Mineral oil-impregnated electrical equipment in service - Guide to the interpretation of dissolved and free gases analysis

Describes how the concentrations of dissolved gases or free gases may be interpreted to diagnose the condition of oil-filled electrical equipment in service and suggests future action. Applicable to electrical equipment filled with mineral insulating oil and insulated with cellulosic paper or pressboard-based solid insulation. Information about specific types of equipment such as transformers (power, instrument, industrial, railways, distribution), reactors, bushings, switchgear and oil-filled cables is given only as an indication in the application notes. May be applied only with caution to other liquid-solid insulating systems. In any case, the indications obtained should be viewed only as guidance and any resulting action should be undertaken only with proper engineering judgement.

Matériels électriques imprégnés d'huile minérale en service - Guide pour l'interprétation de l'analyse des gaz dissous et des gaz libres

Décrit comment les concentrations de gaz dissous ou de gaz libres peuvent être interprétées pour diagnostiquer l'état des matériels électriques remplis d'huile en service et pour proposer une intervention ultérieure. S'applique aux matériels électriques remplis d'huile minérale isolante et isolés par des isolants solides constitués de papier ou de carton cellulosiques. Des informations spécifiques aux différents types de matériels tels que transformateurs (de puissance, de mesure, industriels, ferroviaires, de distribution), réactances, traversées, appareillage de coupure et câbles à l'huile sont données, à titre informatif seulement, dans les note d'application. Peut être appliqué, mais avec prudence, à d'autres systèmes d'isolation liquide-solide.

General Information

Status
Published
Publication Date
14-May-2007
Current Stage
DELPUB - Deleted Publication
Start Date
16-Sep-2015
Completion Date
26-Oct-2025
Ref Project

Relations

Standard
IEC 60599:1999 - Mineral oil-impregnated electrical equipment in service - Guide to the interpretation of dissolved and free gases analysis Released:3/31/1999 Isbn:2831846145
English and French language
69 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
IEC 60599:1999+AMD1:2007 CSV - Mineral oil-impregnated electrical equipment in service - Guide to the interpretation of dissolved and free gases analysis Released:5/15/2007 Isbn:2831891450
English and French language
69 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


NORME
CEI
INTERNATIONALE
IEC
INTERNATIONAL
Deuxième édition
STANDARD
Second edition
1999-03
Matériels électriques imprégnés d’huile minérale
en service –
Guide pour l’interprétation de l’analyse des gaz
dissous et des gaz libres
Mineral oil-impregnated electrical equipment
in service –
Guide to the interpretation of dissolved
and free gases analysis
Numéro de référence
Reference number
CEI/IEC 60599:1999
Numéros des publications Numbering

Depuis le 1er janvier 1997, les publications de la CEI As from 1 January 1997 all IEC publications are

sont numérotées à partir de 60000. issued with a designation in the 60000 series.

Publications consolidées Consolidated publications

Les versions consolidées de certaines publications de Consolidated versions of some IEC publications
la CEI incorporant les amendements sont disponibles. including amendments are available. For example,

Par exemple, les numéros d’édition 1.0, 1.1 et 1.2 edition numbers 1.0, 1.1 and 1.2 refer, respectively, to

indiquent respectivement la publication de base, la the base publication, the base publication incor-
publication de base incorporant l’amendement 1, et porating amendment 1 and the base publication
la publication de base incorporant les amendements 1 incorporating amendments 1 and 2.

et 2.
Validité de la présente publication Validity of this publication
Le contenu technique des publications de la CEI est The technical content of IEC publications is kept under
constamment revu par la CEI afin qu'il reflète l'état constant review by the IEC, thus ensuring that the
actuel de la technique. content reflects current technology.
Des renseignements relatifs à la date de reconfir- Information relating to the date of the reconfirmation of
mation de la publication sont disponibles dans le the publication is available in the IEC catalogue.
Catalogue de la CEI.
Les renseignements relatifs à des questions à l’étude et Information on the subjects under consideration and
des travaux en cours entrepris par le comité technique work in progress undertaken by the technical
qui a établi cette publication, ainsi que la liste des committee which has prepared this publication, as well
publications établies, se trouvent dans les documents ci- as the list of publications issued, is to be found at the
dessous: following IEC sources:
• «Site web» de la CEI* • IEC web site*
• Catalogue des publications de la CEI • Catalogue of IEC publications
Publié annuellement et mis à jour régulièrement Published yearly with regular updates
(Catalogue en ligne)* (On-line catalogue)*
• Bulletin de la CEI • IEC Bulletin
Disponible à la fois au «site web» de la CEI* Available both at the IEC web site* and
et comme périodique imprimé as a printed periodical
Terminologie, symboles graphiques Terminology, graphical and letter
et littéraux symbols
En ce qui concerne la terminologie générale, le lecteur For general terminology, readers are referred to
se reportera à la CEI 60050: Vocabulaire Electro- IEC 60050: International Electrotechnical Vocabulary
technique International (VEI). (IEV).
Pour les symboles graphiques, les symboles littéraux For graphical symbols, and letter symbols and signs
et les signes d'usage général approuvés par la CEI, le approved by the IEC for general use, readers are
lecteur consultera la CEI 60027: Symboles littéraux à referred to publications IEC 60027: Letter symbols to
utiliser en électrotechnique, la CEI 60417: Symboles be used in electrical technology, IEC 60417: Graphical
graphiques utilisables sur le matériel. Index, relevé et symbols for use on equipment. Index, survey and

compilation des feuilles individuelles, et la CEI 60617: compilation of the single sheets and IEC 60617:
Symboles graphiques pour schémas. Graphical symbols for diagrams.
* Voir adresse «site web» sur la page de titre. * See web site address on title page.

NORME
CEI
INTERNATIONALE
IEC
INTERNATIONAL
Deuxième édition
STANDARD
Second edition
1999-03
Matériels électriques imprégnés d’huile minérale
en service –
Guide pour l’interprétation de l’analyse des gaz
dissous et des gaz libres
Mineral oil-impregnated electrical equipment
in service –
Guide to the interpretation of dissolved
and free gases analysis
 IEC 1999 Droits de reproduction réservés  Copyright - all rights reserved
Aucune partie de cette publication ne peut être reproduite ni No part of this publication may be reproduced or utilized in
utilisée sous quelque forme que ce soit et par aucun any form or by any means, electronic or mechanical,
procédé, électronique ou mécanique, y compris la photo- including photocopying and microfilm, without permission in
copie et les microfilms, sans l'accord écrit de l'éditeur. writing from the publisher.
International Electrotechnical Commission 3, rue de Varembé Geneva, Switzerland
Telefax: +41 22 919 0300 e-mail: inmail@iec.ch IEC web site http://www.iec.ch
CODE PRIX
Commission Electrotechnique Internationale
PRICE CODE V
International Electrotechnical Commission
Pour prix, voir catalogue en vigueur
For price, see current catalogue

– 2 – 60599 © CEI:1999
SOMMAIRE
Pages
AVANT-PROPOS . 4

INTRODUCTION . 6

Articles
1 Domaine d’application . 8

2 Références normatives. 8
3 Définitions et abréviations . 8
4 Mécanismes de formation des gaz. 14
5 Identification des défauts. 16
6 Conditions de calcul des rapports . 26
7 Application aux gaz libres recueillis aux relais de protection. 28
8 Niveaux en service des concentrations de gaz. 30
9 Méthode recommandée pour l’interprétation des AGD (figure 1). 36
10 Rapport des résultats . 36
Annexe A (informative) Notes d’application aux matériels. 42
Annexe B (informative) Représentations graphiques des rapports de gaz . 62
Annexe C (informative) Bibliographie . 68
Figure 1 – Ordinogramme . 40
Figure B.1 – Représentation graphique n° 1 des rapports de gaz. 62
Figure B.2 – Représentation graphique n° 2 des rapports de gaz. 64
Figure B.3 – Représentation graphique n° 3 des rapports de gaz – Triangle de Duval. 66

60599 © IEC:1999 – 3 –
CONTENTS
Page
FOREWORD . 5

INTRODUCTION . 7

Clause
1 Scope .9

2 Normative references . 9
3 Definitions and abbreviations. 9
4 Mechanisms of gas formation. 15
5 Identification of faults . 17
6 Conditions for calculating ratios. 27
7 Application to free gases in gas relays. 29
8 Gas concentration levels in service. 31
9 Recommended method of DGA interpretation (figure 1) . 37
10 Report of results . 37
Annex A (informative) Equipment application notes . 43
Annex B (informative) Graphical representation of gas ratios . 63
Annex C (informative) Bibliography . 69
Figure 1 – Flow chart . 41
Figure B.1 – Graphical representation 1 of gas ratios . 63
Figure B.2 – Graphical representation 2 of gas ratios . 65
Figure B.3 – Graphical representation 3 of gas ratios – Duval's triangle. 67

