Heat exchangers - Test procedures for establishing performance of air to air heat recovery components

This document specifies methods to be used for testing of air-to-air heat recovery components (HRC). The main purpose of the HRC is to exchange heat between exhaust air and supply air in order to save energy, which results in
—   preheat or heat, and/or
—   precool or cool
supply air in ventilation systems or air conditioning systems. Optionally HRC can exchange air humidity between exhaust and supply air. The HRC contains the heat exchangers and all necessary features and auxiliary devices for the exchange of sensible heat and (if available) air humidity between exhaust air and supply air. The HRC will be installed in casings or ducts. If fans are part of the test unit, the effect of the fan power on the measured values will be corrected.
This document specifies procedures and input criteria required for tests to determine the performance of a HRC at one or several test conditions, each of them with continuous and stationary air flows, air temperatures and humidities at both inlet sides. Three different test types are covered:
—   Test type A, Laboratory testing of HRC installed in test casings (A1) or a HRC sections (A2);
—   Test type B, Laboratory testing of HRC installed in non-residential ventilation units  in design configuration;
—   Test type C, on-site (field) testing of HRC in non-residential ventilation units (C1) or a HRC sections (C2) in operation configuration.
This document is applicable to recuperators, regenerators, and HRC with intermediary heat transfer medium.
This document prescribes test methods for determining:
1)   the temperature and humidity efficiency,
2)   the pressure drop of exhaust air and supply air sides,
3)   possible internal leakages; exhaust air transfer ratio (EATR) and outdoor air correction factor (OACF),
4)   external leakages and
5)   auxiliary energy used for the operation of the HRC.
HRC using heat pumps are not covered by this document.

Wärmeübertrager - Prüfverfahren zur Bestimmung der Leistungskriterien von Luft/Luft- Wärmerückgewinnungskomponenten

Dieses Dokument legt Verfahren für die Prüfung von Luft-Luft-Wärmerückgewinnungskomponenten (HRC) fest. Der Hauptzweck der HRC besteht in dem Wärmeaustausch zwischen Abluft und Zuluft, um Energie zu sparen. Dies führt zu
—   Vorerwärmung oder Erwärmung und/oder
—   Vorkühlung oder Kühlung von
Zuluft in Belüftungssystemen oder Klimaanlagen. Optional kann die HRC Luftfeuchte zwischen Abluft und Zuluft austauschen. Die HRC enthält die Wärmeübertrager und alle notwendigen Funktionen und Hilfsgeräte für den Austausch sensibler Wärme und (sofern verfügbar) Luftfeuchte zwischen Abluft und Zuluft. Die HRC wird in Gehäusen oder Kanälen installiert. Wenn Ventilatoren Teil des Prüfgeräts sind, wird die Auswirkung der Ventilatorenleistung auf die Messwerte korrigiert.
Dieses Dokument legt Verfahren und Eingangskriterien für Prüfungen zur Bestimmung der Leistung einer HRC bei einer oder mehreren Prüfbedingungen fest, jeweils mit kontinuierlichen oder stationären Luftströmen, Lufttemperaturen und Luftfeuchtewerten an beiden Eingangsseiten. Drei verschiedene Prüfarten werden behandelt:
—   Prüfart A, Laborprüfung von in Prüfgehäusen (A1) oder HRC-Abschnitten (A2) installierten HRC;
—   Prüfart B, Laborprüfung von in Nichtwohnraumlüftungsgeräten  in Bemessungskonfiguration installierten HRC;
—   Prüfart C, Vor-Ort-Prüfung (Feldprüfung) von HRC in Nichtwohnraumlüftungsgeräten (C1) oder HRC Abschnitten (C2) in Betriebskonfiguration.
Dieses Dokument ist anzuwenden für Rekuperatoren, Regeneratoren und HRC mit zwischengeschaltetem Wärmeübertragungsmedium.
Dieses Dokument schreibt Prüfverfahren für die Bestimmung:
1)   der Temperatur- und Feuchteeffizienz ;
2)   des Druckabfalls auf der Abluft- und Zuluftseite;
3)   möglicher Innenleckage, des Abluftübertragungsverhältnisses (EATR) und des Außenluftkorrekturfaktors (OACF);
4)   von Außenleckage und
5)   der für den Betrieb der HRC verwendeten Hilfsenergie vor.
HRC, die Wärmepumpen verwenden, werden in diesem Dokument nicht behandelt.

Échangeurs thermiques - Procédures d'essai pour la détermination de la performance des composants de récupération de chaleur air/air

Le présent document précise les méthodes à utiliser pour les essais sur les composants de récupération de chaleur air-air (HRC). L'objectif principal du HRC est d'échanger la chaleur entre l'air extrait et l'air neuf afin d'économiser l'énergie, ce qui se traduit par
—   le préchauffage ou chauffage, et/ou
—   le pré-refroidissement ou refroidissement
de l'air fourni dans les systèmes de ventilation ou de climatisation. Le cas échéant, les HRC peuvent échanger de l'humidité de l'air entre l'air extrait et l'air neuf. Le HRC contient les échangeurs thermiques et l'ensemble des fonctions et dispositifs auxiliaires nécessaires à l'échange de chaleur sensible et (si disponible) d'humidité de l'air entre l'air extrait et l'air neuf. Les HRC seront installés dans des enveloppes ou des conduits. Si les ventilateurs font partie de l'unité d'essai, l'effet de la puissance du ventilateur sur les valeurs mesurées sera corrigé.
Le présent document précise les procédures et les critères d'entrée requis pour les essais visant à déterminer la performance d'un HRC dans une ou plusieurs conditions d'essai, chacune d'entre elles ayant des flux d'air, des température et taux d'humidité de l'air continus et stationnaires des deux côtés d'entrée. Trois types d'essais différents sont traités :
—   Type d'essai A, essais en laboratoire du HRC installé dans des enveloppes d'essai (A1) ou dans des sections (A2) de HRC ;
—   Type d'essai B, essais en laboratoire du HRC installé dans des unités  de ventilation non résidentielles en configuration de conception ;
—   Essai de type C, essai sur site (sur le terrain) du HRC dans des unités de ventilation non résidentielles (C1) ou dans des sections (C2) de HRC en configuration de fonctionnement.
Le présent document s'applique aux récupérateurs, régénérateurs et HRC avec fluide intermédiaire.
Le présent document décrit des méthodes d'essai pour déterminer :
1)   le rendement en température et en humidité,
2)   la chute de pression côtés air extrait et air neuf,
3)   les fuites internes éventuelles ; le rapport de transfert d'air extrait (EATR) et le facteur de correction d'air extérieur (OACF),
4)   les fuites externes et
5)   l'énergie auxiliaire utilisée pour le fonctionnement du HRC.
Les HRC utilisant des pompes à chaleur ne sont pas couverts par le présent document.

