Semiconductor devices - Micro-electromechanical devices - Part 25: Silicon based MEMS fabrication technology - Measurement method of pull-press and shearing strength of micro bonding area

IEC 62047-25:2016 specifies the in-situ testing method to measure the bonding strength of micro bonding area which is fabricated by micromachining technologies used in silicon-based micro-electromechanical system (MEMS). This document is applicable to the in-situ pull-press and shearing strength measurement of the micro bonding area fabricated by microelectronic technology process and other micromachining technology.

Dispositifs à semiconducteurs - Dispositifs microélectromécaniques - Partie 25: Technologie de fabrication de MEMS à base de silicium - Méthode de mesure de la résistance à la traction-compression et au cisaillement d'une micro zone de brasure

L'IEC 62047-25:2016 spécifie la méthode d'essai in situ pour mesurer la résistance de brasure d'une microzone de brasure fabriquée par des technologies de micro-usinage utilisées dans un système microélectromécanique (MEMS) à base de silicium. Le présent document s'applique à la mesure in situ de la résistance à la traction-compression et de la résistance au cisaillement d'une microzone de brasure fabriquée par un processus microélectronique et d'autres technologies de micro-usinage.

General Information

Status
Published
Publication Date
28-Aug-2016
Current Stage
PPUB - Publication issued
Start Date
15-Oct-2016
Completion Date
29-Aug-2016
Ref Project
Standard
IEC 62047-25:2016 - Semiconductor devices - Micro-electromechanical devices - Part 25: Silicon based MEMS fabrication technology - Measurement method of pull-press and shearing strength of micro bonding area
English and French language
45 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


IEC 62047-25 ®
Edition 1.0 2016-08
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Semiconductor devices – Micro-electromechanical devices –
Part 25: Silicon based MEMS fabrication technology – Measurement method of
pull-press and shearing strength of micro bonding area

Dispositifs à semiconducteurs – Dispositifs microélectromécaniques –
Partie 25: Technologie de fabrication de MEMS à base de silicium – Méthode de
mesure de la résistance à la traction-compression et au cisaillement d'une
micro zone de brasure
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé Fax: +41 22 919 03 00
CH-1211 Geneva 20 info@iec.ch
Switzerland www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue Electropedia - www.electropedia.org
The stand-alone application for consulting the entire The world's leading online dictionary of electronic and
bibliographical information on IEC International Standards, electrical terms containing 20 000 terms and definitions in
Technical Specifications, Technical Reports and other English and French, with equivalent terms in 15 additional
documents. Available for PC, Mac OS, Android Tablets and languages. Also known as the International Electrotechnical
iPad. Vocabulary (IEV) online.

IEC publications search - www.iec.ch/searchpub IEC Glossary - std.iec.ch/glossary
The advanced search enables to find IEC publications by a 65 000 electrotechnical terminology entries in English and
variety of criteria (reference number, text, technical French extracted from the Terms and Definitions clause of
committee,…). It also gives information on projects, replaced IEC publications issued since 2002. Some entries have been
and withdrawn publications. collected from earlier publications of IEC TC 37, 77, 86 and

CISPR.
IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published IEC Customer Service Centre - webstore.iec.ch/csc
details all new publications released. Available online and If you wish to give us your feedback on this publication or
also once a month by email. need further assistance, please contact the Customer Service
Centre: csc@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue IEC - webstore.iec.ch/catalogue Electropedia - www.electropedia.org
Application autonome pour consulter tous les renseignements
Le premier dictionnaire en ligne de termes électroniques et
bibliographiques sur les Normes internationales,
électriques. Il contient 20 000 termes et définitions en anglais
Spécifications techniques, Rapports techniques et autres
et en français, ainsi que les termes équivalents dans 15
documents de l'IEC. Disponible pour PC, Mac OS, tablettes
langues additionnelles. Egalement appelé Vocabulaire
Android et iPad.
Electrotechnique International (IEV) en ligne.

