Semiconductor devices - Micro-electromechanical devices - Part 11: Test method for coefficients of linear thermal expansion of free-standing materials for micro-electromechanical systems

IEC 62047-11:2013 specifies the test method to measure the linear thermal expansion coefficients (CLTE) of thin free-standing solid (metallic, ceramic, polymeric, etc.) micro-electro-mechanical system (MEMS) materials with length between 0,1 mm and 1 mm and width between 10 micrometre and 1 mm and thickness between 0,1 micrometre and 1 mm, which are main structural materials used for MEMS, micromachines and others. This test method is applicable for the CLTE measurement in the temperature range from room temperature to 30 % of a material's melting temperature.

Dispositifs à semiconducteurs - Dispositifs microélectromécaniques - Partie 11: Méthode d'essai pour les coefficients de dilatation thermique linéaire des matériaux autonomes pour systèmes microélectromécaniques

La CEI 62047-11:2013 définit la méthode d'essai pour mesurer les coefficients de dilatation thermique linéaire (CLTE) de matériaux de systèmes micro-électromécaniques (MEMS) solides autonomes minces (métalliques, céramiques, polymères, etc.) dont la longueur est comprise entre 0,1 mm et 1 mm, la largeur entre 10 micrometre et 1 mm et l'épaisseur entre 0,1 micrometre et 1 mm, qui sont les matériaux structurels principaux utilisés pour les MEMS, les micromachines et autres. Cette méthode d'essai peut s'appliquer à la mesure des CLTE dans la gamme de températures allant de la température ambiante jusqu'à 30 % de la température de fusion du matériau.

General Information

Status
Published
Publication Date
16-Jul-2013
Current Stage
PPUB - Publication issued
Start Date
17-Jul-2013
Completion Date
15-Aug-2013
Ref Project
Standard
IEC 62047-11:2013 - Semiconductor devices - Micro-electromechanical devices - Part 11: Test method for coefficients of linear thermal expansion of free-standing materials for micro-electromechanical systems
English and French language
38 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


IEC 62047-11 ®
Edition 1.0 2013-07
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Semiconductor devices – Micro-electromechanical devices –
Part 11: Test method for coefficients of linear thermal expansion of free-standing
materials for micro-electromechanical systems

Dispositifs à semiconducteurs – Dispositifs microélectromécaniques –
Partie 11: Méthode d'essai pour les coefficients de dilatation thermique linéaire
des matériaux autonomes pour systèmes microélectromécaniques

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les
microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.
Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette
publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé Fax: +41 22 919 03 00
CH-1211 Geneva 20 info@iec.ch
Switzerland www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

Useful links:
IEC publications search - www.iec.ch/searchpub Electropedia - www.electropedia.org
The advanced search enables you to find IEC publications The world's leading online dictionary of electronic and
by a variety of criteria (reference number, text, technical electrical terms containing more than 30 000 terms and
committee,…). definitions in English and French, with equivalent terms in
It also gives information on projects, replaced and additional languages. Also known as the International
withdrawn publications. Electrotechnical Vocabulary (IEV) on-line.

IEC Just Published - webstore.iec.ch/justpublished Customer Service Centre - webstore.iec.ch/csc
Stay up to date on all new IEC publications. Just Published If you wish to give us your feedback on this publication
details all new publications released. Available on-line and or need further assistance, please contact the
also once a month by email. Customer Service Centre: csc@iec.ch.

A propos de la CEI
La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI
Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez
l’édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Liens utiles:
Recherche de publications CEI - www.iec.ch/searchpub Electropedia - www.electropedia.org
La recherche avancée vous permet de trouver des Le premier dictionnaire en ligne au monde de termes
publications CEI en utilisant différents critères (numéro de électroniques et électriques. Il contient plus de 30 000
référence, texte, comité d’études,…). termes et définitions en anglais et en français, ainsi que
Elle donne aussi des informations sur les projets et les les termes équivalents dans les langues additionnelles.
publications remplacées ou retirées. Egalement appelé Vocabulaire Electrotechnique
International (VEI) en ligne.
Just Published CEI - webstore.iec.ch/justpublished
Service Clients - webstore.iec.ch/csc
Restez informé sur les nouvelles publications de la CEI.
Just Published détaille les nouvelles publications parues. Si vous désirez nous donner des commentaires sur
Disponible en ligne et aussi une fois par mois par email. cette publication ou si vous avez des questions
contactez-nous: csc@iec.ch.
IEC 62047-11 ®
Edition 1.0 2013-07
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Semiconductor devices – Micro-electromechanical devices –