– 4 – 60599 © CEI:1999
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

_________
MATÉRIELS ÉLECTRIQUES IMPRÉGNÉS D’HUILE MINÉRALE EN SERVICE –

GUIDE POUR L’INTERPRÉTATION DE L’ANALYSE DES GAZ DISSOUS

ET DES GAZ LIBRES
AVANT-PROPOS
1) La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composée
de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de
favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de
l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales.
Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le
sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en
liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation
Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure
du possible un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés
sont représentés dans chaque comité d’études.
3) Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiés
comme normes, rapports techniques ou guides et agréés comme tels par les Comités nationaux.
4) Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer de
façon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes
nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale
correspondante doit être indiquée en termes clairs dans cette dernière.
5) La CEI n’a fixé aucune procédure concernant le marquage comme indication d’approbation et sa responsabilité
n’est pas engagée quand un matériel est déclaré conforme à l’une de ses normes.
6) L’attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent faire
l’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour
responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.
La Norme internationale CEI 60599 a été établie par le comité d’études 10 de la CEI: Fluides
pour applications électrotechniques.
Cette deuxième édition annule et remplace la première édition parue en 1978. Cette deuxième
édition constitue une révision technique.
Le texte de cette norme est issu des documents suivants:

FDIS Rapport de vote
10/450/FDIS 10/460/RVD
Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant
abouti à l'approbation de cette norme.
Les annexes A, B et C sont données à titre d’information uniquement.

60599 © IEC:1999 – 5 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION

_________
MINERAL OIL-IMPREGNATED ELECTRICAL EQUIPMENT IN SERVICE –

GUIDE TO THE INTERPRETATION OF DISSOLVED AND

FREE GASES ANALYSIS
FOREWORD
1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, the IEC publishes International Standards. Their preparation is
entrusted to technical committees; any IEC National Committee interested in the subject dealt with may
participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization
for Standardization (ISO) in accordance with conditions determined by agreement between the two
organizations.
2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested National Committees.
3) The documents produced have the form of recommendations for international use and are published in the form
of standards, technical reports or guides and they are accepted by the National Committees in that sense.
4) In order to promote international unification, IEC National Committees undertake to apply IEC International
Standards transparently to the maximum extent possible in their national and regional standards. Any
divergence between the IEC Standard and the corresponding national or regional standard shall be clearly
indicated in the latter.
5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with one of its standards.
6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 60599 has been prepared by IEC technical committee 10: Fluids for
electrotechnical applications.
This second edition cancels and replaces the first edition published in 1978. This second
edition constitutes a technical revision.
The text of this standard is based on the following documents:

FDIS Report on voting
10/450/FDIS 10/460/RVD
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
Annexes A, B and C are for information only.

– 6 – 60599 © CEI:1999
INTRODUCTION
L’analyse des gaz libres et des gaz dissous dans l’huile (AGD) est l’un des outils de diagnostic

les plus utilisés pour la détection et l’évaluation de défauts dans les matériels électriques.

Cependant, l’interprétation des résultats d’AGD est souvent complexe et il convient qu'elle soit

toujours faite avec prudence, en s'entourant de personnel expérimenté en maintenance

d’isolation.
Le présent guide fournit des informations visant seulement à faciliter cette interprétation. La

première édition, publiée en 1978, a bien servi l’industrie électrique, mais a montré ses limites,
comme l’absence de diagnostic dans certains cas, l’absence de niveaux de concentration et le
fait de reposer principalement sur l’expérience acquise avec les transformateurs de puissance.
Cette deuxième édition essaie de remédier à certaines de ces insuffisances. Les schémas
d’interprétation sont fondés sur des inspections effectuées sur un grand nombre d’appareils
remplis d’huile, après un défaut en service, et les niveaux de concentration résultent
d’analyses recueillies dans le monde entier.

60599 © IEC:1999 – 7 –
INTRODUCTION
Dissolved and free gas analysis (DGA) is one of the most widely used diagnostic tools for

detecting and evaluating faults in electrical equipment. However, interpretation of DGA results

is often complex and should always be done with care, involving experienced insulation

maintenance personnel.
This guide gives information for facilitating this interpretation. The first edition, published in

1978, has served the industry well, but had its limitations, such as the absence of a diagnosis

in some cases, the absence of concentration levels and the fact that it was based mainly on
experience gained from power transformers. This second edition attempts to address some of
these shortcomings. Interpretation schemes are based on observations made after inspection
of a large number of faulty oil-filled equipment in service and concentrations levels deduced
from analyses collected worldwide.

– 8 – 60599 © CEI:1999
MATÉRIELS ÉLECTRIQUES IMPRÉGNÉS D’HUILE MINÉRALE EN SERVICE –

GUIDE POUR L’INTERPRÉTATION DE L’ANALYSE DES GAZ DISSOUS

ET DES GAZ LIBRES
1 Domaine d’application
La présente Norme internationale est un guide décrivant comment les concentrations de gaz

dissous ou de gaz libres peuvent être interprétées pour diagnostiquer l’état des matériels

électriques remplis d’huile en service et pour proposer une intervention ultérieure.

Le présent guide s’applique aux matériels électriques remplis d’huile minérale isolante et isolés par
des isolants solides constitués de papier ou de carton cellulosiques. Des informations spécifiques
aux différents types de matériels tels que transformateurs (de puissance, de mesure, industriels,
ferroviaires, de distribution), réactances, traversées, appareillage de coupure et câbles à l’huile
sont données, à titre informatif seulement, dans les notes d’application (voir annexe A).
Ce guide peut être appliqué, mais avec prudence, à d'autres systèmes d’isolation liquide-solide.
Dans tous les cas, il convient que les indications obtenues soient considérées seulement comme un
guide et que toute action qui en résulte ne soit entreprise qu'après un avis technique autorisé.
2 Références normatives
Les documents normatifs suivants contiennent des dispositions qui, par suite de la référence
qui y est faite, constituent des dispositions valables pour la présente Norme internationale. Au
moment de la publication, les éditions indiquées étaient en vigueur. Tout document normatif
est sujet à révision et les parties prenantes aux accords fondés sur la présente Norme
internationale sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes
des documents normatifs indiqués ci-après. Les membres de la CEI et de l'ISO possèdent le
registre des Normes internationales en vigueur.
CEI 60050(191):1990, Vocabulaire électrotechnique international (VEI) – Chapitre 191: Sûreté
de fonctionnement et qualité de service
CEI 60050(212):1990, Vocabulaire électrotechnique international (VEI) – Chapitre 212: Isolants
solides, liquides et gazeux
CEI 60050(604):1987, Vocabulaire électrotechnique international (VEI) – Chapitre 604: Produc-
tion, transport et distribution de l’énergie électrique – Exploitation
CEI 60567:1992, Guide d’échantillonnage de gaz et d’huile dans les matériels électriques
immergés, pour l’analyse des gaz libres et dissous

CEI 61198:1993, Huiles minérales isolantes – Méthodes pour la détermination du 2-furfural et
ses dérivés
3 Définitions et abréviations
3.1 Définitions
Pour les besoins de la présente Norme internationale, les définitions suivantes s'appliquent;
elles sont tirées de la CEI 60050(191), de la CEI 60050(212) et de la CEI 60050(604).
3.1.1
défaut
événement imprévu ou défectuosité d'un dispositif qui peut donner lieu à une ou à plusieurs
défaillances de ce dispositif, ou d’autres dispositifs associés [VEI 604-02-01]
NOTE – Dans les matériels électriques, un défaut peut ou non provoquer des dommages dans l’isolation et la
défaillance du matériel.
60599 © IEC:1999 – 9 –
MINERAL OIL-IMPREGNATED ELECTRICAL EQUIPMENT IN SERVICE –

GUIDE TO THE INTERPRETATION OF DISSOLVED AND

FREE GASES ANALYSIS
1 Scope
This International Standard is a guide describing how the concentrations of dissolved gases or

free gases may be interpreted to diagnose the condition of oil-filled electrical equipment in
service and suggest future action.