Recherche de publications IEC - www.iec.ch/searchpub
Glossaire IEC - std.iec.ch/glossary
La recherche avancée permet de trouver des publications IEC 65 000 entrées terminologiques électrotechniques, en anglais
en utilisant différents critères (numéro de référence, texte, et en français, extraites des articles Termes et Définitions des
comité d’études,…). Elle donne aussi des informations sur les publications IEC parues depuis 2002. Plus certaines entrées
projets et les publications remplacées ou retirées. antérieures extraites des publications des CE 37, 77, 86 et

CISPR de l'IEC.
IEC Just Published - webstore.iec.ch/justpublished

Service Clients - webstore.iec.ch/csc
Restez informé sur les nouvelles publications IEC. Just
Published détaille les nouvelles publications parues. Si vous désirez nous donner des commentaires sur cette
Disponible en ligne et aussi une fois par mois par email. publication ou si vous avez des questions contactez-nous:
csc@iec.ch.
IEC 62047-25 ®
Edition 1.0 2016-08
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Semiconductor devices – Micro-electromechanical devices –

Part 25: Silicon based MEMS fabrication technology – Measurement method of

pull-press and shearing strength of micro bonding area

Dispositifs à semiconducteurs – Dispositifs microélectromécaniques –

Partie 25: Technologie de fabrication de MEMS à base de silicium – Méthode de

mesure de la résistance à la traction-compression et au cisaillement d'une

micro zone de brasure
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 31.080.99 ISBN 978-2-8322-3609-3

– 2 – IEC 62047-25:2016 © IEC 2016
CONTENTS
FOREWORD . 4
1 Scope . 6
2 Normative references. 6
3 Terms and definitions . 6
4 Requirements . 7
4.1 Testing structure design requirements . 7
4.2 Testing structure fabrication requirements . 9
4.3 Testing environment requirements . 9
5 Testing method . 9
5.1 General . 9
5.2 Pull-press testing method . 9
5.2.1 Imposing the loading force . 9
5.2.2 Pull-press testing method operation process . 9
5.2.3 Pull-press testing method result process . 10
5.3 Shearing testing method . 10
5.3.1 Shearing testing method operation process . 10
5.3.2 Shearing testing method result process . 12
Annex A (informative) Dimensions for testing structure and tensile/compressive
strength . 13
A.1 Dimensions for testing structure . 13
A.2 Tensile strength and compressive strength . 13
Annex B (informative) Pull-press testing method example . 21
B.1 Dimensions for testing structure . 21
B.2 Tensile strength and compressive strength . 21

Figure 1 − Pull-press testing structure . 7
Figure 2 − Shearing testing structure . 8
Figure 3 − Pull-press testing method operation process . 10
Figure 4 − Shearing testing method operation process . 11

Table 1 – Dimensions for shearing testing structure . 12
Table A.1 – Dimensions for testing structure . 13
Table A.2 – Tensile strength and compressive strength (bonding area: 10 µm × 10 µm) . 13
Table A.3 – Tensile strength and compressive strength (bonding area: 20 µm × 20 µm) . 14
Table A.4 – Tensile strength and compressive strength (bonding area: 30 µm × 30 µm) . 14
Table A.5 – Tensile strength and compressive strength (bonding area: 40 µm × 40 µm) . 15
Table A.6 – Tensile strength and compressive strength (bonding area: 50 µm × 50 µm) . 15
Table A.7 – Tensile strength and compressive strength (bonding area: 60 µm × 60 µm) . 15
Table A.8 – Tensile strength and compressive strength (bonding area: 70 µm × 70 µm) . 16
Table A.9 – Tensile strength and compressive strength (bonding area: 80 µm × 80 µm) . 16
Table A.10 – Tensile strength and compressive strength (bonding area:
90 µm × 90 µm) . 17
Table A.11 – Tensile strength and compressive strength (bonding area:
100 µm × 100 µm) . 17