Prenosniki toplote - Preskusni postopki za ugotavljanje lastnosti komponent za rekuperacijo toplote zrak-zrak

Ta evropski standard določa metode, ki se uporabljajo za preskušanje komponent za rekuperacijo toplote zrak-zrak (HRC). Glavni namen komponente za rekuperacijo toplote je:
– predgretje ali segrevanje in/ali
– predhodno hlajenje ali hlajenje
dovajanje zraka v prezračevalne ali klimatske sisteme. Izbirna komponenta za rekuperacijo toplote lahko izmenjuje vlažnost zraka med odvodnim in dovodnim zrakom. Komponenta za rekuperacijo toplote vsebuje toplotne izmenjevalnike in ima vse potrebne lastnosti ter pomožne naprave za izmenjavo zaznavne toplote in (če je na voljo) vlažnost zraka med odvodnim in dovodnim zrakom. Komponenta za rekuperacijo toplote se namesti v ohišja ali zračne kanale. Če so ventilatorji del preskusne enote, je treba popraviti učinek moči ventilatorja na izmerjene vrednosti.
Ta evropski standard določa postopke in vhodna merila, ki so potrebna za preskuse delovanja komponent za rekuperacijo toplote pri enem ali več preskusnih pogojih, pri vsakem od njih z neprekinjenimi zračnimi tokovi, temperaturami zraka in vlažnostjo na obeh vstopnih straneh. Zajete so tri različne vrste preskusov:
– laboratorijsko preskušanje komponent za rekuperacijo toplote;
– laboratorijsko preskušanje komponent za rekuperacijo toplote, nameščenih v nestanovanjskih klimatskih
napravah (opredelitev v skladu z Uredbo Komisije (EU) št. 1253/2014) v načrtovalni konfiguraciji;
– preskušanje delujočih komponent za rekuperacijo toplote na mestu uporabe (terensko) v nestanovanjskih klimatskih napravah
ali sistemih v obratovalni konfiguraciji.
Ta evropski standard se uporablja za rekuperatorje in regeneratorje, namenjene izmenjavi zaznavne toplote in po izbiri za izmenjavo vlažnosti zraka.
Ta evropski standard določa preskusne metode za določanje:
1. učinkovitosti temperature in vlažnosti,
2. padca tlaka odvodnega in dovodnega zraka,
3. morebitnega notranjega puščanja; razmerje prenosa odvodnega zraka (EATR) in
korekcijskega faktorja za zunanji zrak (OACF) ter
4. pomožne energije, ki se uporablja za delovanje komponent za rekuperacijo toplote.
Ta standard ne zajema komponent za rekuperacijo toplote, ki uporabljajo toplotne črpalke.

General Information

Status
Published
Publication Date
29-Mar-2022
Withdrawal Date
29-Sep-2022
Technical Committee
CEN/TC 110 - Heat exchangers
Current Stage
6060 - Definitive text made available (DAV) - Publishing
Start Date
30-Mar-2022
Due Date
01-Nov-2021
Completion Date
30-Mar-2022

Relations

Effective Date
06-Apr-2022

Overview

EN 308:2022 (CEN) is the European standard that specifies test procedures for establishing the performance of air-to-air heat recovery components (HRC) used in ventilation and air-conditioning systems. It defines laboratory and on‑site methods to measure how HRCs-such as recuperators, regenerators, and units with an intermediary heat transfer medium-exchange sensible heat and, optionally, humidity between exhaust and supply air. The standard replaces EN 308:1997 and clarifies test types, precision classes and leakage assessment. HRCs using heat pumps are excluded.

Key topics and requirements

  • Test scopes and types
    • Test type A - Laboratory testing of HRC installed in test casings (A1) or HRC sections (A2).
    • Test type B - Laboratory testing of HRC installed in non‑residential ventilation units (AHUs) in design configuration.
    • Test type C - On‑site (field) testing of HRC installed in AHUs or ductwork (C1/C2) under operation conditions.
  • Performance parameters specified
    • Temperature and humidity efficiency (sensible and latent heat transfer).
    • Pressure drop for exhaust and supply air sides.
    • Internal leakages: determination of Exhaust Air Transfer Ratio (EATR) and Outdoor Air Correction Factor (OACF).
    • External leakages and auxiliary energy consumption for HRC operation.
  • Measurement and precision
    • Continuous, stationary air flows, temperatures and humidities required at inlets.
    • Different precision classes (P1, P2, P3, not classified) to match purposes from high‑precision certification to on‑site acceptance testing.
    • Correction for fan power when fans are part of the test unit.
  • Test procedures and reporting
    • Defines input criteria, measurement equipment, uncertainty assessment and required test reports.
    • Includes normative and informative annexes for uncertainty, leakage estimation and simplified setups.

Applications and users

EN 308:2022 is essential for:

  • HVAC manufacturers and component suppliers certifying HRC products.
  • Testing laboratories conducting laboratory and field performance tests.
  • Air handling unit (AHU) designers and system integrators validating heat recovery performance.
  • Commissioning agents, installers, building owners and market surveillance bodies performing acceptance tests or quality control. Practical uses include product certification, declaration of functionality, acceptance testing of installed systems and performance comparisons for energy efficiency planning.

Related standards

  • EN 13053 - refers to EN 308 for heat recovery test setup in non‑residential ventilation units (AHUs).
  • EN 1886 - ventilation for buildings: AHU mechanical performance (normative reference).
  • EN 13141‑7 / EN 13141‑8 - residential ventilation unit testing (related domain).
  • JCGM 100 - guide for expression of measurement uncertainty (referenced).

Keywords: EN 308:2022, heat exchangers, air-to-air heat recovery, HRC testing, EATR, OACF, pressure drop, efficiency, AHU, CEN.