This guide is applicable to electrical equipment filled with mineral insulating oil and insulated
with cellulosic paper or pressboard-based solid insulation. Information about specific types of
equipment such as transformers (power, instrument, industrial, railways, distribution), reactors,
bushings, switchgear and oil-filled cables is given only as an indication in the application notes
(see annex A).
The Guide may be applied only with caution to other liquid-solid insulating systems.
In any case, the indications obtained should be viewed only as guidance and any resulting
action should be undertaken only with proper engineering judgment.
2 Normative references
The following normative documents contain provisions which, through reference in this text,
constitute provisions of this International Standard. At the time of publication, the editions
indicated were valid. All normative documents are subject to revision, and parties to
agreements based on this International Standard are encouraged to investigate the possibility
of applying the most recent editions of the normative documents indicated below. Members of
IEC and ISO maintain registers of currently valid International Standards.
IEC 60050(191):1990, International Electrotechnical Vocabulary (IEV) – Chapter 191: Depen-
dability and quality of service
IEC 60050(212):1990, International Electrotechnical Vocabulary (IEV) – Chapter 212: Insulating
solids, liquids and gases
IEC 60050(604):1987, International Electrotechnical Vocabulary (IEV) – Chapter 604: Generation,
transmission and distribution of electricity – Operation
IEC 60567:1992, Guide for the sampling of gases and of oil from oil-filled electrical equipment
and for the analysis of free and dissolved gases
IEC 61198:1993, Mineral insulating oils – Methods for the determination of 2-furfural and
related compounds
3 Definitions and abbreviations
3.1 Definitions
For the purpose of this International Standard, the following definitions, some of them based on
IEC 60050(191), IEC 60050(212) and IEC 60050(604) apply:
3.1.1
fault
an unplanned occurrence or defect in an item which may result in one or more failures of the
item itself or of other associated equipment [IEV 604-02-01]
NOTE – In electrical equipment, a fault may or may not result in damage to the insulation and failure of the
equipment.
– 10 – 60599 © CEI:1999
3.1.2
défaut sans dommage
défaut ne nécessitant ni réparation ni remplacement à l’endroit du défaut [VEI 604-02-09]

NOTE – Des exemples typiques sont les arcs auto-extinguibles dans les matériels de coupure ou un sur-

échauffement général sans carbonisation du papier.

3.1.3
défaut avec dommage
défaut qui a provoqué des détériorations nécessitant une réparation ou un remplacement à

l’endroit du défaut [VEI 604-02-08, modifié]

3.1.4
incident
événement d'origine interne qui, de façon temporaire ou permanente, perturbe le
fonctionnement normal d'un matériel [VEI 604-02-03, modifié]
NOTE – Des exemples typiques sont des alarmes du relais, un déclenchement du matériel ou des fuites du matériel.
3.1.5
défaillance
cessation de l'aptitude d'une entité à accomplir une fonction prescrite [VEI 191-04-01]
NOTE – Dans les matériels électriques, une défaillance sera la conséquence d’un défaut avec dommage ou d’un
incident nécessitant la mise hors service, la réparation ou le remplacement du matériel, tel que claquage interne,
rupture de la cuve, incendie ou explosion.
3.1.6
défaut électrique
décharge partielle ou disruptive à travers l’isolation
3.1.7
décharge partielle
décharge dont le trajet se développe sur une partie seulement de l’isolation entre des
conducteurs. Elle peut se produire au sein même de l’isolation ou à partir d’un conducteur
[VEI 212-01-34, modifié]
NOTE 1 – L’effet couronne est une forme de décharge partielle qui se produit dans les milieux gazeux autour des
conducteurs placés loin de toute isolation solide ou liquide. Ce terme ne sera pas employé comme terme général
pour désigner n’importe quel type de décharge partielle.
NOTE 2 – La cire-X est une substance solide qui se forme dans une huile minérale isolante par suite de décharges
électriques et qui se compose de fragments polymérisés des molécules du liquide de départ [VEI 212-07-24,
modifié]. Des produits analogues peuvent être formés dans des conditions similaires à partir d’autres liquides.
NOTE 3 – Les étincelles de faible énergie, reliées par exemple à la présence de particules métalliques ou de
potentiels flottants, sont parfois décrites comme étant des décharges partielles, mais il convient plutôt de les
considérer comme des décharges de faible énergie.
3.1.8
décharge (disruptive)
passage d’un arc à la suite d’un claquage de l’isolation [VEI 604-03-38, modifié]
NOTE 1 – Les décharges sont souvent appelées arcs, claquages ou courts-circuits. Les termes plus précis suivants
sont aussi utilisés:
– amorçage (décharge à travers l’huile);
– perforation (décharge à travers l’isolation solide);
– contournement (décharge à la surface de l’isolation solide);
– cheminement (dégradation progressive de la surface d’un matériau isolant solide par des décharges locales
formant des chemins conducteurs ou partiellement conducteurs);
– étincelles qui, selon les conventions de la physique, sont des claquages diélectriques locaux de forte densité
d’ionisation ou de petits arcs.
NOTE 2 – Selon la quantité d’énergie contenue dans la décharge, celle-ci sera décrite comme étant une décharge
de faible ou de forte énergie, selon l’étendue des dommages observés sur le matériel (voir 5.2).

60599 © IEC:1999 – 11 –
3.1.2
non-damage fault
a fault which does not involve repair or replacement action at the point of the fault

[IEV 604-02-09]
NOTE – Typical examples are self-extinguishing arcs in switching equipment or general overheating without paper
carbonization.
3.1.3
damage fault
a fault which involves repair or replacement action at the point of the fault

[IEV 604-02-08, modified]
3.1.4
incident
an event related to an internal fault which temporarily or permanently disturbs the normal
operation of an equipment [IEV 604-02-03, modified]
NOTE – Typical examples are gas alarms, equipment tripping or equipment leakage.
3.1.5
failure
the termination of the ability of an item to perform a required function [IEV 191-04-01]
NOTE – In the electrical equipment, failure will result from a damage fault or incident necessitating outage, repair
or replacement of the equipment, such as internal breakdown, rupture of tank, fire or explosion.
3.1.6
electrical fault
a partial or disruptive discharge through the insulation
3.1.7
partial discharge
a discharge which only partially bridges the insulation between conductors. It may occur inside
the insulation or adjacent to a conductor [IEV 212-01-34, modified]
NOTE 1 – Corona is a form of partial discharge that occurs in gazeous media around conductors which are remote
from solid or liquid insulation. This term is not to be used as a general term for all forms of partial discharges.
NOTE 2 – X-wax is a solid material which is formed from mineral insulating oil as a result of electrical discharges
and which consists of polymerized fragments of the molecules of the original liquid [IEV 212-07-24, modified].
Comparable products may be formed from other liquids under similar conditions.
NOTE 3 – Sparking of low energy, for example because of metals or floating potentials, is sometimes described as
partial discharge but should rather be considered as a discharge of low energy.
3.1.8
discharge (disruptive)
the passage of an arc following the breakdown of the insulation [IEV 604-03-38, modified]
NOTE 1 – Discharges are often described as arcing, breakdown or short circuits. The more specific following terms
are also used:
– sparkover (discharge through the oil);
– puncture (discharge through the solid insulation);
– flashover (discharge at the surface of the solid insulation);
– tracking (the progressive degradation of the surface of solid insulation by local discharges to form conducting or
partially conducting paths);
– sparking discharges which, in the conventions of physics, are local dielectric breakdowns of high ionization
density or small arcs.
NOTE 2 – Depending on the amount of energy contained in the discharge, it will be described as a discharge of low
or high energy, based on the extent of damage observed on the equipment (see 5.2).

– 12 – 60599 © CEI:1999
3.1.9
défaut thermique
élévation excessive de la température dans l’isolation

NOTE – Les causes typiques sont

– un refroidissement insuffisant,

– des courants trop élevés circulant dans des parties métalliques adjacentes (dus à de mauvais contacts, des

courants de Foucault, des pertes vagabondes ou des flux de fuite),

– des courants trop élevés circulant dans l’isolation (en raison de pertes diélectriques élevées), conduisant à un
emballement thermique,
– un suréchauffement d'enroulement interne ou de jonction de traversée.

3.1.10
valeurs typiques des concentrations de gaz
concentrations de gaz se trouvant normalement dans les matériels en service ne présentant
aucuns symptômes de défaillance, et qui ne sont dépassés que par un pourcentage arbitraire
de teneurs en gaz plus élevées, par exemple 10 % (voir 8.2.1)
NOTE 1 – Les valeurs typiques seront différentes selon les types de matériels et les réseaux électriques et selon
les pratiques d'exploitation (niveaux de charge, climat, etc.).
NOTE 2 – Les valeurs typiques, dans beaucoup de pays et pour beaucoup d'utilisateurs, sont souvent appelées
«valeurs normales», mais ce terme n'a pas été retenu ici, pour éviter de possibles fausses interprétations.
3.2 Abréviations
3.2.1 Noms et symboles chimiques
Nom Symbole
Azote N2
Oxygène O
Hydrogène H
Oxyde de carbone CO
Dioxyde de CO
carbone
Méthane CH4
Ethane C2H6
Ethylène C H
2 4
Acétylène C H
2 2
3.2.2 Abréviations générales
AGD: Analyse des gaz dissous
CIGRE: Conférence Internationale des Grands Réseaux Électriques
S: Limite de détection analytique

60599 © IEC:1999 – 13 –
3.1.9
thermal fault
excessive temperature rise in the insulation

NOTE – Typical causes are
– insufficient cooling,
– excessive currents circulating in adjacent metal parts (as a result of bad contacts, eddy currents, stray losses or
leakage flux),
– excessive currents circulating through the insulation (as a result of high dielectric losses), leading to a thermal

runaway,
– overheating of internal winding or bushing connection lead.