Part 11: Test method for coefficients of linear thermal expansion of free-standing

materials for micro-electromechanical systems

Dispositifs à semiconducteurs – Dispositifs microélectromécaniques –

Partie 11: Méthode d'essai pour les coefficients de dilatation thermique linéaire

des matériaux autonomes pour systèmes microélectromécaniques

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
PRICE CODE
INTERNATIONALE
CODE PRIX R
ICS 31.080.99 ISBN 978-2-8322-0965-3

– 2 – 62047-11 © IEC:2013
CONTENTS
FOREWORD . 3
1 Scope . 5
2 Normative References . 5
3 Symbols and designations . 5
4 Test piece . 6
4.1 General . 6
4.2 Shape of test piece . 6
4.3 Test piece thickness . 6
4.4 In-plane type test piece . 7
4.5 Out-of-plane type test piece . 7
5 Testing method and test apparatus . 7
5.1 Measurement principle . 7
5.1.1 General . 7
5.1.2 In-plane method . 8
5.1.3 Out-of-plane method . 8
5.2 Test apparatus . 9
5.2.1 General . 9
5.2.2 In-plane method . 9
5.2.3 Out-of-plane method . 9
5.3 Temperature measurement . 9
5.4 In-plane test piece handling . 9
5.5 Thermal strain measurement . 10
5.6 Heating speed . 10
5.7 Data analysis . 10
5.7.1 General . 10
5.7.2 Terminal-based calculation . 10
5.7.3 Slope calculation by linear least squares method . 10
6 Test report . 10
Annex A (informative) Test piece fabrication . 12
Annex B (informative) Test piece handling example . 13
Annex C (informative) Test piece releasing process . 14
Annex D (informative) Out-of-plane test setup and test piece example . 15
Annex E (informative) Data analysis example in in-plane test method . 16
Annex F (informative) Data analysis example in out-of-plane test method . 17
Bibliography . 19

Figure 1 – Thin film test piece . 6
Figure 2 – CLTE measurement principles. 8
Figure A.1 – Schematic test piece fabrication process . 12
Figure B.1 – Auxiliary jigs and a specimen example . 13
Figure C.1 – Schematic illustration showing the test piece releasing process . 14
Figure D.1 – Example of test setup and test piece . 15
Figure E.1 – Example of CLTE measurement with an aluminium test piece . 16
Figure F.1 – Example of CLTE measurement with a gold test piece . 18

Table 1 – Symbols and designations . 5

62047-11 © IEC:2013 – 3 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
SEMICONDUCTOR DEVICES –
MICRO-ELECTROMECHANICAL DEVICES –

Part 11: Test method for coefficients of linear thermal expansion
of free-standing materials for micro-electromechanical systems

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 62047-11 has been prepared by subcommittee 47F: Micro-
electromechanical systems, of IEC technical committee 47: Semiconductor devices.
The text of this standard is based on the following documents:
FDIS Report on voting
47F/154/FDIS 47F/161/RVD
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
A list of all parts in the IEC 62047 series, published under the general title Semiconductor
devices – Micro-electromechanical devices, can be found on the IEC website.

– 4 – 62047-11 © IEC:2013
The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data
related to the specific publication. At this date, the publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.
62047-11 © IEC:2013 – 5 –
SEMICONDUCTOR DEVICES –
MICRO-ELECTROMECHANICAL DEVICES –

Part 11: Test method for coefficients of linear thermal expansion
of free-standing materials for micro-electromechanical systems