Frequently Asked Questions

EN 308:2022 is a standard published by the European Committee for Standardization (CEN). Its full title is "Heat exchangers - Test procedures for establishing performance of air to air heat recovery components". This standard covers: This document specifies methods to be used for testing of air-to-air heat recovery components (HRC). The main purpose of the HRC is to exchange heat between exhaust air and supply air in order to save energy, which results in — preheat or heat, and/or — precool or cool supply air in ventilation systems or air conditioning systems. Optionally HRC can exchange air humidity between exhaust and supply air. The HRC contains the heat exchangers and all necessary features and auxiliary devices for the exchange of sensible heat and (if available) air humidity between exhaust air and supply air. The HRC will be installed in casings or ducts. If fans are part of the test unit, the effect of the fan power on the measured values will be corrected. This document specifies procedures and input criteria required for tests to determine the performance of a HRC at one or several test conditions, each of them with continuous and stationary air flows, air temperatures and humidities at both inlet sides. Three different test types are covered: — Test type A, Laboratory testing of HRC installed in test casings (A1) or a HRC sections (A2); — Test type B, Laboratory testing of HRC installed in non-residential ventilation units in design configuration; — Test type C, on-site (field) testing of HRC in non-residential ventilation units (C1) or a HRC sections (C2) in operation configuration. This document is applicable to recuperators, regenerators, and HRC with intermediary heat transfer medium. This document prescribes test methods for determining: 1) the temperature and humidity efficiency, 2) the pressure drop of exhaust air and supply air sides, 3) possible internal leakages; exhaust air transfer ratio (EATR) and outdoor air correction factor (OACF), 4) external leakages and 5) auxiliary energy used for the operation of the HRC. HRC using heat pumps are not covered by this document.

This document specifies methods to be used for testing of air-to-air heat recovery components (HRC). The main purpose of the HRC is to exchange heat between exhaust air and supply air in order to save energy, which results in — preheat or heat, and/or — precool or cool supply air in ventilation systems or air conditioning systems. Optionally HRC can exchange air humidity between exhaust and supply air. The HRC contains the heat exchangers and all necessary features and auxiliary devices for the exchange of sensible heat and (if available) air humidity between exhaust air and supply air. The HRC will be installed in casings or ducts. If fans are part of the test unit, the effect of the fan power on the measured values will be corrected. This document specifies procedures and input criteria required for tests to determine the performance of a HRC at one or several test conditions, each of them with continuous and stationary air flows, air temperatures and humidities at both inlet sides. Three different test types are covered: — Test type A, Laboratory testing of HRC installed in test casings (A1) or a HRC sections (A2); — Test type B, Laboratory testing of HRC installed in non-residential ventilation units in design configuration; — Test type C, on-site (field) testing of HRC in non-residential ventilation units (C1) or a HRC sections (C2) in operation configuration. This document is applicable to recuperators, regenerators, and HRC with intermediary heat transfer medium. This document prescribes test methods for determining: 1) the temperature and humidity efficiency, 2) the pressure drop of exhaust air and supply air sides, 3) possible internal leakages; exhaust air transfer ratio (EATR) and outdoor air correction factor (OACF), 4) external leakages and 5) auxiliary energy used for the operation of the HRC. HRC using heat pumps are not covered by this document.

EN 308:2022 is classified under the following ICS (International Classification for Standards) categories: 27.060.30 - Boilers and heat exchangers. The ICS classification helps identify the subject area and facilitates finding related standards.

EN 308:2022 has the following relationships with other standards: It is inter standard links to EN 308:1997. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

EN 308:2022 is associated with the following European legislation: Standardization Mandates: M/BC/CEN/87/5. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.

You can purchase EN 308:2022 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-junij-2022
Nadomešča:
SIST EN 308:1997
Prenosniki toplote - Preskusni postopki za ugotavljanje lastnosti komponent za
rekuperacijo toplote zrak-zrak
Heat exchangers - Test procedures for establishing performance of air to air heat
recovery components
Wärmeaustauscher - Prüfverfahren zur Bestimmung der Leistungskriterien von Luft/Luft-
Wärmerückgewinnungsanlagen
Échangeurs thermiques - Procédures d'essai pour la détermination de la performance
des composants de récupération de chaleur air/air
Ta slovenski standard je istoveten z: EN 308:2022
ICS:
27.060.30 Grelniki vode in prenosniki Boilers and heat exchangers
toplote
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EN 308
EUROPEAN STANDARD
NORME EUROPÉENNE
March 2022
EUROPÄISCHE NORM
ICS 27.060.30 Supersedes EN 308:1997
English Version
Heat exchangers - Test procedures for establishing
performance of air to air heat recovery components
Échangeurs thermiques - Procédures d'essai pour la Wärmeaustauscher - Prüfverfahren zur Bestimmung
détermination de la performance des composants de der Leistungskriterien von Luft/Luft-
récupération de chaleur air/air Wärmerückgewinnungsanlagen
This European Standard was approved by CEN on 13 September 2021.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 308:2022 E
worldwide for CEN national Members.

Contents Page
European foreword . 4
Introduction . 5
1 Scope . 6
2 Normative references . 7
3 Terms and definitions . 7
3.1 Air categories . 7
3.2 Thermal performance characteristics . 8
3.3 Air flow and leakage . 10
3.4 Pressure . 12
3.5 General terms and definitions . 13
3.6 Categories of heat recovery components . 13
3.7 Test types . 16
3.8 Uncertainty of measurement . 17
4 Symbols and abbreviations . 19
4.1 Symbols . 19
4.2 Subscripts . 21
4.3 Abbreviations . 21
5 Test requirements . 22
5.1 Specification of the-heat recovery components . 22
5.2 Precision classes . 22
5.3 Measurement equipment . 24
5.4 Determination of the air flow rates . 27
5.5 Test in laboratory . 28
5.6 Leakages . 30
5.7 Heat recovery components with run around coil system . 31
5.8 Uncertainty of the outdoor air correction factor . 31
6 Test procedures . 32
6.1 General. 32
6.2 Test type A . 49
6.3 Test type B . 53
6.4 Test type C . 56
7 Test Results . 57
7.1 Description of the heat recovery components concept, geometry and features . 57
7.2 Leakage . 59
7.3 Efficiency . 60
7.4 Pressure drop . 60
7.5 Other indications . 60
7.6 Reporting of values and precision . 60
7.7 Test report . 62
Annex A (informative) Testing equipment . 63
Annex B (informative) Deviation of different humidity definitions . 71
Annex C (normative) Uncertainty of measurement . 72
Annex D (informative) Estimation of Exhaust air transfer ratio . 78
Annex E (normative) Simplified test setup for static internal leakage . 81
Annex F (informative) Overviews of test procedures . 82
Bibliography . 86