Table A.12 – Tensile strength and compressive strength (bonding area:
110 µm × 110 µm) . 18
Table A.13 – Tensile strength and compressive strength (bonding area:
120 µm × 120 µm) . 18
Table A.14 – Tensile strength and compressive strength (bonding area:
130 µm × 130 µm) . 19
Table A.15 – Tensile strength and compressive strength (bonding area:
140 µm × 140 µm) . 19
Table A.16 – Tensile strength and compressive strength (bonding area:
150 µm × 150 µm) . 20
Table B.1 – Dimensions for testing structure . 21
Table B.2 – Tensile strength and compressive strength (bonding area:
110 µm × 110 µm) . 21

– 4 – IEC 62047-25:2016 © IEC 2016
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
SEMICONDUCTOR DEVICES –
MICRO-ELECTROMECHANICAL DEVICES –

Part 25: Silicon based MEMS fabrication technology – Measurement
method of pull-press and shearing strength of micro bonding area

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 62047-25 has been prepared by subcommittee 47F: Micro-
electromechanical systems, of IEC technical committee 47: Semiconductor devices.
The text of this standard is based on the following documents:
FDIS Report on voting
47F/249/FDIS 47F/252/RVD
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data
related to the specific publication. At this date, the publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.
– 6 – IEC 62047-25:2016 © IEC 2016
SEMICONDUCTOR DEVICES –
MICRO-ELECTROMECHANICAL DEVICES –

Part 25: Silicon based MEMS fabrication technology – Measurement
method of pull-press and shearing strength of micro bonding area

1 Scope
This part of IEC 62047 specifies the in-situ testing method to measure the bonding strength of
micro bonding area which is fabricated by micromachining technologies used in silicon-based
micro-electromechanical system (MEMS).
This document is applicable to the in-situ pull-press and shearing strength measurement of
the micro bonding area fabricated by microelectronic technology process and other
micromachining technology.
Micro anchor, fixed on the substrate through the micro bonding area, provides mechanical
support of the movable sensing/actuating functional components in MEMS devices. With the
devices scaling, the bonding strength degradation, induced by defects, contaminations and
thermal mismatch stress on bonding surface, becomes severer. This standard specifies an in-
situ testing method of the pull-press and shearing strength based on a patterned technique.
This document does not need intricate instruments (such as scanning probe microscopy and
nanoindenter) and to prepare the test specimen specially.
Since the testing structure in this standard can be implanted in device fabrication as a
standard detection pattern, this document can provide a bridge, by which the fabrication
foundry can give some quantitative reference for the designer.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition
cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.
IEC 62047-1, Semiconductor devices – Micro-electromechanical devices – Part 1: Terms and
definitions
ISO 10012, Measurement management systems – Requirements for measurement processes
and measuring equipment
3 Terms and definitions
For the purposes of this document, the terms and definitions given in IEC 62047-1 and
ISO 10012 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following
addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp

3.1
anchor
silicon-glass bonding area which supports the MEMS function structure
4 Requirements
4.1 Testing structure design requirements
The schemes of testing structures are shown in Figure 1 and Figure 2.

IEC
a) The scheme of the pull-press testing structure

IEC
b) The three-view drawing of the pull-press testing structure
Key
h thickness of the testing structure arm
h height of the anchor beam in the bonding area
a side length of the bonding area
l length of the testing structure arm, this parameter should be designed with sequential values
w width of the testing structure arm
d dimension of the loading point
Figure 1 − Pull-press testing structure