1 Scope
This part of IEC 62047 specifies the test method to measure the linear thermal expansion
coefficients (CLTE) of thin free-standing solid (metallic, ceramic, polymeric etc.) micro-
electro-mechanical system (MEMS) materials with length between 0,1 mm and 1 mm and
width between 10 µm and 1 mm and thickness between 0,1 µm and 1 mm, which are main
structural materials used for MEMS, micromachines and others. This test method is applicable
for the CLTE measurement in the temperature range from room temperature to 30 % of a
material’s melting temperature.
2 Normative References
The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 62047-3, Semiconductor devices – Micro-electromechanical devices – Part 3: Thin film
standard test piece for tensile-testing
3 Symbols and designations
Symbols and corresponding designations are given in Table 1.
Table 1 – Symbols and designations
Symbol Unit Designation
g
µm Gauge length
L µm Initial length of a test piece
L µm Length of a test piece at temperature T
T
T °C Temperature
t µm Thickness of a test piece
w µm Width of a test piece
Average coefficient of thermal expansion of a test
α 1/°C
av
piece
Average coefficient of thermal expansion of a
α 1/°C
S
substrate
δ µm Thermal deformation
T
ε 1 Thermal strain
T
– 6 – 62047-11 © IEC:2013
4 Test piece
4.1 General
The test piece shall be prepared in accordance with the IEC 62047-3. It should be fabricated
through the same processes used for the device where the thin film is applied. It should have
dimensions in the same order of that of the objective device component in order to minimize
the size effect. There are many fabrication methods depending on the applications. A typical
test piece fabrication method based on MEMS processes is shown in Annex A.
4.2 Shape of test piece
The dimensions of a test piece, such as thickness (t), width (w), and initial length (L ), in
Figure 1 should be designed to be the same order of the device. The dimensions shall be
specified within the accuracy range of ± 1 % of the corresponding length scale. The cross
sections along the line A-A′ are indicated as cross-hatching in Figure 1. The gauge length in
Figure 1 shall be measured from centre to centre of the gauge marks.

a
1 1
B
A A′
w
g
B′
t
A-A′
IEC  1703/13
Key
1 holes for die fixing, tying a yarn or wire for the weight hanging
2 free-standing test piece
3 gauge marks to define a gauge length
4 substrate to accommodate a test piece
5 portions to be separated before testing to make a test piece free-standing
NOTE Imaginary line “a”: The support straps “5” can be separated by cutting those along this line.
Figure 1 – Thin film test piece
4.3 Test piece thickness
Each test piece thickness shall be measured and the thickness should be recorded in the
report. Each test piece thickness should be measured directly with calibrated equipment (for
example scanning electron microscope, ellipsometer, etc.). However, the film thickness
evaluated from step height (by scanning probe microscope, white light interferometric
microscope, or surface profilometer, etc.) along the line B-B′ in Figure 1 can be used as the
thickness of a test piece.
62047-11 © IEC:2013 – 7 –
4.4 In-plane type test piece
The internal stress of the test piece should have proper values in order not to cause curling of
the test piece. Gauge marks should be formed in the middle of a test piece. The gauge marks
should not restrict the elongation of the test piece and should have small influence on test
result. The stiffness of the gauge mark should be less than ± 1 % of that of the test piece. The
symmetry in the thickness direction should be maintained in order to avoid the curling of the
test piece. A dummy part shall be attached to a test piece as shown in Figure C.1.
4.5 Out-of-plane type test piece
An out-of-plane type test piece may be used if the free-standing test piece has thickness
below 1 µm or has low strength to hang a weight. The holes and gauge marks in Figure 1 are
not necessary in case of out-of-plane type test. The supporting straps don’t need to be
separated. The test piece should be buckled concavely or convexly before measurement.
5 Testing method and test apparatus
5.1 Measurement principle
5.1.1 General
The average CLTE value shall be obtained by linearly correlating the thermal strain change
(∆ε ) by the corresponding temperature change (∆T).
T
Δε
T
α =  (1)
av
ΔT
The thermal strains shall be obtained with two kinds of test methods as shown in Figure 2.
In-plane test method shall be preferred to out-of-plane method in the view points of accuracy
and uncertainties. If there is no test setup as shown in Figure 2 a) and Figure C.1, out-of-
plane method shall be used as an alternative because the out-of-plane method needs a
furnace and measuring equipment.