European foreword
This document (EN 308:2022) has been prepared by Technical Committee CEN/TC 110 “Heat
exchangers”, the secretariat of which is held by DIN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by September 2022, and conflicting national standards shall
be withdrawn at the latest by September 2022.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN 308:1997.
This edition includes the following significant technical changes with respect to EN 308:1997:
— Scope: flue gas heat recovery devices are no more included.
— In addition to laboratory tests of heat recovery components (HRC), laboratory tests for HRC fitted
into air handling units and on-site tests of HRC are defined.
— Different precision classes for tests are defined.
— Leakage testing has been refined. Exhaust air transfer ratio (EATR) and outdoor air correction factor
(OACF) are implemented.
— Differences of the sensible and latent efficiency can occur due to leakages and bad heat balance.
— Several terms and definitions are changed, e.g. categories of heat recovery components.
— Type A test is only on the heat exchanger and does not necessarily give a representative value when
it is installed, corrections may be needed.
EN 13053 refers to EN 308 regarding the test setup and the test procedure. EN 13053 is a standard
harmonized with the Commission Regulation (EU) 1253/2014 [5].
Any feedback and questions on this document should be directed to the users’ national standards body.
A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United
Kingdom.
Introduction
This document specifies methods for the performance testing of air-to-air heat recovery components
(HRC) used in ventilation systems. This document does not contain any information on air handling units,
ductwork and components of air distribution, which are covered by other European Standards. The
document applies for laboratory and in on-site testing. Further it applies to different purposes of tests,
which can be e.g. certification of products, acceptance of installed products, market surveillance or quality
tests of manufacturers.
These different applications do not require the same precision of measurements results. Therefore,
different precision classes are defined. Table 1 gives informative examples for the application of the
different test types and precision classes. For low quality products, low quality installations and/or
simplified testing, a ‘not classified’ precision class can occur for all test types.
Table 1 — Examples for the application of the different test types and precision classes
Precision class P1 Precision class P2 Precision class P3 not classified
Test Type
(high precision) (medium precision) (low precision)
Test type A — certification or — test of — not intended use — not intended
declaration of functionality use
HRC installed in a test
products
casing or HRC-section
— performance test
Tested in laboratory
Test type B — test under ideal — certification or — test of — not intended
conditions declaration of functionality use
HRC installed in an
products
a
AHU
— performance test
Tested in laboratory
Test type C — not intended use, — test under ideal — typical test — test of
but possible conditions in real conditions in real functionality
HRC installed in an
under ideal systems systems
a
AHU or in duct work of
conditions and
— performance test
an installed ventilation
laboratory-like
system
test equipment
Tested on-site
a
The HRC is installed in an AHU (air handling unit) by the manufacturer of the AHU.
Customers and manufacturers are free to define the aspired precision class for testing of their products,
but it will be taken into account that the available precision class depends on the test conditions, the HRC
itself, the measurement equipment and the environment conditions.
This document is one of a series of European Standards dedicated to heat exchangers.
Note 1 Testing procedure of residential ventilation units, RVU’s, is covered by EN 13141-7 and EN 13141-8.
Note 2 EN 13053 deals with non-residential ventilation units, NRVU’s, specifically Air Handling Units (AHU’s).
For testing of the heat recovery, EN 13053 refers to EN 308.
1 Scope
This document specifies methods to be used for testing of air-to-air heat recovery components (HRC).
The main purpose of the HRC is to exchange heat between exhaust air and supply air in order to save
energy, which results in
— preheat or heat, and/or
— precool or cool
supply air in ventilation systems or air conditioning systems. Optionally HRC can exchange air humidity
between exhaust and supply air. The HRC contains the heat exchangers and all necessary features and
auxiliary devices for the exchange of sensible heat and (if available) air humidity between exhaust air and
supply air. The HRC will be installed in casings or ducts. If fans are part of the test unit, the effect of the
fan power on the measured values will be corrected.
This document specifies procedures and input criteria required for tests to determine the performance
of a HRC at one or several test conditions, each of them with continuous and stationary air flows, air
temperatures and humidities at both inlet sides. Three different test types are covered:
— Test type A, Laboratory testing of HRC installed in test casings (A1) or a HRC sections (A2);
— Test type B, Laboratory testing of HRC installed in non-residential ventilation units in design
configuration;
— Test type C, on-site (field) testing of HRC in non-residential ventilation units (C1) or a HRC sections
(C2) in operation configuration.
This document is applicable to recuperators, regenerators, and HRC with intermediary heat transfer
medium.
This document prescribes test methods for determining:
1) the temperature and humidity efficiency,
2) the pressure drop of exhaust air and supply air sides,
3) possible internal leakages; exhaust air transfer ratio (EATR) and outdoor air correction factor
(OACF),
4) external leakages and
5) auxiliary energy used for the operation of the HRC.
HRC using heat pumps are not covered by this document.

Definition according Commission Regulation (EU) No 1253/2014 [5].
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 1886, Ventilation for buildings — Air handling units — Mechanical performance
EN 13053, Ventilation for buildings — Air handling units — Rating and performance for units, components
and sections
JCGM 100, Evaluation of measurement data — Guide to the expression of uncertainty in measurement
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at https://www.electropedia.org/
— ISO Online browsing platform: available at https://www.iso.org/obp
3.1 Air categories
3.1.1
exhaust air inlet
air to be exhausted from the application, before entering the HRC
Note 1 to entry: In ventilation systems, this air is usually called extract air.
Note 2 to entry: Figure 1 shows the definition of the air flow categories in heat recovery components (HRC).