– 8 – IEC 62047-25:2016 © IEC 2016

IEC
a) The scheme of the shearing testing structure

IEC
b) The three-view drawing of the shearing testing structure
Key
h thickness of the testing structure arm
h height of the anchor beam in the bonding area
a side length of the bonding area
l length of the testing structure arm
w width of the testing structure arm
d dimension of the loading point
δ resolution of the rotation ruler
Figure 2 − Shearing testing structure
The design of the testing structure should be as follows:
a) To prevent the testing structure arm from breaking earlier than the bonding area, the
strength of the arm should be designed high enough. For instance, if the arm thickness is
limited by design rule, a wider arm design is recommended.
b) The arm length of pull-press strength testing structure should be designed with sequential
values. The common difference, the length interval, should satisfy the requirement of the
testing resolution. The consumed area by the testing structure should be also taken into
consideration.
c) The design of the ruler within the shearing strength testing structure should satisfy the
resolution requirement. The ruler should be clearly monitored by the optical microscopy.
d) The testing structure should be designed to be robust enough to withstand the dimension
deviation induced by fabrication process. The roughness of the structure surface caused
by the wet or dry etching process, isotropic or anisotropic etching process should be also
taken in consideration in design work.
4.2 Testing structure fabrication requirements
Requirements for bulk silicon testing structures with micro bonding area(s) are the following:
a) The fabrication of testing structures should meet the requirements of bulk silicon
processes.
b) The testing structure material is bulk silicon, so the physical and chemical characteristics
should refer to the silicon wafer used in the practical fabrication processes.
c) It is highly recommended to use RIE process to etch the anchor of the testing structure to
ensure the anchor formation.
In case of strength testing of micro bonding area other than silicon based MEMS, similar
structures may be prepared by using different materials, and other requirements shall be
proposed.
4.3 Testing environment requirements
Testing environment requirements are the following:
a) A kind of violent air flow is prohibited during the testing operation. The testing bench
should be stabilized.
b) Environmental contaminations caused by the dusts and fragments from the fracture of the
testing structure should be taken into consideration in testing operation processes.
5 Testing method
5.1 General
During the testing operation process, the testing structure is placed on the probe station. The
deformation or fracture of the structure is monitored by microscopy and the bonding strength
can be calculated utilizing the testing structure parameters.
5.2 Pull-press testing method
5.2.1 Imposing the loading force
During the testing operation with pull-press testing method, the loading force is imposed
vertically at the loading point on the structure arm.
5.2.2 Pull-press testing method operation process
The pull-press testing method operation process is as follows:
a) During the operation process, the chip with testing structure is fixed on the probe station.
The loading force is imposed vertically at the loading point on the structure arm by the
station needle (A) until the arm is deformed to contact with the bottom surface and the
bonding area (B or C) is monitored by the microscopy, see Figure 3. The bonding strength
is defined to be higher than σ (or σ ) while the fracture occurs in the structure with arm
li,T li,C
length of l (l >l ) and does not occur in the structure with arm length of l , where σ
i+1 i i+1 i li,T
and σ are tensile strength and compressive strength respectively, namely the maximum
li,C
stress value at the bonding area when the corresponding testing structure arm deforms to
contact with the bottom surface, acquired by finite element analysis. And subscript T and
subscript C represent tensile and compressive stress respectively.

– 10 – IEC 62047-25:2016 © IEC 2016
Loading
Probe
point A
Testing structure
Compressive fracture
Compressive fracture
point B (not broken)
point B (not broken)
Probe Probe
Tensile fracture
Tensile fracture
point C (broken)
point C (not broken)
IEC
Figure 3 − Pull-press testing method operation process
b) The loading should be perpendicular to the bottom surface and the loading process should
be slow and stable. The needle and whole testing structure should be present in the field
of views under an optical microscopy. When the arm contacts with the bottom surface (or
the fracture occurs in the testing structure), the loading process should be stopped and
the needle should be raised slowly until it is separated from the testing structure.
5.2.3 Pull-press testing method result process
During the testing structure arm design process, a table, about the maximum compressive
and tensile stress value at the bonding area when every testing structure arm in the design
deforms to contact with the bottom surface, should be built. After the testing operation, the
bonding strength can be referred to the table according to the arm length with which the
anchor is broken.
In case that the stress cannot be obtained, the testing structure parameters in Annex A can
be used. And the reference stress tables are listed from Table A.2 to Table A.16.
If the arm length is not listed in the reference tables, the relative stress can be interpolated
from the table content.
If the fracture occurs in the bulk silicon structure first, the bonding strength can be known as
bigger than the bulk silicon strength.
5.3 Shearing testing method
5.3.1 Shearing testing method operation process
The shearing testing method operation process is as follows:
a) During the operation process, the chip with testing structure is fixed on the probe station.
The loading force is imposed laterally at the loading point on the structure arm by the
station needle (A) and the deformation is monitored by the microscopy, see Figure 4. The
rotation deflection can be read out from the ruler located at the end of the arm.