3.1.10
typical values of gas concentrations
gas concentrations normally found in the equipment in service which have no symptoms of
failure, and which are overpassed by only an arbitary percentage of higher gas contents, for
example 10 % (see 8.2.1)
NOTE 1 – Typical values will differ in different types of equipment and in different networks, depending on operating
practices (load levels, climate, etc.).
NOTE 2 – Typical values, in many countries and by many users, are quoted as "normal values", but this term has
not been used here to avoid possible misinterpretations.
3.2 Abbreviations
3.2.1 Chemical names and symbols
Name Symbol
Nitrogen N
Oxygen O
Hydrogen H
Carbon monoxide CO
Carbon dioxide CO
Methane CH
Ethane C H
2 6
Ethylene C H
2 4
Acetylene C H
2 2
3.2.2 General abbreviations
DGA: Dissolved gas analysis
CIGRE: Conférence Internationale des Grands Réseaux Électriques
S: Analytical detection limit
– 14 – 60599 © CEI:1999
4 Mécanismes de formation des gaz

4.1 Décomposition de l’huile
Les huiles minérales isolantes sont constituées d’un mélange de molécules différentes

d’hydrocarbures, contenant des groupes chimiques CH , CH et CH reliés les uns aux autres
3 2
par des liaisons moléculaires carbone-carbone. Des défauts thermiques ou électriques peuvent

couper certaines de ces liaisons C-H et C-C, avec la formation de fragments petits et instables,

• •• ••
HC,,H CH,CHouC
sous forme radicalaire ou ionique, comme (parmi bien d’autres

formes plus complexes), qui se recombinent rapidement, par des réactions complexes, en
molécules de gaz comme l’hydrogène (H-H), le méthane (CH -H), l’éthane (CH -CH ),
3 3 3
l’éthylène (CH = CH ) ou l’acétylène (CH ≡ CH). Des hydrocarbures gazeux en C et C , ainsi
2 2 3 4
que des particules solides de carbone et de polymères hydrocarbonés (cire-X), sont d’autres
produits de recombinaison possibles. Les gaz formés se dissolvent dans l’huile, ou
s’accumulent sous forme de gaz libres, s’ils sont produits rapidement en grandes quantités, et
peuvent être analysés par AGD conformément à la CEI 60567.
Les défauts de faible énergie, tels que les décharges partielles de type plasma froid
(décharges couronne), favorisent la coupure des liaisons C-H plus faibles (338 kJ/mole) par
des réactions d’ionisation et l’accumulation d’hydrogène comme gaz principal de
recombinaison. De plus en plus d’énergie et/ou des températures plus élevées sont
nécessaires pour la coupure des liaisons C-C, et leur recombinaison en gaz contenant une
liaison simple C-C (607 kJ/mole), une double liaison C=C (720 kJ/mole) ou une triple liaison C≡C
(960 kJ/mole), suivant des réactions présentant des analogies avec celles observées dans
l’industrie du craquage du pétrole.
Ainsi, la formation d'éthylène est favorisée par rapport à celle de méthane et d'éthane
au-dessus d’environ 500 °C (bien que, au-dessous, l'éthylène soit toujours présent, mais en
plus faibles quantités). L’acétylène nécessite des températures d’au moins 800 °C à 1 200 °C,
suivies d’une trempe rapide jusqu'à de plus basses températures, pour pouvoir s’accumuler
comme produit de recombinaison stable. L’acétylène se forme ainsi en quantités significatives
principalement dans les arcs, où le canal de conduction ionisé est à plusieurs milliers de
degrés Celsius, et où l’interface avec l’huile liquide avoisinante est nécessairement en dessous
de 400 °C (température au-dessus de laquelle l’huile se vaporise complètement), avec une
couche de vapeur d’huile et de gaz de décomposition entre les deux. L’acétylène peut se
former à plus basse température (<800 °C), mais en très faibles quantités. Les particules de
carbone se forment de 500 °C à 800 °C et s’observent, en effet, après claquage dans l'huile ou
autour de points très chauds.
, qui peuvent
L’huile peut s’oxyder, avec la formation de faibles quantités de CO et de CO
s’accumuler en quantités plus importantes sur de longues durées.

4.2 Décomposition de l’isolation cellulosique
Les chaînes polymériques de l’isolation solide cellulosique (papier, carton, bois de calage)
contiennent un grand nombre de noyaux anhydroglucosiques, et de faibles liaisons moléculaires
C-O et glycosidiques, qui sont thermiquement moins stables que les liaisons hydrocarbonées
de l’huile et se décomposent à des températures plus basses. Les vitesses de coupure de
chaînes polymériques deviennent significatives à des températures supérieures à 105 °C, avec
décomposition complète et carbonisation au-dessus de 300 °C. Il se forme principalement du
monoxyde et du dioxyde de carbone, ainsi que de l’eau, en quantités beaucoup plus
importantes que par oxydation de l’huile aux mêmes températures, ainsi que de faibles
quantités d'hydrocarbures gazeux et de composés furaniques. Ces derniers peuvent être
analysés conformément à la CEI 61198, en complément à l’interprétation de l’AGD, pour
confirmer si oui ou non l’isolation cellulosique est impliquée dans le défaut. La formation de CO
et de CO augmente non seulement avec la température, mais également avec la teneur en
oxygène dissous dans l’huile et avec la teneur en eau du papier.

60599 © IEC:1999 – 15 –
4 Mechanisms of gas formation
4.1 Decomposition of oil
Mineral insulating oils are made of a blend of different hydrocarbon molecules containing
CH , CH and CH chemical groups linked together by carbon-carbon molecular bonds.

3 2
Scission of some of the C-H and C-C bonds may occur as a result of electrical and thermal

faults, with the formation of small unstable fragments, in radical or ionic form, such as

• •• ••
HC,,H CH,CHorC (among many other more complex forms), which recombine rapidly,
through complex reactions, into gas molecules such as hydrogen (H-H), methane (CH -H),
ethane (CH -CH ), ethylene (CH = CH ) or acetylene (CH ≡ CH). C and C hydrocarbon
3 3 2 2 3 4
gases, as well as solid particles of carbon and hydrocarbon polymers (X-wax), are other
possible recombination products. The gases formed dissolve in oil, or accumulate as free
gases if produced rapidly in large quantities, and may be analyzed by DGA according to
IEC 60567.
Low-energy faults, such as partial discharges of the cold plasma type (corona discharges),
favour the scission of the weakest C-H bonds (338 kJ/mole) through ionization reactions and
the accumulation of hydrogen as the main recombination gas. More and more energy and/or
higher temperatures are needed for the scission of the C-C bonds and their recombination into
gases with a C-C single bond (607 kJ/mole), C=C double bond (720 kJ/mole) or C≡C triple
bond (960 kJ/mole), following processes bearing some similarities with those observed in the
petroleum oil-cracking industry.
Ethylene is thus favoured over ethane and methane above temperatures of approximately
500 °C (although still present in lower quantities below). Acetylene requires temperatures of at
least 800 °C to 1 200 °C, and a rapid quenching to lower temperatures, in order to accumulate
as a stable recombination product. Acetylene is thus formed in significant quantities mainly in
arcs, where the conductive ionized channel is at several thousands of degrees Celsius, and the
interface with the surrounding liquid oil necessarily below 400 °C (above which oil vaporizes
completely), with a layer of oil vapour/decomposition gases in between. Acetylene may still be
formed at lower temperatures (< 800 °C), but in very minor quantities. Carbon particles form at
500 °C to 800 °C and are indeed observed after arcing in oil or around very hot spots.
Oil may oxidize with the formation of small quantities of CO and CO , which can accumulate
over long periods of time into more substantial amounts.
4.2 Decomposition of cellulosic insulation
The polymeric chains of solid cellulosic insulation (paper, pressboard, wood blocks) contain a
large number of anhydroglucose rings, and weak C-O molecular bonds and glycosidic bonds

which are thermally less stable than the hydrocarbon bonds in oil, and which decompose at
lower temperatures. Significant rates of polymer chain scission occur at temperatures higher
than 105 °C, with complete decomposition and carbonization above 300 °C. Mostly carbon
monoxide and dioxide, as well as water, are formed, in much larger quantities than by oxidation
of oil at the same temperature, together with minor amounts of hydrocarbon gases and furanic
compounds. The latter can be analyzed according to IEC 61198, and used to complement DGA
interpretation and confirm whether or not cellulosic insulation is involved in a fault. CO and CO
formation increases not only with temperature but also with the oxygen content of oil and the
moisture content of paper.
– 16 – 60599 © CEI:1999
4.3 Autres sources de gaz
Dans certains cas, des gaz peuvent se former, non pas à la suite de défauts dans le matériel,

mais à cause de réactions chimiques de corrosion ou autres impliquant l’acier, les surfaces
non peintes ou les peintures de protection.