Key
11 Exhaust air inlet 22 Supply air outlet
12 Exhaust air outlet HRC Heat recovery component
21 Supply air inlet C Casing
Figure 1 — Air categories
3.1.2
exhaust air outlet
air in exhaust condition, intended to be blown back to the environment, after leaving the HRC
Note 1 to entry: In ventilation systems, this air is usually called exhaust air.
Note 2 to entry: See Figure 1.
3.1.3
supply air inlet
air intended for the application, before entering the HRC
Note 1 to entry: In ventilation systems, this air is usually called outdoor air. Sometimes this air does not come
directly from outdoor (preheated space, ground heat exchanger, etc.)
Note 2 to entry: See Figure 1.
3.1.4
supply air outlet
air intended for the application, after leaving the HRC
Note 1 to entry: See Figure 1.
3.2 Thermal performance characteristics
3.2.1
temperature efficiency
η
t,efy
transfer of sensible heat from exhaust to supply air, with correction of the temperature increase of the
supply air outlet caused by the EATR and a correction in case of a bad heat balance, to be used for the
description of the performance characteristic of a HRC
Note 1 to entry: The determination is according to 6.1.6.
Note 2 to entry: No definitions of temperature efficiency on the exhaust-air side are included. If data on the
exhaust-air side is required, conditions can be calculated by heat and mass balances, considering leakage and EATR.
Note 3 to entry: The temperature efficiency depends on the supply air mass flow and on the mass flow ratio
between the supply air flow and the exhaust air flow.
3.2.2
temperature gross efficiency
η
t,gro
temperature difference on the supply air side divided by the temperature difference between exhaust air
inlet and supply air inlet
Note 1 to entry: The determination is according to 6.1.6.
Note 2 to entry: The temperature gross efficiency does not regard internal or external leakages or heat flow
through the casing. The temperatures θ , θ and θ can differ from measured values, see 6.1.6.2.
11 21 22
Note 3 to entry: In Regulation (EU) 1253/2014 [5], the same equation is used. There, the definition is called
‘thermal efficiency of a non-residential HRS (η )’ and shall be measured under dry reference conditions, with
t_nrvu
balanced mass flows, an indoor-outdoor air temperature difference of 20 K, excluding thermal heat gain from fan
motors and from internal leakages.
3.2.3
temperature net efficiency
η
t,net
net transfer of sensible heat from exhaust to supply air, with correction of the temperature change of the
supply air outlet caused by the EATR
Note 1 to entry: The determination is according to 6.1.6.
Note 2 to entry: The temperature net efficiency does not regard external leakages or heat flow through the casing.
The temperatures θ , θ and θ can differ from measured values, see 6.1.6.2.
11 21 22
Note 3 to entry: Temperature net efficiency calculation is required if EATR is determined (see 5.5.2).
3.2.4
temperature effectiveness
ε
t
temperature gross efficiency, multiplied with the ratio of the mass flow rate of supply air outlet to the
minimum mass flow rate of supply outlet or exhaust air inlet
Note 1 to entry: The determination is according to 6.1.7.
Note 2 to entry: The temperature effectiveness describes the ratio of the effective sensible heat transfer from the
exhaust air side to the supply air side compared with the theoretical possible sensible heat transfer.
Note 3 to entry If the efficiency is very high, condensation occurs and the airflows are very unbalanced, the
effectiveness value can be higher than 1.
3.2.5
humidity efficiency
η
x,efy
transfer of latent heat from exhaust to supply air, with correction of the humidity change of the supply
air outlet caused by the EATR and a correction in case of a bad heat balance
Note 1 to entry: The humidity efficiency is determined according to 6.1.6.
Note 2 to entry: No definitions of humidity efficiency on the exhaust-air side are included. If data on the exhaust-
air side is required, conditions can be calculated by heat and mass balances, considering leakage and EATR.
Note 3 to entry: The humidity efficiency depends on the supply air flow and on the mass flow ratio between the
supply air flow and the exhaust air flow.
3.2.6
humidity gross efficiency
η
x,gro
absolute humidity difference on the supply air side divided by the absolute humidity difference between
exhaust air inlet and supply air inlet
Note 1 to entry: The determination is according to 6.1.6.
Note 2 to entry: No definitions of efficiency on the exhaust-air side are included. If data on the exhaust-air side is
required, conditions can be calculated by mass balances, considering leakages.
3.2.7
humidity net efficiency
η
x, net
net transfer of latent heat exhaust to supply air, with correction of the humidity change of the supply air
outlet caused by the EATR
Note 1 to entry: The determination is according to 6.1.6.
Note 2 to entry: Humidity net efficiency calculation is required if EATR is determined (see 5.5.2).
3.2.8
humidity effectiveness
ε
x
humidity efficiency, multiplied with the ratio of the dry mass flow rate of supply air outlet to the minimum
dry mass flow rate of supply outlet or exhaust air inlet
Note 1 to entry: The determination is according to 6.1.7.
3.3 Air flow and leakage
3.3.1
nominal leakage rate
ratio of the leakage (air volume flow) to the nominal air volume flow, at standard conditions
3.3.2
external leakage
q
ve
leakage from casing to or from the ambient air
Note 1 to entry: The external leakage is usually measured under static pressure difference. For calculations
considering the impact of the external leakage on measurement uncertainty, the external leakage in operational
mode has to be determined usually by calculation or estimation.
3.3.3
internal leakage
q
vi
umbrella term for the following definitions:
— test setup leakage;
— static internal leakage;
— dynamic internal leakage
3.3.4
test setup internal leakage
q
vi,setup
internal leakage of the test casing for Test Type A1, measured with static pressure difference
3.3.5
static internal leakage
q
vi,stat
internal leakage of the unit under test, measured with static pressure difference
Note 1 to entry: The static internal leakage is used as quality indicator for a HRC, where EATR and OACF are not
determined. This concerns constructions with no or only minor leakages, such as plate heat exchangers.
Note 2 to entry: The unit under test is defined by the test type.
3.3.6
dynamic internal leakage
internal leakage of the HRC, measured in operation conditions with air flow on both sides
Note 1 to entry: The dynamic internal leakage is characterized by EATR and OACF. EATR and OACF shall be
declared as a pair at identical conditions.
3.3.7
air flow
mass flow and volume flow of air
Note 1 to entry: If a clarification (mass or volume) is necessary the term is complemented with the applicable
symbol.
Note 2 to entry: Used as an umbrella term.
3.3.8
exhaust air transfer ratio
EATR
transfer of exhaust air into the supply air side in HRC and which provides information on the ratio of
exhaust air in the supply air
Note 1 to entry: The EATR can be measured with tracer gas. The determination is according to 6.1.2.
Note 2 to entry: The subscript shows how the EATR is determined or measured respectively:
— EATR : According to Test Type A1
A1
— EATR : According to Test Type A2
A2
— EATR : According to Test Type B
B
— EATR : According to Test Type C
C
Note 3 to entry: The EATR depends on pressure difference and airflows. Therefore, the test conditions at which
EATR is determined always have to be declared.
Note 4 to entry: Procedures for the estimation of the EATR for test type C are described in Annex D.
Note 5 to entry: EATR replaces the old term Carry-Over.
3.3.9
outdoor air correction factor
OACF
ratio of the entering supply mass airflow rate and the leaving supply mass airflow rate, which provides
information about the leakages between the air flows
Note 1 to entry: The determination is according to 6.1.2.
Note 2 to entry: The OACF depends on pressure difference and airflows. Therefore, the test conditions at which
OACF is determined always have to be declared.
3.3.10
mass flow rate exhaust air inlet
q
m11
air mass flow on the exhaust air inlet side
Note 1 to entry: This is the mass flow that leaves the application side.
3.3.11
mass flow rate exhaust air outlet