Loading
point A
Deflection ruler
Rotation
Testing structure
Probe
IEC
a) Before probe loading
Deflection ruler
d
Rotation
Testing structure
Probe
IEC
b) Dimension of the rotation deflection at a monitoring length by the deflection ruler
Figure 4 − Shearing testing method operation process
b) The loading should be parallel with the bottom surface and the loading process should be
slow and stable. The needle and whole testing structure should be present in the field of
views under the optical microscopy. When the fracture occurs in the testing structure or at
the bonding area, the loading process should be stopped and the needle should be
retracted slowly until it is separated with the testing structure.
c) According to various bonding areas, the recommended testing structure dimensions are
calculated in order to get a reasonable resolution and operation needle pressure, as listed
in Table 1.
– 12 – IEC 62047-25:2016 © IEC 2016
Table 1 – Dimensions for shearing testing structure
a × a (µm ) w × h (µm ) l (µm)
13 × 13 33 × 80
17 × 17 37 × 80 241
20 × 20 40 × 80 240
25 × 25 45 × 80
30 × 30 50 × 80 240
40 × 40 100 × 80 565
50 × 50 150 × 80
60 × 60 200 × 80
70 × 70 250 × 80 605
80 × 80 250 × 80
1 456
90 × 90 300 × 80
100 × 100 400 × 80 1 423
1 444
110 × 110 400 × 80
1 449
120 × 120 400 × 80
5.3.2 Shearing testing method result process
The shearing stress τ can be calculated as:
max
h w
τ = 0,14 × d
max
3 2
a l
where
h thickness of the testing structure arm
a side length of the bonding area
l length of the testing structure arm
w width of the testing structure arm
d rotation deflection
If the fracture occurs in the bulk silicon structure first, the bonding strength can be known as
bigger than the bulk silicon strength.