– 8 – 62047-11 © IEC:2013
1 6
T
4 T
IEC  1704/13
a) In-plane type b) Out-of-plane type
Key
1 heating furnace equipped with a hatch
2 viewport to observe and measure deformation of a test piece
3 metal wire or yarn to hang a weight
4 weight
5 translational stage to hold and release a weight
6 bolt to fix a die to the test die holder
7 free-standing test piece
8 test die
9 test die holder
10 dummy part for the symmetry of a test piece
Figure 2 – CLTE measurement principles
5.1.2 In-plane method
The thermal deformation (δ ) shall be measured directly as a function of temperature by using
T
a noncontact in-plane displacement measurement technique (laser interferometry, 2-D digital
image correlation, etc.). The specimen should be in a furnace as shown in Figure 2a). The
weight should be hung to a test piece in order to make it flattened. The elastic modulus
should be independent of temperature in the range of measurement. The plastic deformation
due to weight (yielding) or temperature (creep) should be avoided. The thermal strain shall be
calculated by dividing the elongation by the gauge length.
δ
T
ε = (2)
T
g
5.1.3 Out-of-plane method
The entire profile of a specimen along the length direction should be measured as a function
of temperature by an accurate out-of-plane displacement measurement method (white light
interferometric microscope, laser Doppler interferometer, 3-D digital image correlation, etc) as
shown in Figure 2b). A test piece should be initially buckled. The initial length (L ) at room
temperature and successive lengths (L ) at different temperatures of a specimen shall be
T
calculated with the profiles measured. The thermal deformation (δ ) shall be the difference
T
62047-11 © IEC:2013 – 9 –
between L and L . The thermal strain shall be calculated by dividing the deformation by the
T 0
initial length.
δ L − L
T T 0
ε = = (3)
T
L L
0 0
The CLTE of a substrate should be considered to calculate the accurate CLTE of the test
piece because both experience the same amount of temperature change. The substrate effect
shall be considered by adding the CLTE of the substrate to the average CLTE value from
measurement. The CLTE of the substrate should be measured by using a test standard [1, 2,
3] if there is no certified CLTE value for the substrate.
∆ε
T
α = +α (4)
av S
∆T
5.2 Test apparatus
5.2.1 General
The test piece should be seated in a furnace. The temperature of the furnace should be
controlled within ± 1 °C by the feedback control.
5.2.2 In-plane method
A test apparatus shall be equipped with basic components shown in Figure 2a). A transparent
window like a glass shall be used as a viewport. The hatch of a furnace should be closed and
a predetermined weight should be hung to the yarn or metal wire to make a test piece flat
enough but not to the point where it could yield. A test piece should be in a free-standing
state before heating it up. See Annexes B and C.
5.2.3 Out-of-plane method
A furnace having a view port is only needed to heat up a test piece. A test piece should be in
a free-standing state before heating it up. See Annex D.
5.3 Temperature measurement
The method of temperature measurement should be sufficiently sensitive and reliable.
Temperature measurements should be made with a calibrated thermometer. Contact
(thermocouple, etc.) or noncontact (infrared thermometers, optical pyrometers, etc.)
thermometers shall be used. The temperature sensor that enables to measure ± 0,5 % of the
maximum temperature accuracy shall be used and should be calibrated periodically. The
temperature sensing points should be located very near to a test piece to measure the
temperature accurately. The temperature distribution in the length direction should be doubly
checked by a noncontact sensor like an IR thermometer.
5.4 In-plane test piece handling
A metal wire or yarn should be tied around a right hole in Figure 1 for the later weight hanging.
The supporting portions in Figure 1 should be separated by cutting those before setting it up
to the furnace. The test piece should be handled with special care after separating the
supporting portions. This step can be skipped if a test piece is robust enough to handle easily.
See Annex B.
—————————
Figures in square brackets refer to the bibliography.