q
m12
air mass flow on the exhaust air outlet side
3.3.12
mass flow rate supply air inlet
q
m21
air mass flow on the supply air inlet side
3.3.13
mass flow rate supply air outlet
q
m22
air mass flow on the supply air outlet side
Note 1 to entry: This is the mass flow that enters the application side.
3.3.14
nominal air mass flow rate
q
m,n
declared air mass flow rate as base for testing and test results
3.4 Pressure
3.4.1
pressure difference 22−11
Δp
22−11
difference in static pressure between the supply air outlet and the exhaust air inlet, measured in the
casing or other connections with the same cross section area on both sides
Note to entry: The pressure difference is determined according 6.1.4.1.
3.4.2
pressure drop
Δp , Δp
11−12 21−22
loss in static pressure between the inlet and the outlet of a HRC, measured in the casing or other
connections with the same cross section area on both sides
Note to entry: The pressure drop is determined according 6.1.4.2.
3.4.3
external static pressure difference
Δp
s,ext
difference between the static pressure at the outlet of the air handling unit and the static pressure at the
inlet
[SOURCE: EN 13053]
3.4.4
static internal leakage mass flow rate
q
m,il,stat
leakage, caused by a static pressure difference between exhaust air side and supply air side
Note 1 to entry: Measured by blanking off and sealing all ducts of the HRC or HRC section.
3.5 General terms and definitions
3.5.1
standard air conditions
relating to air with a density of 1,20 kg/m , at a temperature of 20 °C, an atmospheric air pressure of
101 325 Pa and a relative humidity 40 %
3.5.2
face area
A
f22
orthographic projection of the supply air outlet side of the HRC, which is in contact with the supply air
Note 1 to entry: The face area of HRC depends on the HRC category and construction.
3.6 Categories of heat recovery components
3.6.1
heat recovery component
HRC
heat exchanger or combinations of heat exchangers which transfer heat and, in some cases humidity,
between exhaust and supply air flow depending on the difference of temperature and humidity levels and
which are generally installed in casings or air ducts
Note 1 to entry: In the following clauses the HRC are divided into three categories and additional sub-categories.
Table 2 gives an overview.
Note 2 to entry: Used as an umbrella term.
Table 2 — Category code for the principle of HRC
Detailed
Category Description
description in
HRC1 Recuperative HRC (general) 3.6.2
HRC1a Non-humidity permeable recuperative HRC 3.6.2.1
HRC1x Humidity permeable recuperative HRC 3.6.2.2
HRC2 HRC with intermediary heat transfer medium (general) 3.6.3
HRC2a HRC with a run around coil system, 3.6.3.1
intermediary heat transfer medium without phase-change
HRC2b HRC with intermediary heat transfer medium with phase-change (heat 3.6.3.2
pipe)
HRC3 Regenerative HRC (general) 3.6.4
HRC3a Non-hygroscopic rotary wheel 3.6.4.2
HRC3x Hygroscopic rotary wheel 3.6.4.3
HRC3b HRC with non-hygroscopic stationary accumulator 3.6.4.5
HRC3y HRC with hygroscopic stationary accumulator 3.6.4.6
The letters a and b are used for categories without intended humidity exchange. The letters x and y are
used for categories with intended humidity exchange.
3.6.2
recuperative heat recovery component
HRC1
heat exchangers designed to transfer energy from one air stream to another without moving parts
Note 1 to entry: Heat transfer surfaces are in form of plates or tubes. This heat exchanger can have parallel flow,
cross flow or counter flow construction or a combination of these.
Note 2 to entry: Used as an umbrella term.
3.6.2.1
non-humidity permeable recuperative heat recovery component
HRC1a
heat exchangers of category HRC1 designed for sensible heat transfer only
3.6.2.2
humidity permeable recuperative heat recovery component
HRC1x
heat exchangers of category HRC1 designed for transfer of sensible heat and humidity
3.6.3
Heat recovery component with intermediary heat transfer medium
HRC2
HRC with heat exchangers in both air streams connected with tubes or pipes, including all necessary parts
for the heat transport
Note 1 to entry: A transfer medium transports the sensible energy from one heat exchanger to the other.
Note 2 to entry: Used as an umbrella term.
3.6.3.1
Heat recovery component with a run around coil system
HRC2a
HRC of category HRC2 with an intermediary heat transfer medium without phase-change (liquid) used
as heat transfer medium and which includes the piping, pump and transfer medium
3.6.3.2
Heat recovery component with heat pipe
HRC2b
HRC of category HRC2 in which the transfer medium evaporates in the heat exchanger in the warm air
stream and condenses in the heat exchanger in the cold air stream
Note 1 to entry: Heat pumps are not covered by this definition.
3.6.4
Regenerative heat recovery component
HRC3
HRC designed for the regenerative heat transfer due to accumulation mass
Note 1 to entry: The mass is warmed up in the warm air stream and cooled down in the cold air stream. Both air
streams are in alternating contact with a common surface. Due to different possible mechanisms transfer of
humidity or other substances from one air stream to the other can occur.
Note 2 to entry: Used as an umbrella term.
3.6.4.1
rotary wheel
HRC of category HRC3 with an accumulation mass in form of a rotating cylinder which incorporates heat
transfer material, a drive mechanism, a casing or frame, and includes any seals which are provided to
prevent the bypassing and leakage of air from one air stream to the other
Note 1 to entry: In literature rotary wheels are sometimes also called “thermal wheels” or “heat wheels”.
3.6.4.2
non-hygroscopic rotary wheel
HRC3a
rotary wheel not intended for humidity exchange between the two air streams
Note 1 to entry: Humidity exchange can occur in case of condensation on the surface of the accumulator.
3.6.4.3
hygroscopic rotary wheel
HRC3x
rotary wheel determined for humidity exchange between the air streams without condensation
3.6.4.4
heat recovery component with stationary accumulator
HRC of category HRC3 with a stationary accumulation mass, where the change of the air flows is managed
by reciprocating opening and closing of dampers and which incorporates heat transfer material, dampers,
drive mechanism for dampers, a casing or frame, and includes any seals which are provided to retard the
bypassing and leakage of air from one air stream to the other
Note 1 to entry: According this definition also mixing and air flow direction changing devices are part of the HRC.
Note 2 to entry: According to the scope only the testing of HRC with steady air flows is covered by this standard.
3.6.4.5
heat recovery component with non-hygroscopic stationary accumulator
HRC3b
stationary accumulator not intended for humidity exchange between the two air streams
Note 1 to entry: Humidity exchange can occur in case of condensation on the surface of the accumulator.
3.6.4.6
heat recovery component with hygroscopic stationary accumulator
HRC3y
stationary accumulator determined for humidity exchange between the air streams without
condensation
3.7 Test types
3.7.1
test type A
laboratory testing of HRC and HRC sections
tests which are carried out in a laboratory
Note 1 to entry: Used as an umbrella term.
3.7.1.1
test type A1
laboratory testing of HRC
laboratory testing of a HRC integrated in a test casing or an air duct
Note 1 to entry: The HRC is tested under ideal conditions. This test type provides performance data for the HRC
itself, without influences of the application. The performance data are e.g. a reliable base for a general comparison
of products or a validation of software from HRC manufacturers.
Note 2 to entry: This fulfils in both cases the requirements given in 5.5.4.
3.7.1.2
test type A2
laboratory testing of a HRC section
laboratory testing of a unit delivered to the laboratory, consisting only of a HRC installed in a casing or in
an air duct