Annex A
(informative)
Dimensions for testing structure and tensile/compressive strength
A.1 Dimensions for testing structure
Ranges of dimensions for testing structure are described as Table A.1.
Table A.1 – Dimensions for testing structure
Dimensions in µm
l a h w h d
2 1
20 (a <= 70) 80 (a <= 70)
300 to 2 000 10 to 150 200 100
70 (a > 70) 80 (a > 70)
A.2 Tensile strength and compressive strength
Tensile strength σ and compressive strength σ are described in the following tables, from
L,T L,C
Table A.2 to Table A.16.
Table A.2 – Tensile strength and compressive strength (bonding area: 10 µm × 10 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
800 1 072,1 -1 135,8
850 1 008,3 -1 067,9
900 951,6 -1 007,6
950 900,7 -953,5
1 000 855,1 -905,0
1 050 813,7 -861,0
1 100 776,0 -821,0
1 150 741,6 -784,4
1 200 710,0 -750,9
1 250 680,9 -720,0
1 300 654,2 -691,7
1 350 629,3 -665,3
1 400 606,2 -640,8
– 14 – IEC 62047-25:2016 © IEC 2016
Table A.3 – Tensile strength and compressive strength (bonding area: 20 µm × 20 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
800 1 883,4 -1 751,9
850 1 699,4 -1 576,6
900 1 541,1 -1 426,5
950 1 403,8 -1 296,7
1 000 1 284,2 -1 184,1
1 050 1 179,4 -1 085,5
1 100 1 086,5 -998,6
1 150 1 004,5 -921,9
1 200 931,5 -853,8
1 250 866,0 -792,8
1 300 807,4 -738,3
1 350 754,4 -689,1
1 400 706,4 -644,7
Table A.4 – Tensile strength and compressive strength (bonding area: 30 µm × 30 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
800 1 558,3 -1 598,8
850 1 416,3 -1 496,4
900 1 296,4 -1 328,1
950 1 188,5 -1 253,9
1 000 1 096,4 -1 121,7
1 050 1 012,2 -1 066,7
1 100 939,8 -960,5
1 150 874,0 -892,8
1 200 814,9 -832,1
1 250 760,7 -800,3
1 300 712,7 -749,5
1 350 669,1 -703,4
1 400 629,4 -661,5
Table A.5 – Tensile strength and compressive strength (bonding area: 40 µm × 40 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
500 2 036,2 -2 142,1
550 1 736,4 -1 882,0
600 1 499,2 -1 569,7
650 1 306,9 -1 365,9
700 1 149,8 -1 199,7
750 1 019,3 -1 062,1
800 910,0 -947,1
850 817,4 -849,8
900 738,4 -766,9
950 670,2 -695,5
1 000 611,1 -633,7
Table A.6 – Tensile strength and compressive strength (bonding area: 50 µm × 50 µm)
σ (MPa) σ (MPa)
l (µm)
L,T L,C
500 1 241,9 -1 294,9
550 1 046,0 -1 087,1
600 893,4 -926,1
650 770,9 -797,9
700 672,6 -694,8
750 592,3 -610,3
800 525,2 -540,4
850 469,0 -481,9
900 421,0 -432,5
950 380,3 -390,2
1 000 345,2 -353,8
Table A.7 – Tensile strength and compressive strength (bonding area: 60 µm × 60 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
300 1 690,1 -1 813,2
320 1 505,5 -1 608,7
340 1 351,1 -1 438,6
360 1 219,2 -1 294,1
380 1 104,3 -1 168,7
400 1 005,9 -1 061,9
420 920,1 -969,0
440 844,3 -887,2
460 777,9 -815,8
480 719,0 -752,7
500 666,0 -696,0
– 16 – IEC 62047-25:2016 © IEC 2016
Table A.8 – Tensile strength and compressive strength (bonding area: 70 µm × 70 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
300 1 136,0 -1 206,6
320 1 008,2 -1 065,9
340 901,6 -949,4
360 811,3 -851,0
380 733,0 -766,3
400 665,9 -694,1
420 607,9 -631,8
440 556,6 -577,1
460 511,9 -529,4
480 472,3 -487,4
500 436,7 -449,8
Table A.9 – Tensile strength and compressive strength (bonding area: 80 µm × 80 µm)
σ (MPa) σ (MPa)
l (µm)
L,T L,C
800 2 547,6 -2 633,9
900 2 128,7 -2 189,6
1 000 1 804,8 -1 850,6
1 100 1 547,9 -1 585,4
1 200 1 346,3 -1 374,1
1 300 1 080,1 -1 202,3
1 400 1 043,2 -1 061,2