– 10 – 62047-11 © IEC:2013
5.5 Thermal strain measurement
A displacement measurement method that enables to measure 0,01 % strain value shall be
used. Displacement should be measured at every 1 °C during a test to adequately define the
temperature-strain curve.
5.6 Heating speed
The thermal strains should be recorded as a function of temperature while raising the
o
temperature below the rate of 1 C/min to avoid thermal inertia.
5.7 Data analysis
5.7.1 General
The average CLTE shall be calculated by using one of the following methods.
5.7.2 Terminal-based calculation
The average linear CLTE value shall be calculated by dividing the thermal strain difference
(∆ε ) by the corresponding temperature difference (∆T). The temperature-strain curve should
T
be linear in the range of interest.
5.7.3 Slope calculation by linear least squares method
The linear least squares method shall be used to fit the thermal strain (ε ) versus temperature
T
(T) data. The average CLTE (α ) shall be the slope of the linearly fitted curve. The intercept
av
on the thermal strain axis (ε ) does not affect the result at all. The coefficient of correlation
T0
shall be over 0,95 to ensure the linearity. See Annexes E and F.
ε =α T+ε (5)
T av 0
6 Test report
The test report shall contain at least the following information.
a) reference to this international standard;
b) identification number of the test piece;
c) displacement measuring equipment;
– type;
– sensitivity and accuracy;
d) test piece material;
– in case of single crystal: crystallographic orientation;
– in case of polycrystal: texture and grain size;
e) shape and dimension of test piece;
– type (in-plane or out-of-plane)
– picture;
– gauge length (in-plane method only);
– thickness;
– width;
f) test piece fabrication method and its detail;
– deposition method;
62047-11 © IEC:2013 – 11 –
– fabrication condition;
g) weights and stresses induced (in-plane method only);
h) temperature measurement method and its accuracy;
i) measured properties and results;
– thermal strain curve;
– average linear coefficient of thermal expansion;
– calculation methods (terminal-based or least squares method);
– temperature range.
– 12 – 62047-11 © IEC:2013
Annex A
(informative)
Test piece fabrication
A test piece should be fabricated using the same MEMS processes as those of the device
where the thin film is applied. A typical test piece fabrication process is shown in Figure A.1.
a) Deposit oxide layers on both sides of a bare substrate like a (100) silicon wafer.
b) Deposit test material (for example, Al, Au, Si N , etc.) on top of the oxide film. An
3 4
adhesion layer shall be deposited between oxide and test material layers to improve
adhesion between them. The thickness of the adhesion layer should be minimized in
order not to affect the measurement.
c) Deposit and pattern a thin layer to form gauge marks. This process shall be skipped
according to the displacement measurement techniques. The thickness should be
minimized in order not to reinforce the test piece.
d) Pattern the target film to make the shape of a test piece. The patterning is done by a
photolithography process.
e) Passivate the patterned test piece by oxide or photoresist.
f) Etch the substrate from backside to make the film free-standing.
g) Remove the photoresist and oxide to get a free-standing test piece.
e)
a)
b) f)
c) g)
1 2
d)
3 4
IEC  1705/13
Key
1 silicon dioxide, SiO
2 test piece material
3 substrate
4 markers to form the gauge length
NOTE The fabrication processes depend on the measurement methods and applications.
Figure A.1 – Schematic test piece fabrication process

62047-11 © IEC:2013 – 13 –
Annex B
(informative)
Test piece handling example
A metal wire or yarn (1) is tied around a lower centre hole of a test piece (See Figure B.1) in
order to subsequently hang a weight. A test die (2) should be fixed to a base jig (5) with the
aid of a safety jig (7), a bolt (3) and wax, which remains solid at room temperature but melts
at a certain melting temperature of approximately 60 °C. The two support straps (8) should be
cut with a diamond saw to leave a completely free-standing uniaxial test piece (9). This set is
assembled to the furnace jig (6) as shown in Figure B.1. A thermocouple (4) is placed very
close to a test piece to measure the temperature accurately.
2 3
1 4
IEC  1706/13
Key
1 yarn 2 test die
3 bolt 4 thermocouple
5 base jig 6 furnace jig
7 safety jig 8 support strap
9 free-standing test piece
Figure B.1 – Auxiliary jigs and a specimen example