Note 1 to entry: According the definition no further component than the HRS is installed in the section.
Note 2 to entry: The definition deliberately leaves open whether the HRC is intended for commercial purposes or
manufactured for the sole purpose of testing.
Note 3 to entry: The test item is the HRC section. The HRC section is tested under ideal conditions. The laboratory
is not responsible for the casing.
3.7.2
test type B
laboratory testing of the HRC in an AHU
testing of a HRC is performed in a laboratory while the HRC is installed in an AHU, which is delivered to
the laboratory
Note 1 to entry: The air flow rates are determined at the ducts connections of the AHU. The conditions of the inlet
air (11 and 21) is also determined at the duct connection of the AHU.
Note 2 to entry: The HRC performance is tested under consideration of the installation conditions in the AHU, in
particular the flow conditions and the leakages. Nevertheless, the test takes place under standardized conditions, in
particular well-defined air and pressure conditions at the duct connections of the AHU.
3.7.3
test type C
on-site testing of the HRC
umbrella term for on-site testing of a HRC installed in an AHU, in a HRC section or in air ducts in a real
ventilation system, with air flow rates and air conditions as close as possible to the design conditions
Note 1 to entry: According this definition the HRC performance is tested under consideration of the installation
conditions. By definition, the pressure conditions are given by the design of the ventilation system.
Note 2 to entry: Used as an umbrella term.
3.7.3.1
test type C1
on-site testing of the HRC in the AHU
testing of the HRC, which is installed in the AHU, is performed on-site
Note 1 to entry: The air flow rates are determined at the duct connections of the AHU. The conditions of the inlet
air (11 and 21) is also determined at the duct connection of the AHU.
Note 2 to entry: If there is no access for measurement at the duct connections of the AHU, the HRC section can be
tested as Test Type C2.
3.7.3.2
test type C2
on-site testing of the HRC section
on-site testing of the HRC, which installed in air ducts or in a HRC section, which is not part of an AHU
Note 1 to entry: The air flow rates are determined at the duct connections of the HRC-section or the ducts belonging
to the HRC. The conditions of the inlet air (11 and 21) are also determined at the duct connection of the HRC-section
or the ducts belonging to the HRC.
3.8 Uncertainty of measurement
3.8.1 Expression of uncertainty
3.8.1.1
uncertainty of measurement
parameter, associated with the result of a measurement, that characterizes the dispersion of the values
that can reasonably be attributed to the measurand
[SOURCE: JCGM 100:2008]
3.8.1.2
standard uncertainty
uncertainty of the result of a measurement expressed as a standard deviation
[SOURCE: JCGM 100:2008]
3.8.1.3
combined standard uncertainty
standard uncertainty of the result of a measurement when that result is obtained from the values of a
number of other quantities, equal to the positive square root of a sum of terms, the terms being the
variances or covariances of these other quantities weighted according to how the measurement result
varies with changes in these quantities
[SOURCE: JCGM 100:2008]
3.8.1.4
expanded uncertainty
quantity defining an interval about the result of a measurement that can be expected to encompass a large
fraction of the distribution of values that can reasonably be attributed to the measurand
[SOURCE: JCGM 100:2008]
3.8.1.5
coverage factor
k
numerical factor used as a multiplier of the combined standard uncertainty in order to obtain an
expanded uncertainty, corresponding to a level of confidence of 95 %
Note 1 to entry: With the given level of confidence the rounded coverage factor is 2 for a Gaussian distribution.
[SOURCE: JCGM 100:2008, modified – addition of Note 1]
3.8.2
precision class
class of the absolute expanded measurement uncertainty of the temperature efficiency for winter
conditions or the humidity efficiency respectively
Note 1 to entry: With a class border according Table 3 under the conditions given in 5.2.
Table 3 — Precision classes
Expanded measurement uncertainty of the efficiency of precision class
Performance criteria
P1 P2 P3 not classified
Temperature efficiency 0,025 0,040 0,080 > 0,080
Humidity efficiency 0,060 0,090 0,160 > 0,160
4 Symbols and abbreviations
4.1 Symbols
For the purposes of this document, the symbols in Table 4 apply.
Table 4 — Symbols
Symbol Quantity Unit
A face area
m
f
C tracer gas concentration mol/l or ppm
P electric power input W, kW
E
c specific heat capacity at constant pressure J/(K · kg)
p
f conversion factor for electric power to heat –
E
h specific enthalpy J/kg
k coverage factor –
k correction of the efficiency due to bad heat balance –
hb
−1
n number of revolutions
s or rpm
p pressure Pa
p Pressure at exhaust air inlet Pa
p pressure at exhaust of air outlet Pa
p pressure at supply of air inlet Pa
p pressure at supply of air outlet Pa
q mass flow rate of exhaust air inlet kg/s
m11
q mass flow rate of supply air outlet kg/s
m22
q nominal mass flow rate kg/s
mn
q mass flow rate EATR kg/s
mEATR
3 3
q external leakage air volume flow rate
m /s or m /h
ve
3 3
q static internal leakage air volume flow rate
m /s or m /h
vi,stat
r specific enthalpy of vaporization of water (2 500 kJ/(kg ∙ K)) kJ/(kg ∙ K)
w
v
velocity m/s
declared velocity m/s
v
d
x absolute humidity kg water/kg dry air
x absolute humidity of exhaust air inlet kg water/kg dry air
x absolute humidity of supply air inlet kg water/kg dry air
Symbol Quantity Unit
x absolute humidity of supply air outlet kg water/kg dry air
Δp pressure drop on exhaust-air side Pa
11−12
Δp pressure drop on supply-air side Pa
21−22
Δp difference in static pressure between the supply air outlet Pa
22−11
and the exhaust air inlet
Δθ temperature difference K
∆ϕ
deviation of heat balance –
tolerance of heat balance (limits of the relative heat balance) –
∆ϕ
lim
temperature effectiveness -
ε
t
humidity effectiveness -
ε
x
Φ heat flow W, kW
η temperature efficiency –
t,efy
η temperature gross efficiency –
t,gro
η temperature net efficiency –
t,net
η humidity efficiency –
x,efy
η humidity gross efficiency –
x,gro
η humidity net efficiency –
x,net
θ temperature °C, K
θ temperature of exhaust air inlet °C, K
θ temperature of exhaust air outlet °C, K
θ temperature of supply air inlet °C, K
θ temperature of supply air outlet °C, K
ρ density
kg/m
3 3
ρ
standard air density (1,20 kg/m ) kg/m
st
4.2 Subscripts
0 reference
11 exhaust air inlet (see Figure 1)
12 exhaust air outlet (see Figure 1)
21 supply air inlet (see Figure 1)
22 supply air outlet (see Figure 1)
A1 determined or measured according to Test Type A1
A2 determined or measured according to Test Type A2
B determined or measured according to Test Type B
C1 determined or measured according to Test Type C1
C2 determined or measured according to Test Type C2
E related to electric energy
Te related to test conditions
a ambient
dry dry air
ext external
f face
gro gross
int internal
vi related to internal leakage volume flow rate
ve related to external leakage volume flow rate
min minimum
n nominal
net net
st related to standard condition
w water
4.3 Abbreviations
AHU Air Handling Unit
EATR Exhaust air transfer ratio
HRC Heat Recovery Component(s)
OACF Outdoor air correction factor
5 Test requirements
5.1 Specification of the-heat recovery components
The following information is required before proceeding to the test:
— Specification of the HRC category according to 3.3; this specification determines whether or not the
humidity efficiency is measured.
— Specification of the delivered HRC, that provides unambiguous identification by the testing
laboratory;
— For test type A: Nominal air flow rate, as defined in 3.3.14;
— For test type A: Maximum pressure difference 22-11 (positive and negative) between
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