1 500 929,0 -943,7
1 600 831,5 -844,9
1 700 750,7 -761,0
1 800 680,3 -688,9
1 900 618,5 -626,7
2 000 566,4 -572,6
Table A.10 – Tensile strength and compressive strength (bonding area: 90 µm × 90 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
800 2 170,8 -2 257,1
900 1 791,2 -1 854,4
1 000 1 503,7 -1 551,3
1 100 1 280,5 -1 317,2
1 200 1 103,7 -1 132,6
1 300 961,1 -984,2
1 400 844,6 -863,4
1 500 748,1 -763,5
1 600 667,3 -680,1
1 700 598,9 -609,7
1 800 540,5 -549,7
1 900 490,3 -498,1
2 000 446,8 -453,5
Table A.11 – Tensile strength and compressive strength
(bonding area: 100 µm × 100 µm)
σ (MPa) σ (MPa)
l (µm)
L,T L,C
800 1 883,4 -1 751,9
850 1 699,4 -1 576,6
900 1 541,1 -1 426,5
950 1 403,8 -1 296,7
1 000 1 284,2 -1 184,1
1 050 1 179,4 -1 085,5
1 100 1 086,5 -998,6
1 150 1 004,5 -921,9
1 200 931,5 -853,8
1 250 866,0 -792,8
1 300 807,4 -738,3
1 350 754,4 -689,1
1 400 706,4 -644,7
– 18 – IEC 62047-25:2016 © IEC 2016
Table A.12 – Tensile strength and compressive strength
(bonding area: 110 µm × 110 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
800 1 411,3 -1 413,9
850 1 268,7 -1 267,7
900 1 147,4 -1 143,4
950 1 042,2 -1 036,3
1 000 950,9 -943,6
1 050 871,3 -862,8
1 100 801,0 -791,9
1 150 739,1 -729,5
1 200 684,0 -674,2
1 250 634,9 -624,9
1 300 590,8 -580,8
1 350 551,2 -541,3
1 400 515,5 -505,6
Table A.13 – Tensile strength and compressive strength
(bonding area: 120 µm × 120 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
700 1 355,1 -1 309,5
750 1 199,5 -1 154,3
800 1 069,4 -1 025,5
850 959,3 -917,1
900 865,5 -824,9
950 784,2 -745,8
1 000 714,4 -677,7
1 050 653,3 -618,5
1 100 599,8 -566,7
1 150 552,6 -521,2
1 200 510,7 -480,9
1 250 473,4 -445,2
1 300 439,9 -413,1
Table A.14 – Tensile strength and compressive strength
(bonding area: 130 µm × 130 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
600 1 636,1 -1 466,8
625 1 522,9 -1 361,1
650 1 419,7 -1 265,5
675 1 327,5 -1 180,3
700 1 244,1 -1 103,4
725 1 167,7 -1 033,4
750 1 098,6 -970,1
775 1 035,7 -912,8
800 977,7 -860,0
825 924,0 -811,4
850 875,2 -767,2
875 830,2 -726,6
900 788,5 -689,1
Table A.15 – Tensile strength and compressive strength
(bonding area: 140 µm × 140 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
600 1 340,4 -1 356,2
625 1 246,0 -1 256,6
650 1 160,9 -1 167,2
675 1 084,3 -1 087,3
700 1 014,9 -1 015,1
725 952,1 -949,7
750 894,9 -890,5
775 842,8 -836,9
800 795,1 -787,8
825 751,1 -742,8
850 710,9 -701,7
875 673,7 -663,8
900 639,3 -629,1
– 20 – IEC 62047-25:2016 © IEC 2016
Table A.16 – Tensile strength and compressive strength
(bonding area: 150 µm × 150 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
500 1 652,7 -1 538,9
525 1 515,2 -1 449,6
550 1 393,7 -1 285,5
575 1 286,8 -1 220,4
600 1 191,6 -1 125,8
625 1 106,8 -1 009,3
650 1 030,2 -966,7
675 961,6 -871,3
700 899,4 -812,6
725 843,0 -784,1
750 791,9 -734,8
775 745,3 -668,3
800 702,7 -628,6
825 663,5 -592,1
850 627,5 -577,0
875 594,4 -545,6
900 563,9 -500,5
Annex B
(informative)
Pull-press testing method example
B.1 Dimensions for testing structure
To test the bonding strength of a silicon-glass-bonding sample with 110 µm × 110 µm bonding
area, the dimension parameters are listed in Table B.1. The arm sequence is designed from
800 µm to 1 400 µm, with an interval of 50 µm.
Table B.1 – Dimensions for testing structure
Dimensions in µm
l a h w h d
2 1
800 to 1 400 10 to 150 70 200 80 100