– 14 – 62047-11 © IEC:2013
Annex C
(informative)
Test piece releasing process
The test piece releasing process is schematically illustrated in Figure C.1.
a) Set up the whole assembly containing test die, base jig, safety jig and furnace jig in a
heating furnace. Attach a balancing dummy part to a test die to make the free-standing
test piece symmetric in the thickness direction. See Annex B.
b) Hang a weight to the yarn.
c) Raise the furnace temperature around 60 °C to melt the wax among the test die, safety jig,
and base jig. After melting the wax, the test piece becomes free-standing carrying a
weight.
5 5
4 4
2 7
1 1
IEC  1707/13
Key
1 weight 2 yarn
3 balancing dummy part 4 bolt
5 base jig 6 safety jig
7 wax
Figure C.1 – Schematic illustration showing
the test piece releasing process

62047-11 © IEC:2013 – 15 –
Annex D
(informative)
Out-of-plane test setup and test piece example

Figure D.1 presents examples of a test setup and a test piece for the out-of-plane test method.
The test piece is initially buckled in order to measure the thermal strain from the beginning.
The status of a test piece is checked by measuring its profile with a noncontact out-of-plane
displacement measuring equipment.
IEC  1708/13
Key
1 white light interferometric microscope
2 heating furnace
3 free-standing test piece (20 µm wide and 1 mm long, gold)
Figure D.1 – Example of test setup and test piece

– 16 – 62047-11 © IEC:2013
Annex E
(informative)
Data analysis example in in-plane test method

Figure E.1 presents the result of an in-plane measurement in which the aluminium test piece
was heated from room temperature of 25 °C to 160 °C and then cooled back to room
temperature. The two curves were shifted on purpose to see the differences in more detail.
The test had a weight of 20 grams (74 MPa stress). The average CLTE value was estimated
as the slopes of the thermal strain versus temperature curves. The CLTE was estimated as
-6 -6
28 × 10 /°C in the heating stage and 25 × 10 /°C in the cooling stage.

8 000
6 000
4 000
2 000
50 100 150 200
Temperature T  (°C)
IEC  1709/13
Key
1 data in the heating stage
2 data in the cooling stage
3 line fitted by linear least squares analysis for the data in the heating stage
4 line fitted by linear least squares analysis for the data in the cooling stage
Figure E.1 – Example of CLTE measurement with an aluminium test piece
–6
Thermal strain ε (×10 )
T
62047-11 © IEC:2013 – 17 –
Annex F
(informative)
Data analysis example in out-of-plane test method

Figure F.1a) presents two examples of profiles measured by a white light interferometric
microscope for gold test piece at two different temperatures (T > T ). The data points should
2 1
be fitted to get a closed form equation to integrate and thus calculate the length. In principle,
the data is fitted to sinusoidal equation because it is the solution to the buckling problem.
However, the tail portions in Figure F.1 converge to 0 because the test piece was fixed to the
substrate. A four-parameter (a, b, c, x ) Weibull curve as shown in Equation (F.1) is one of the
appropriate curve fitting models. The fitted curves are shown in Figure F.1a) with their raw
data points. The data points follow the curve very well.
 
c−1
x− x
 c−1 c
1−c 1  0 
− +
 
 
 
b c
c c  
c−1 x− x c−1 c−1
     
0  
 
( )
y x = a + e +  (F.1)
   
 
c b c c
   
 
The thermal strains for four different specimens were calculated by Equation (3) and plotted in
Figure F.1b) while raising the temperature from room temperature of 20 °C to 120 °C. The
symbols represent data points and the lines fitted by linear least-squares method. The
average CLTE value was estimated as the slopes of the thermal strain versus temperature
-6
curves as explained in 5.7.3. The CLTE was estimated to 13,3 × 10 /°C. The final CLTE shall
-6
be calculated by adding the CLTE of the silicon substrate of 3 × 10 /°C. The final CLTE of the
-6
gold film is 16,3 × 10 /°C.
– 18 – 62047-11 © IEC:2013
0,030
0,025
0,020
0,015
0,010
0,005
0,000
0,1 0,2 0,3 0,4 0,5
Distance x  (mm)
IEC  1710/13
a) Out-of-plane profiles at two temperatures
1 600
Test piece 1
Test piece 2
Test piece 3
Test piece 4
1 200
0 40 60 80 100 120
Temperature T  (°C)
IEC  1711/13
b) Thermal strain as a function of temperature
Key
1 data and four-parameter Weibull fitting at temperature T
2 data and four-parameter Weibull fitting at temperature T (> T )
2 1
Figure F.1 – Example of CLTE measurement with a gold test piece
–6
Thermal strain ε (×10 )
T
Height h  (µm)
62047-11 © IEC:2013 – 19 –
Bibliography
[1] ASTM E228 – 11, Standard Test Method for Linear Thermal Expansion of Solid
Materials With a Push-Rod Dilatometer
[2] ASTM E289 – 04(2010), Standard Test Method for Linear Thermal Expansion of Rigid
Solids with Interferometry
[3] ASTM E831 – 06, Standard Test Method for Linear Thermal Expansion of Solid
Materials by Thermomechanical Analysis