De l’hydrogène peut être produit par réaction de l’acier avec l’eau, tant que de l’oxygène est
présent dans l’huile qui est à proximité. Des quantités importantes d’hydrogène ont ainsi été
observées dans des transformateurs qui n’avaient jamais été mis sous tension. De l’hydrogène

peut aussi se former par réaction d’eau libre avec des revêtements spéciaux de surfaces

métalliques, ou par réaction catalytique de certains types d’acier inoxydable avec l’huile, en

particulier avec de l’huile à haute température contenant de l’oxygène dissous. De l’hydrogène
peut aussi être présent dans de l’acier inoxydable neuf, absorbé pendant le procédé de
fabrication, ou produit pendant le soudage, et libéré lentement dans l’huile.
De l’hydrogène peut aussi être formé par la décomposition du mince film d’huile entre les
*
lamelles du noyau à des températures supérieures ou égales à 140 °C (voir [1] de l’annexe C).
Des gaz peuvent aussi être produits par exposition de l’huile à la lumière solaire ou se former
au cours de travaux de réparation du matériel.
Des peintures internes du transformateur, comme les résines alkydes et les polyuréthannes
modifiés, contenant des acides gras dans leur formulation, peuvent aussi former des gaz.
De tels cas ne se produisent néanmoins qu’extrêmement rarement, et peuvent être détectés en
effectuant des analyses d’AGD sur des matériels neufs qui n’ont jamais été mis sous tension et
par des essais de compatibilité des matériaux. La présence d’hydrogène, en l'absence totale
d’autres hydrocarbures gazeux peut être, par exemple, une indication d’un tel problème.
NOTE – Le cas des gaz provenant d’un défaut ancien et subsistant dans le transformateur est traité en 5.3.
5 Identification des défauts
En service, toute formation de gaz, même minime, résulte d’une quelconque contrainte, même
très faible, telle que le vieillissement thermique normal. Néanmoins, tant que la formation de
gaz reste en dessous des valeurs typiques, il convient de ne pas la considérer comme
l’indication d’un «défaut», mais plutôt comme une «formation typique de gaz» (voir figure 1).
5.1 Composition des gaz dissous
Bien que le niveau de température atteinte ou de l'énergie mise en jeu dans le défaut favorise

la formation de certains gaz (voir 4.1), en pratique, on obtient presque toujours des mélanges
de gaz. Une des raisons est thermodynamique: bien qu’ils soient moins favorisés, des gaz
secondaires se forment toujours, mais en plus faibles quantités. Cependant, les modèles
thermodynamiques issus de l’industrie pétrolière ne permettent pas de prédire avec précision
la composition des gaz formés, parce que ces modèles correspondent à des équilibres idéaux
de températures et de gaz qui n’existent pas dans les défauts réels. Egalement, des gradients
élevés de température existent en pratique dus, par exemple à l'écoulement ou à la vapori-
sation de l’huile le long de surfaces très chaudes. Cela est particulièrement vrai pour les arcs
de puissance, qui transfèrent une grande quantité de chaleur à la couche de gaz de
décomposition et de vapeur d’huile, située entre l’arc et l’huile, expliquant probablement la
f
...


IEC 60599
Edition 2.1 2007-05
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Mineral oil-impregnated electrical equipment in service – Guide to the
interpretation of dissolved and free gases analysis

Matériels électriques imprégnés d'huile minérale en service – Guide pour
l'interprétation de l'analyse des gaz dissous et des gaz libres

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by

any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or

IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.

Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette

publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
ƒ Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
ƒ IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
ƒ Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
ƒ Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00
A propos de la CEI
La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des
normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI
Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez
l’édition la plus récente, un corrigendum ou amendement peut avoir été publié.
ƒ Catalogue des publications de la CEI: www.iec.ch/searchpub/cur_fut-f.htm
Le Catalogue en-ligne de la CEI vous permet d’effectuer des recherches en utilisant différents critères (numéro de référence,
texte, comité d’études,…). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.
ƒ Just Published CEI: www.iec.ch/online_news/justpub
Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles
publications parues. Disponible en-ligne et aussi par email.
ƒ Electropedia: www.electropedia.org
Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et
définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé
Vocabulaire Electrotechnique International en ligne.
ƒ Service Clients: www.iec.ch/webstore/custserv/custserv_entry-f.htm
Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du
Service clients ou contactez-nous:
Email: csc@iec.ch
Tél.: +41 22 919 02 11
Fax: +41 22 919 03 00
IEC 60599
Edition 2.1 2007-05
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Mineral oil-impregnated electrical equipment in service – Guide to the
interpretation of dissolved and free gases analysis

Matériels électriques imprégnés d'huile minérale en service – Guide pour
l'interprétation de l'analyse des gaz dissous et des gaz libres

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
PRICE CODE
INTERNATIONALE
CL
CODE PRIX
ICS 17.220.99; 29.040.10; 29.180 ISBN 2-8318-9145-0

– 2 – 60599 © IEC:1999+A1:2007

CONTENTS
FOREWORD.3

INTRODUCTION.4

1 Scope.5

2 Normative references .5

3 Definitions and abbreviations .5

4 Mechanisms of gas formation .8
5 Identification of faults.9
6 Conditions for calculating ratios .14
7 Application to free gases in gas relays .15
8 Gas concentration levels in service .16
9 Recommended method of DGA interpretation (figure 1).19
10 Report of results .19

Annex A (informative) Equipment application notes .22
Annex B (informative) Graphical representation of gas ratios (see 5.9) .32
Annex C (informative) Bibliography .35

Figure 1 – Flow chart .21
Figure B.1 – Graphical representation 1 of gas ratios .32
Figure B.2 – Graphical representation 2 of gas ratios .33
Figure B.3 – Graphical representation 3 of gas ratios – Duval's triangle .34

60599 © IEC:1999+A1:2007 – 3 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

_________
MINERAL OIL-IMPREGNATED ELECTRICAL EQUIPMENT IN SERVICE –

GUIDE TO THE INTERPRETATION OF DISSOLVED AND

FREE GASES ANALYSIS
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60599 has been prepared by IEC technical committee 10: Fluids for
electrotechnical applications.
This consolidated version of IEC 60599 consists of the second edition (1999) [documents
10/450/FDIS and 10/460/RVD] and its amendment 1 (2007) [documents 10/685/FDIS and
10/693/RVD].
The technical content is therefore identical to the base edition and its amendment(s) and has
been prepared for user convenience.
It bears the edition number 2.1.
A vertical line in the margin shows where the base publication has been modified by
amendment 1.
Annexes A, B and C are for information only.

– 4 – 60599 © IEC:1999+A1:2007

INTRODUCTION
Dissolved and free gas analysis (DGA) is one of the most widely used diagnostic tools for

detecting and evaluating faults in electrical equipment. However, interpretation of DGA results

is often complex and should always be done with care, involving experienced insulation

maintenance personnel.
This guide gives information for facilitating this interpretation. The first edition, published in

1978, has served the industry well, but had its limitations, such as the absence of a diagnosis

in some cases, the absence of concentration levels and the fact that it was based mainly on

experience gained from power transformers. This second edition attempts to address some of
these shortcomings. Interpretation schemes are based on observations made after inspection
of a large number of faulty oil-filled equipment in service and concentrations levels deduced
from analyses collected worldwide.

60599 © IEC:1999+A1:2007 – 5 –

MINERAL OIL-IMPREGNATED ELECTRICAL EQUIPMENT IN SERVICE –

GUIDE TO THE INTERPRETATION OF DISSOLVED AND

FREE GASES ANALYSIS
1 Scope
This International Standard is a guide describing how the concentrations of dissolved gases or

free gases may be interpreted to diagnose the condition of oil-filled electrical equipment in

service and suggest future action.