B.2 Tensile strength and compressive strength
The testing begins with the longest arm structure. The test should be carried out as given in
5.2.1 a). If no fracture occurs, raise the needle slowly, and continue to compress the next
testing structure with shorter length.
Repeat the above operation. The bonding area does not fracture with 1 050 µm length arm but
fractures with 1 000 µm length arm. The bonding strength is 950,9 MPa referred to the data of
Table B.2.
Table B.2 – Tensile strength and compressive strength (bonding area: 110 µm × 110 µm)
l (µm) σ (MPa) σ (MPa)
L,T L,C
800 1 411,3 -1 413,9
850 1 268,7 -1 267,7
900 1 147,4 -1 143,4
950 1 042,2 -1 036,3
1 000 950,9 -943,6
1 050 871,3 -862,8
1 100 801,0 -791,9
1 150 739,1 -729,5
1 200 684,0 -674,2
1 250 634,9 -624,9
1 300 590,8 -580,8
1 350 551,2 -541,3
1 400 515,5 -505,6
– 22 – IEC 62047-25:2016 © IEC 2016
The higher resolution can be achieved when the smaller arm length interval is employed.
If the fracture occurs in the bulk silicon structure first, the bonding strength can be known as
bigger than the bulk silicon strength.

___________
– 24 – IEC 62047-25:2016 © IEC 2016
SOMMAIRE
AVANT-PROPOS . 26
1 Domaine d’application. 28
2 Références normatives . 28
3 Termes et définitions . 29
4 Exigences . 29
4.1 Exigences de conception d'une structure d'essai . 29
4.2 Exigences de fabrication d'une structure d'essai . 32
4.3 Exigences de l'environnement d'essai . 32
5 Méthode d'essais . 32
5.1 Généralités . 32
5.2 Méthode d'essai de traction-compression. 32
5.2.1 Application de la force de la charge . 32
5.2.2 Processus de fonctionnement de la méthode d'essai de traction-
compression . 32
5.2.3 Traitement des résultats de la méthode d'essai de traction-compression . 33
5.3 Méthode d'essai de cisaillement . 34
5.3.1 Processus de fonctionnement de la méthode d'essai de cisaillement . 34
5.3.2 Traitement des résultats de la méthode d'essai de cisaillement . 35
Annexe A (informative) Dimensions de la structure d'essai et résistance à la
traction/compression . 36
A.1 Dimensions de la structure d'essai . 36
A.2 Résistance à la traction et à la compression . 36
Annexe B (informative) Exemple de méthode d'essai de traction-compression . 44
B.1 Dimensions de la structure d'essai . 44
B.2 Résistance à la traction et à la compression . 44

Figure 1 – Structure d'essai traction-compression . 30
Figure 2 – Structure d'essai de cisaillement . 31
Figure 3 – Processus de fonctionnement de la méthode d'essai de traction-
compression . 33
Figure 4 – Processus de fonctionnement de la méthode d'essai de cisaillement . 34

Tableau 1 – Dimensions pour la structure d'essai de cisaillement . 35
Tableau A.1 – Dimensions de la structure d'essai . 36
Tableau A.2 – Résistance à la traction et à la compression (zone de brasure: 10 µm ×
10 µm) . 36
Tableau A.3 – Résistance à la traction et à la compression (zone de brasure: 20 µm ×
20 µm) . 37
Tableau A.4 – Résistance à la traction et à la compression (zone de brasure:
30 µm × 30 µm) . 37
Tableau A.5 – Résistance à la traction et à la compression (zone de brasure:
40 µm × 40 µm) . 38
Tableau A.6 – Résistance à la traction et à la compression (zone de brasure:
50 µm × 50 µm) . 38
Tableau A.7 – Résistance à la traction et à la compression (zone de brasure:
60 µm × 60 µm) . 38

Tableau A.8 – Résistance à la traction et à la compression (zone de brasure:
70 µm × 70 µm) . 39
Tableau A.9 – Résistance à la traction et à la compression (zone de brasure:
80 µm × 80 µm) . 39
Tableau A.10 – Résistance à la traction et à la compression (zone de brasure:
90 µm × 90 µm) . 40
Tableau A.11 – Résistance à la traction et à la compression (zone de brasure:
100 µm × 100 µm) . 40
Tableau A.12 – Résistance à la traction et à la compression (zone de brasure:
110 µm × 110 µm) . 41
Tableau A.13 – Résistance à la traction et à la com
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...