1 mol/l sodium thiosulfate solution used for the titration, in millilitres; 3,566 8 is the mass of potassium iodate corresponding to a solution with exactly 0,016 67 mol/l of potassium iodate, in grams. 4.2.63 Standard manganese solution 4.2.63.1 Anhydrous manganese sulfate Dry hydrated manganese sulfate (MnSO4.xH2O) to constant mass at (250 ± 10) °C. The composition of the product obtained corresponds to the formula MnSO4. 4.2.63.2 Preparation Into a 1 000 ml volumetric flask, weigh, to ± 0,000 5 g, (2,75 ± 0,05) g of anhydrous manganese sulfate (m3); dissolve in water and make up to the mark. Calculate the content G of manganese (II) ions of this solution, expressed in milligrams of Mn2+ per millilitre, from the formula: 574823,m = G (4) where m3 is the mass of anhydrous manganese sulfate, in grams. 4.2.63.3 Construction of the calibration curve Into each of two volumetric flasks, respectively 500 ml (No. 1) and 1 000 ml (No. 2), pipette 20 ml of the standard manganese solution. Make up to the mark with water. Into each of three volumetric flasks, respectively 200 ml (No. 3), 500 ml (No. 4) and 1 000 ml (No. 5) pipette 100 ml of the solution from flask No. 2 and make up to the mark with water. SIST EN 196-2:2013



EN 196-2:2013 (E) 12 Take 100 ml of each solution from flasks 1 to 5 and pipette each portion into a 400 ml beaker. Add 20 ml of concentrated nitric acid (4.2.13), 1,5 g of potassium periodate (4.2.36) and 10 ml of phosphoric acid (4.2.20), heat to boiling and boil gently for 30 min. Allow to cool to room temperature and transfer the contents of each beaker to a 200 ml volumetric flask and make up to the mark with water. Measure the absorbance of the solutions using a photometer (4.3.10) at a wavelength of around 525 nm, against water (use one or more cells (4.3.11) of appropriate sizes). Record the absorbance values to three decimal places. For each cell optical length, construct a separate curve of the absorbance of these calibration solutions E1 to E5 as a function of the corresponding manganese concentrations in milligrams of Mn per 200 ml. The corresponding manganese concentrations are given in Table 1. They can be used as given if the content G obtained in accordance with 4.2.63.2 has the value 1,000 0. Otherwise, multiply the manganese concentrations in Table 1 by the value of G calculated from Formula (4). Table 1 — Concentrations of manganese calibration solutions Calibration solution E1 E2 E3 E4 E5 Concentration of manganese in mg of Mn per 200 ml 4,0 2,0 1,0 0,4 0,2
4.2.64 Standard silica solution 4.2.64.1 Silica (SiO2), of purity >99,9 % after ignition to constant mass at (1 175 ± 25) °C. 4.2.64.2 Basic solution Weigh (0,200 0 ± 0,000 5) g of freshly ignited silica (4.2.64.1), in a platinum crucible already containing (2,0 ± 0,1) g of anhydrous sodium carbonate (4.2.40). Heat the mixture and fuse it at a bright-red heat for at least 15 min. After cooling to room temperature, place the fused solid in a polyethylene beaker and dissolve it in water, then transfer the solution quantitatively to a 200 ml volumetric flask and make up to the mark with water. Store the solution in a polyethylene container. This solution contains 1 mg of SiO2 per millilitre. 4.2.64.3 Standard solution Pipette 5 ml of the basic solution into a 250 ml volumetric flask and make up to the mark with water. Store the solution in a polyethylene container. This solution contains 0,02 mg silica per millilitre. Use within one week. 4.2.64.4 Compensating solutions Prepare the compensating solutions according to the procedure adopted in the determination of silica content (4.5.3 to 4.5.5) by dissolving the amounts of the reagents given in Table 2 in water and making up to 500 ml. 4.2.64.5 Construction of the calibration curve Add from a burette the volumes of the silica calibration solutions given in Table 3 into 100 ml polyethylene beakers each containing a magnetic stirrer bar. Add 20 ml of the compensating solution by pipette and make up to 40 ml with water from a burette. The volumes required for this are also given in Table 3. While stirring with a magnetic stirrer, add 15 drops of hydrofluoric acid 1+3 (4.2.12). Stir for at least 1 min. Then pipette 15 ml of the boric acid solution (4.2.52) into the solution. SIST EN 196-2:2013



EN 196-2:2013 (E) 13 Table 2 — Composition of the compensating solutions for a volume of 500 ml
Precipitation by double evaporation (4.5.3) Precipitation by polyethylene oxide (4.5.4) Decomposition by HCl and NH4Cl
(4.5.5) HCl conc. ml 75 70 15 H2SO4 1 + 1 ml 1 1 - HNO3 conc. ml - - 1 Polyethylene oxide solution ml - 5 - NH4Cl g - - 1 Na2CO3 g 1,75 1,75 1,75 NaCl g 0,25 0,25 0,25 Na2O2 g 3 3 -
Table 3 — Composition of the silica calibration solutions and their silica content Serial No. Blank 1 2 3 4 Standard SiO2 solution (ml) 0 2 5 10 20 Water (ml) 20 18 15 10 0 Silica content (mg SiO2/100 ml) 0 0,04 0,10 0,20 0,40
Add from a pipette 5 ml of the ammonium molybdate solution (4.2.55). Adjust the pH of this solution to (1,60 ±
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.