This guide is applicable to electrical equipment filled with mineral insulating oil and insulated
with cellulosic paper or pressboard-based solid insulation. Information about specific types of
equipment such as transformers (power, instrument, industrial, railways, distribution), reactors,
bushings, switchgear and oil-filled cables is given only as an indication in the application notes
(see annex A).
The Guide may be applied only with caution to other liquid-solid insulating systems.
In any case, the indications obtained should be viewed only as guidance and any resulting
action should be undertaken only with proper engineering judgment.
2 Normative references
The following normative documents contain provisions which, through reference in this text,
constitute provisions of this International Standard. At the time of publication, the editions
indicated were valid. All normative documents are subject to revision, and parties to
agreements based on this International Standard are encouraged to investigate the possibility
of applying the most recent editions of the normative documents indicated below. Members of
IEC and ISO maintain registers of currently valid International Standards.
IEC 60050(191):1990, International Electrotechnical Vocabulary (IEV) – Chapter 191: Depen-
dability and quality of service
IEC 60050(212):1990, International Electrotechnical Vocabulary (IEV) – Chapter 212: Insulating
solids, liquids and gases
IEC 60050(604):1987, International Electrotechnical Vocabulary (IEV) – Chapter 604: Generation,
transmission and distribution of electricity – Operation
IEC 60567:1992, Guide for the sampling of gases and of oil from oil-filled electrical equipment
and for the analysis of free and dissolved gases
IEC 61198:1993, Mineral insulating oils – Methods for the determination of 2-furfural and
related compounds
3 Definitions and abbreviations
3.1 Definitions
For the purpose of this International Standard, the following definitions, some of them based on
IEC 60050(191), IEC 60050(212) and IEC 60050(604) apply:
3.1.1
fault
an unplanned occurrence or defect in an item which may result in one or more failures of the
item itself or of other associated equipment [IEV 604-02-01]
NOTE In electrical equipment, a fault may or may not result in damage to the insulation and failure of the
equipment.
– 6 – 60599 © IEC:1999+A1:2007

3.1.2
non-damage fault
a fault which does not involve repair or replacement action at the point of the fault

[IEV 604-02-09]
NOTE Typical examples are self-extinguishing arcs in switching equipment or general overheating without paper

carbonization.
3.1.3
damage fault
a fault which involves repair or replacement action at the point of the fault

[IEV 604-02-08, modified]
3.1.4
incident
an event related to an internal fault which temporarily or permanently disturbs the normal
operation of an equipment [IEV 604-02-03, modified]
NOTE Typical examples are gas alarms, equipment tripping or equipment leakage.
3.1.5
failure
the termination of the ability of an item to perform a required function [IEV 191-04-01]
NOTE In the electrical equipment, failure will result from a damage fault or incident necessitating outage, repair or
replacement of the equipment, such as internal breakdown, rupture of tank, fire or explosion.
3.1.6
electrical fault
a partial or disruptive discharge through the insulation
3.1.7
partial discharge
a discharge which only partially bridges the insulation between conductors. It may occur inside
the insulation or adjacent to a conductor [IEV 212-01-34, modified]
NOTE 1 Corona is a form of partial discharge that occurs in gazeous media around conductors which are remote
from solid or liquid insulation. This term is not to be used as a general term for all forms of partial discharges.
NOTE 2 X-wax is a solid material which is formed from mineral insulating oil as a result of electrical discharges
and which consists of polymerized fragments of the molecules of the original liquid [IEV 212-07-24, modified].
Comparable products may be formed from other liquids under similar conditions.
NOTE 3 Sparking of low energy, for example because of metals or floating potentials, is sometimes described as
partial discharge but should rather be considered as a discharge of low energy.
3.1.8
discharge (disruptive)
the passage of an arc following the breakdown of the insulation [IEV 604-03-38, modified]
NOTE 1 Discharges are often described as arcing, breakdown or short circuits. The more specific following terms
are also used:
– sparkover (discharge through the oil);
– puncture (discharge through the solid insulation);
– flashover (discharge at the surface of the solid insulation);
– tracking (the progressive degradation of the surface of solid insulation by local discharges to form conducting or
partially conducting paths);
– sparking discharges which, in the conventions of physics, are local dielectric breakdowns of high ionization
density or small arcs.
NOTE 2 Depending on the amount of energy contained in the discharge, it will be described as a discharge of low
or high energy, based on the extent of damage observed on the equipment (see 5.2).

60599 © IEC:1999+A1:2007 – 7 –

3.1.9
thermal fault
excessive temperature rise in the insulation

NOTE Typical causes are
– insufficient cooling,
– excessive currents circulating in adjacent metal parts (as a result of bad contacts, eddy currents, stray losses or

leakage flux),
– excessive currents circulating through the insulation (as a result of high dielectric losses), leading to a thermal

runaway,
– overheating of internal winding or bushing connection lead.

3.1.10
typical values of gas concentrations
gas concentrations normally found in the equipment in service which have no symptoms of
failure, and which are overpassed by only an arbitary percentage of higher gas contents, for
example 10 % (see 8.2.1)
NOTE 1 Typical values will differ in different types of equipment and in different networks, depending on operating
practices (load levels, climate, etc.).
NOTE 2 Typical values, in many countries and by many users, are quoted as "normal values", but this term has
not been used here to avoid possible misinterpretations.
3.2 Abbreviations
3.2.1 Chemical names and symbols
Name Symbol
Nitrogen N
Oxygen O
Hydrogen H
Carbon monoxide CO
Carbon dioxide CO
Methane CH
Ethane C H
2 6
Ethylene C2H4
Acetylene C H
2 2
3.2.2 General abbreviations
DGA: Dissolved gas analysis
CIGRE: Conférence Internationale des Grands Réseaux Électriques
S: Analytical detection limit
– 8 – 60599 © IEC:1999+A1:2007

4 Mechanisms of gas formation
4.1 Decomposition of oil
Mineral insulating oils are made of a blend of different hydrocarbon molecules containing

CH , CH and CH chemical groups linked together by carbon-carbon molecular bonds.
3 2
Scission of some of the C-H and C-C bonds may occur as a result of electrical and thermal

faults, with the formation of small unstable fragments, in radical or ionic form, such as

••
• ••
HC,,,H CH CH orC (among many other more complex forms), which recombine rapidly,
through complex reactions, into gas molecules such as hydrogen (H-H), methane (CH -H),
ethane (CH -CH ), ethylene (CH = CH ) or acetylene (CH ≡ CH). C and C hydrocarbon
3 3 2 2 3 4
gases, as well as solid particles of carbon and hydrocarbon polymers (X-wax), are other
possible recombination products. The gases formed dissolve in oil, or accumulate as free
gases if produced rapidly in large quantities, and may be analyzed by DGA according to
IEC 60567.
Low-energy faults, such as partial discharges of the cold plasma type (corona discharges),
favour the scission of the weakest C-H bonds (338 kJ/mole) through ionization reactions and
the accumulation of hydrogen as the main recombination gas. More and more energy and/or
higher temperatures are needed for the scission of the C-C bonds and their recombination into
gases with a C-C single bond (607 kJ/mole), C=C double bond (720 kJ/mole) or C≡C triple
bond (960 kJ/mole), following processes bearing some similarities with those observed in the
petroleum oil-cracking industry.
Ethylene is thus favoured over ethane and methane above temperatures of approximately
500 °C (although still present in lower quantities below). Acetylene requires temperatures of at
°C to 1 200 °C, and a rapid quenching to lower temperatures, in order to accumulate
least 800
as a stable recombination product. Acetylene is thus formed in significant quantities mainly in
arcs, where the conductive ionized channel is at several thousands of degrees Celsius, and the
interface with the surrounding liquid oil necessarily below 400 °C (above which oil vaporizes
completely), with a layer of oil vapour/decomposition gases in between. Acetylene may still be
formed at lower temperatures (< 800 °C), but in very minor quantities. Carbon particles form at
500 °C to 800 °C and are indeed observed after arcing in oil or around very hot spots.
Oil may oxidize with the formation of small quantities of CO and CO , which can accumulate
over long periods of time into more substantial amounts.
4.2 Decomposition of cellulosic insulation
The polymeric chains of solid cellulosic insulation (paper, pressboard, wood blocks) contain a
large number of anhydroglucose rings, and weak C-O molecular bonds and glycosidic bonds
which are thermally less stable than the hydrocarbon bonds in oil, and which decompose at
lower temperatures. Significant rates of polymer chain scission occur at temperatures higher
than 105 °C, with complete decomposition and carbonization above 300 °C. Mostly carbon
monoxide and dioxide, as well as water, are formed, in much larger quantities than by oxidation
of oil at the same temperature, together with minor amounts of hydrocarbon gases and furanic
compounds. The latter can be analyzed according to IEC 61198, and used to complement DGA
interpretation and confirm whether or not cellulosic insulation is involved in a fault. CO and CO
formation increases not only with temperature but also with the oxygen content of oil and the
moisture content of paper.
60599 © IEC:1999+A1:2007 – 9 –

4.3 Other sources of gas
Gases may be generated in some cases not as a result of faults in the equipment but through

rusting or other chemical reactions involving steel, uncoated surfaces or protective paints.