_____________
– 20 – 62047-11 © CEI:2013
SOMMAIRE
AVANT-PROPOS . 22
1 Domaine d'application . 24
2 Références normatives . 24
3 Symboles et désignations . 24
4 Éprouvette d'essai . 25
4.1 Généralités . 25
4.2 Forme de l'éprouvette d'essai . 25
4.3 Épaisseur de l’éprouvette d'essai . 25
4.4 Éprouvette d'essai du type dans le plan . 26
4.5 Éprouvette d'essai du type hors plan . 26
5 Méthode d'essai et appareillage d'essai . 26
5.1 Principe de mesure . 26
5.1.1 Généralités . 26
5.1.2 Méthode dans le plan . 27
5.1.3 Méthode hors plan . 27
5.2 Appareillage d'essai . 28
5.2.1 Généralités . 28
5.2.2 Méthode dans le plan . 28
5.2.3 Méthode hors plan . 28
5.3 Mesure de température . 28
5.4 Manipulation d'une éprouvette d'essai dans le plan . 29
5.5 Mesure de contrainte thermique . 29
5.6 Vitesse de chauffage . 29
5.7 Analyse des données . 29
5.7.1 Généralités . 29
5.7.2 Calcul basé sur les bornes . 29
5.7.3 Calcul de pente par la méthode linéaire des moindres carrés . 29
6 Rapport d’essai . 29
Annexe A (informative) Fabrication de l'éprouvette d'essai . 31
Annexe B (informative) Exemple de manipulation d'une éprouvette d'essai . 32
Annexe C (informative) Processus de libération de l'éprouvette d'essai . 33
Annexe D (informative) Montage d'essai hors plan et exemple d'éprouvette d'essai . 34
Annexe E (informative) Exemple d'analyse de données de la méthode d'essai dans le
plan . 35
Annexe F (informative) Exemple d'analyse de données de la méthode d'essai hors
plan . 36
Bibliographie . 38

Figure 1 – Éprouvette d'essai en couche mince . 25
Figure 2 – Principes de mesure du CLTE . 27
Figure A.1 – Schéma du processus de fabrication d'une éprouvette d'essai . 31
Figure B.1 – Montures auxiliaires et exemple d'éprouvette . 32
Figure C.1 – Illustration schématique représentant le processus de libération de
l'éprouvette d'essai . 33
Figure D.1 – Exemple de montage d'essai et éprouvette d'essai . 34

62047-11 © CEI:2013 – 21 –
Figure E.1 – Exemple de mesure de CLTE avec une éprouvette d'essai en aluminium . 35
Figure F.1 – Exemple de mesure de CLTE avec une éprouvette d'essai en or . 37

Tableau 1 – Symboles et désignations . 24

– 22 – 62047-11 © CEI:2013
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
DISPOSITIFS À SEMICONDUCTEURS –
DISPOSITIFS MICROÉLECTROMÉCANIQUES –

Partie 11: Méthode d'essai pour les coefficients de dilatation
thermique linéaire des matériaux autonomes pour systèmes
microélectromécaniques
AVANT-PROPOS
1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation
composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a
pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les
domaines de l'électricité et de l'électronique. A cet effet, la CEI – entre autres activités – publie des Normes
internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au
public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des
comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les
organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent
également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO),
selon des conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure
du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI
intéressés sont représentés dans chaque comité d’études.
3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI
s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable
de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications
nationales et régio
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...