Hydrogen may be produced by reaction of steel with water, as long as oxygen is available from

the oil nearby. Large quantities of hydrogen have thus been reported in some transformers that

had never been energized. Hydrogen may also be formed by reaction of free water with special

coatings on metal surfaces, or by catalytic reaction of some types of stainless steel with oil, in
particular oil containing dissolved oxygen at elevated temperatures. Hydrogen may also be

formed in new stainless steel, absorbed during its manufacturing process, or produced by

welding, and released slowly into the oil.

Hydrogen may also be formed by the decomposition of the thin oil film between overheated
*
core laminates at temperatures of 140 °C and above (see [1] of annex C).
Gases may also be produced by exposure of oil to sunlight or may be formed during repair of
the equipment.
Internal transformer paints, such as alkyd resins and modified polyurethanes containing fatty
acids in their formulation, may also form gases.
These occurrences, however, are very unusual, and can be detected by performing DGA
analyses on new equipment which has never been energized, and by material compatibility
tests. The presence of hydrogen with the total absence of other hydrocarbon gases, for
example, may be an indication of such a problem.
NOTE The case of gases formed at a previous fault and remnant in the transformer is dealt with in 5.3.
5 Identification of faults
Any gas formation in service, be it minimal, results from a stress of some kind, even if it is a
very mild one, like normal temperature ageing. However, as long as gas formation is below
typical values, it should not be considered as an indication of a "fault", but rather as "typical
gas formation" (see figure 1).
5.1 Dissolved gas compositions
Although the formation of some gases is favoured, depending on the temperature reached or
the energy contained in a fault (see 4.1), in practice mixtures of gases are almost always
obtained. One reason is thermodynamic: although not favoured, secondary gases are still
formed, albeit in minor quantities. Existing thermodynamic models derived from the petroleum

industry, however, cannot predict accurately the gas compositions formed, because they
correspond to ideal gas/temperature equilibria which do not exist in actual faults. Large
temperature gradients also occur in practice, for instance as a result of oil flow or vaporization
along a hot surface. This is particularly true in the case of arcs with power follow-through,
which transfer a lot of heat to the oil vapour/decomposition gas layer between the arc and the
oil, probably explaining the increasing formation of ethylene observed in addition to acetylene.
In addition, existing thermodynamic models do not apply to paper, which turns irreversibly to
carbon above 300 °C.
__________
*
Figures in square brackets refer to the bibliography in annex C.

– 10 – 60599 © IEC:1999+A1:2007

5.2 Types of faults
Internal inspection of hundreds of faulty equipment has led to the following broad classes of

visually detectable faults:
– partial discharges (PD) of the cold plasma (corona) type, resulting in possible X-wax
deposition on paper insulation, or of the sparking type, inducing pinhole, carbonized

perforations (punctures) in paper, which, however, may not be easy to find;

– discharges of low energy (D1), in oil or/and paper, evidenced by larger carbonized

perforations through paper (punctures), carbonization of the paper surface (tracking) or

carbon particles in oil (as in tap changer diverter operation);

– discharges of high energy (D2), in oil or/and paper, with power follow-through, evidenced by
extensive destruction and carbonization of paper, metal fusion at the discharge extremities,
extensive carbonization in oil and, in some cases, tripping of the equipment, confirming the
large current follow-through;
– thermal faults, in oil or/and paper, below 300 °C if the paper has turned brownish (T1), and
above 300 °C if it has carbonized (T2);
– thermal faults of temperatures above 700 °C (T3) if there is strong evidence of
carbonization of the oil, metal coloration (800 °C) or metal fusion (>1 000 °C).
Table 1 – Abbreviations
PD Partial discharges
D1 Discharges of low energy
D2 Discharges of high energy
T1 Thermal fault, t < 300 °C
T2 Thermal fault, 300 °C < t < 700 °C
T3 Thermal fault, t > 700 °C
5.3 Basic gas ratios
Each of the six broad classes of faults leads to a characteristic pattern of hydrocarbon gas
composition, which can be translated into a DGA interpretation table, such as the one
recommended in table 2 and based on the use of three basic gas ratios:

CH CH CH
22 4 24
CH H CH
2 4 2 2 6
Table 2 applies to all types of equipment, with a few differences in gas ratio limits depending
on the specific type of equipment.

60599 © IEC:1999+A1:2007 – 11 –

Table 2 – DGA interpretation table

CH CH CH
22 4 24
Case Characteristic fault
CH H CH
2 4 2 2 6
1)
PD Partial discharges NS <0,1 <0,2
(see notes 3 and 4)
D1 Discharges of low energy >1 0,1 – 0,5 >1

D2 Discharges of high energy 0,6 – 2,5 0,1 – 1 >2

1)
T1 Thermal fault NS >1 but <1

1)
NS
t < 300 °C
T2 Thermal fault <0,1 >1 1 – 4
300 °C < t < 700 °C
2)
T3 Thermal fault <0,2 >1 >4
t > 700 °C
NOTE 1 In some countries, the ratio C H /C H is used, rather than the
2 2 2 6
ratio CH /H . Also in some countries, slightly different ratio limits are used.
4 2
NOTE 2 The above ratios are significant and should be calculated only if at
least one of the gases is at a concentration and a rate of gas increase above
typical values (see clause 9).
NOTE 3 CH /H <0,2 for partial discharges in instrument transformers.
4 2
CH /H <0,07 for partial discharges in bushings.
4 2
NOTE 4 Gas decomposition patterns similar to partial discharges have been
reported as a result of the decomposition of thin oil film between overheated
core laminates at temperatures of 140 °C and above (see 4.3 and [1] of
annex C).
1)
NS = Non-significant whatever the value.
2)
An increasing value of the amount of C H may indicate that the hot spot
2 2
temperature is higher than 1 000 °C.

Typical examples of faults in the various types of equipment (power transformers, instrument
transformers, etc.), corresponding to the six cases of table 2, may be found in tables A.1, A.5,
A.7 and A.11.
Some overlap between faults D1 and D2 is apparent in table 2, meaning that a dual attribution
of D1 or D2 must be given in some cases of DGA results. The distinction between D1 and D2
has been kept, however, as the amount of energy in the discharge may significantly increase
the potential damage to the equipment and necessitate different preventive measures.
NOTE Combinations of gas ratios which fall outside the range limits of table 2 and do not correspond to a
characteristic fault of this table may be considered a mixture of faults, or new faults which combine with a high

background gas level (see 6.1).
In such a case, table 2 cannot provide a diagnosis, but the graphical representations given in annex B may be used
to visualize which characteristic fault of table 2 is closest to the case.
The less detailed scheme of table 3 may also be used in such a case in order to get at least a rough distinction
between partial discharges (PD), discharges (D) and thermal fault (T), rather than no diagnosis at all.

– 12 – 60599 © IEC:1999+A1:2007

Table 3 – Simplified scheme of interpretation

CH CH CH
22 4 24
Case
CH H CH
2 4 2 2 6
PD <0,2
D >0,2
T <0,2
5.4 CO /CO ratio
The formation of CO and CO from oil-impregnated paper insulation increases rapidly with
temperature. Incremental (corrected) CO /CO ratios less than 3 are generally considered as an
indication of probable paper involvement in a fault, with some degree of carbonization.
In order to get reliable CO /CO ratios in the equipment, CO and CO values should be
2 2
corrected (incremented) first for possible CO absorption from atmospheric air, and for the
CO and CO background values (see 6.1 and clause 9), resulting from the ageing of cellulosic
insulation, overheating of wooden blocks and the long term oxidation of oil (which will be
strongly influenced by the availability of oxygen caused by specific equipment construction
details and its way of operation).
Air-breathing equipment, for example, saturated with approximately 10 % of dissolved air, may
contain up to 300 µl/l of CO coming from the air. In sealed equipment, air is normally excluded
but may enter through leaks, and CO concentration will be in proportion of air present.
When excessive paper degradation is suspected (CO /CO < 3), it is advisable to ask for a
furanic compounds analysis or a measurement of the degree of polymerization of paper
samples, when this is possible.
5.5 O /N ratio
2 2
Dissolved O and N may be found in oil, as a result of contact with atmospheric air in the
2 2
conservator of air-breathing equipment, or through leaks in sealed equipment. At equilibrium,
taking into account the relative solubilities of O and N , the O /N ratio in oil reflects air
2 2 2 2
composition and is close to 0,5.
In service, this ratio may decrease as a result of oil oxidation and/or paper ageing, if O is
consumed more rapidly than it is replaced by diffusion. Factors such as the load and
preservation syst.em used may also affect the ratio, but ratios less than 0,3 are generally

considered to indicate excessive consumption of oxygen.
5.6 C H /H ratio
2 2 2
In power transformers, on load tap changer (OLTC) operations produce gases corresponding
to discharges of low energy (D1). If some oil or gas communication is possible between the
OLTC compartment and the main tank, or between the respective conservators, these gases
may contaminate the oil in the main tank and lead to wrong diagnoses. The pattern of gas
decomposition in the OLTC, however, is quite specific and different from that of regular D1s in
the main tank.
60599 © IEC:1999+A1:2007 – 13 –

C H /H ratios higher than 2 to 3 in the main tank are thus considered as an indication of
2 2 2
OLTC contamination. This can be confirmed by comparing DGA results in the main tank, in the

OLTC and in the conservators. The values of the gas ratio and of the acetylene concentration

depend on the number of OLTC operations and on the way the contamination has occurred

(through the oil or the gas).
NOTE If contamination by gases coming from the OLTC is suspected, interpretation of DGA results in the main
tank should be done with caution by substracting background contamination from the OLTC, or should be avoided

as unreliable.
5.7 C hydrocarbons
The interpretation method of gas analysis indicated above takes into account only C and C
1 2
hydrocarbons. Some practical interpretation methods also use the concentrations of C
hydrocarbons, and their authors believe that they are liable to bring complementary information
which is useful to make the diagnosis more precise. Because the C hydrocarbons are very
soluble in oil, their concentrations are practically not affected by a possible diffusion into
ambient air. Conversely, and because they are very soluble, they are difficult to extract from
the oil and the result of the analysis may greatly depend on the extraction method used.
Moreover, experience has shown that, in most cases, a satisfactory diagnosis can be made
without taking into account these hydrocarbons and for the sake of simplification, they have
been omitted from the interpretation method indicated above.
5.8 Evolution of faults
Faults often start as incipient faults of low energy, which may develop into more serious ones
of higher energies, leading to possible gas alarms, breakdowns and failures.
When a fault is detected at an early stage of development, it may be quite informative to
examine not only the increase in gas concentrations, but also the possible evolution with time
toward a more dangerous high-energy fault of the final stage type.
For example, some current transformers have operated satisfactorily for long periods of time
with very high levels of hydrogen produced by partial discharges. However, partial discharges
may also cause the formation of X-wax. When the X-wax is present in sufficient quantity to
increase the dissipation losses in the paper-oil insulation, a thermal fault may occur, eventually
leading to catastrophic thermal runaway and breakdown.
In other occurrences, however, instant final breakdown may occur without warning.
5.9 Graphical representations
Graphical representations of gas ratios are convenient to follow this evolution of faults visually.

Annex B gives examples of graphical representation of faults.
These representations are also useful in cases which do not receive a diagnosis using table 2,
because they fall outside the gas ratios limits. Using figures B.1 or B.2, the zone or box which
is closest to such an undiagnosed case can be easily visualized and attributed with caution to
this case. Figure B.3 is particularly useful since it always provide a diagnosis in such cases.

– 14 – 60599 © IEC:1999+A1:2007

6 Conditions for calculating ratios

6.1 Examination of DGA values
DGA sampling and analysis should be done in accordance with the recommendations of

IEC 60567.
a) Values of 0 μl/l on a DGA report or below the analytical detection limits S shall be replaced

by "below the S value for this gas" (see IEC 60567 for recommended S values)

b) If successive DGA analyses have been performed over a relatively short period of time

(days or weeks), inconsistent variations (e.g. brutal decreases of concentrations) may have

to be eliminated as an indication of a sampling or analytical problem.
c) Gas ratios are significant and should be calculated only if at least one gas concentration
value is above typical value and above typical rate of gas increase (see note 2 of table 2
and clause 9).
d) If gas ratios are different from those for the previous analysis, a new fault may superimpose
itself on an old one or normal ageing. In order to get only the gas ratios corresponding to
the new fault, subtract the previous DGA values from the last ones and recalculate ratios.
This is particularly true in the case of CO and CO (see 5.4). Be sure to compare DGA
values of samples taken at the same place and preferably in moving oil. Interpretation
should also take into account treatments previously made on the equipment, such as repair,
oil degassing or filtering, which may affect the level of gases in the oil.
NOTE In the case of air-breathing power transformers, losses occur very slowly with time by diffusion through the
conservator or as a result of oil expansion/temperature cycles, with the result that the measured gas levels may be
slightly less than the gas levels actually formed in the transformer. However, there is no agreement concerning the
magnitude of this diffusion loss in service, some considering it as totally negligible, others as potentially significant,
depending on the type of equipment used. In case of doubt, it may be expedient to measure the gas concentration
in the conservator to get an idea of the volume ventilated. Significant diffusion losses may affect gas ratios, typical
values of gas concentrations and of rates of gas increase.
6.2 Uncertainty on gas ratios
Because of the precision on DGA values, there is also an uncertainty on gas ratios, which can
be calculated using the precision on DGA values described in IEC 60567.
Above 10 × S (S being the analytical detection limit), the precision is typically 5 % on DGA
values and up to 10 % on a gas ratio. Below 10 × S, the precision on DGA values decreases
rapidly, to typically 20 % at 5 × S and up to 40 % on a gas ratio.
Caution should therefore be exercised when calculating gas ratios at low gas levels (lower

than 10 × S), keeping in mind the possible variations resulting from the reduced precision. This
is particularly true for instrument transformers and bushings, where typical values of gas
concentration may be below 10 × S.

60599 © IEC:1999+A1:2007 – 15 –

7 Application to free gases in gas relays

During a fault, the production rate of gases of all types is closely linked to the rate of energy

liberation. Thus, the low rate of energy liberation in partial discharges, or in a low-temperature

hot spot, will cause gases to evolve slowly and there is every probability that all the gas

produced will dissolve in the oil. The higher rate of energy liberation of a high-temperature core

fault, for example, can cause an evolution of gas rapid enough to result in gas bubbles. These

will usually partially dissolve in the oil (and exchange with gases already dissolved) but some

gas may well reach the gas collecting relay or gas cushion; this gas may approach equilibrium

with the gases dissolved in the oil.

A very high rate of energy liberation associated with a power arcing fault causes a rapid and
substantial evolution of gas (the resulting pressure surge normally operates the surge element
of the gas collecting relay). The large gas bubbles rise quickly to the relay and exchange little
gas with the oil so that the gas that collects in the relay is initially far from being in equilibrium
with the gases dissolved in the oil. However, if this gas is left for a long time in the relay, some
constituents will dissolve, modifying the composition of the gas collected. Acetylene, which is
produced in significant quantities by an arcing fault and which is very soluble, is a noteworthy
example of a gas which may dissolve comparatively quickly to produce misleading results.
In principle, the analysis of free gases from a gas collecting relay or from a gas cushion may
be evaluated in the same way as the analysis of gases dissolved in the oil. However, where the
surge element has operated and gas has accumulated in substantial quantities, there is a
possibility of having a serious fault, and analyses of the gases should be undertaken to identify
the fault. Buchholz alarms due to air accumulation are also possible following a combination of
warm days and sudden temperature drops at night.
It is therefore important to collect the gas at the relay as soon as possible without burning it,
and sample the oil in the relay and in the main tank.
Where gas has accumulated slowly, assessment of the gases dissolved in the oil is more
informative than that of the free gases; this gas-in-oil analysis is also essential in order to
determine the total rate of evolution of gases and thus check whether the fault is growing,
which is the most important matter to investigate. When analysis of free gases is undertaken, it
is necessary to convert the concentrations of the various gases in the free state into equivalent
concentrations in the dissolved state, using table 4, before applying the gas ratio method of
table 2, and to compare them to the dissolved gas concentrations in the oil of the relay and the
main tank.
Applying the principles set out above, comparison of the actual concentrations in the oil with
the equivalent concentrations in the free gas may give valuable information on how far gas
bubbles may have risen through the oil and, hence, on the rate of gas evolution.

The calculation of dissolved gas concentrations equivalent to free gas concentrations is made
by applying the Ostwald coefficient for each gas separately. For a particular gas, the Ostwald
coefficient k is defined as follows:
concentration of gas in liquid phase
k =
concentration of gas in gas phase
with concentrations in microlitres per litre.

– 16 – 60599 © IEC:1999+A1:2007

The Ostwald coefficients for various gases in mineral insulating oils at 20 °C and 50 °C are

given in table 4.
Table 4 – Ostwald coefficients for vario
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...