Die Norm EN 308:2022 behandelt die Testverfahren zur Bestimmung der Leistung von Luft-Luft-Wärmerückgewinnungskomponenten (HRC). Sie legt umfassend dar, wie Prüfungen durchzuführen sind, um die Effizienz von HRC zu bewerten, die für die Wärmeübertragung zwischen Abluft und Zuluft in Lüftungs- und Klimaanlagen verantwortlich sind. Ein herausragender Aspekt dieser Norm ist ihr breiter Anwendungsbereich. Sie behandelt nicht nur Grundlagentests, sondern auch fortgeschrittene Testtypen. Insbesondere die Testarten A, B und C bieten eine strukturierte Herangehensweise an die Bewertung von HRC in unterschiedlichen Instalationsszenarien, vom Labor bis hin zu vor Ort durchgeführten Tests. Dadurch wird sichergestellt, dass die Leistung unter realistischen Bedingungen erfasst wird, was für die Praxis äußerst relevant ist. Ein weiteres starkes Merkmal ist die detaillierte Beschreibung der Testmethoden zur Bestimmung der Temperatur- und Feuchtigkeits-Effizienz, Druckverluste und eventueller Leckagen. Diese spezifischen Messkriterien gewährleisten, dass die Testergebnisse präzise und nachvollziehbar sind, was für die Energieeinsparung von entscheidender Bedeutung ist. Besonders die Angabe, dass alle relevanten Kriterien, wie die interne und externe Leckage, evaluiert werden, hebt die Norm als besonders gründlich hervor. Die Relevanz dieser Norm ist hoch, da der Einsatz von HRC zur Energieeinsparung in modernen Lüftungs- und Klimaanlagen eine zentrale Rolle spielt. Mit der Möglichkeit, verschiedene Konfigurationen und Betriebstypen zu testen, ist sie ein unverzichtbares Instrument für Hersteller und Betreiber, um die Effizienz ihrer Systeme zu optimieren. Zusammenfassend ist die EN 308:2022 eine essentielle Norm für alle, die im Bereich der Wärmerückgewinnung tätig sind. Ihre klar definierten Testverfahren, der umfassende Anwendungsbereich und die hohe Relevanz für die Energieeffizienz tun der Branche gut und fördern die Entwicklung nachhaltiger Technologien.

Le document SIST EN 308:2022 présente une normalisation essentielle dans le domaine des échangeurs de chaleur, spécifiquement pour les procédures de test permettant d'établir la performance des composants de récupération de chaleur de l'air. Son champ d'application est clairement défini, se concentrant sur les méthodes de test pour les composants de récupération de chaleur air à air, qui jouent un rôle crucial dans la conservation de l'énergie au sein des systèmes de ventilation et de climatisation. Les points forts de cette norme résident dans sa capacité à fournir des procédures précises et méthodiques pour évaluer l'efficacité en termes de température et d'humidité, ainsi que les pertes de pression des flux d'air d'extraction et d'alimentation. De plus, elle aborde les fuites internes et externes, ainsi que l'énergie auxiliaire utilisée pour le fonctionnement d'un échangeur de chaleur de récupération (HRC). Cela permet aux utilisateurs de déterminer avec précision la performance des HRC, qu'ils soient installés dans des configurations de laboratoire ou sur site, de manière à garantir une meilleure efficacité énergétique. L'inclusion de trois types de tests (A, B et C) dans le document augmente la pertinence de la norme en permettant d'évaluer les HRC dans différentes conditions d'exploitation. Cette approche exhaustive fait de la norme un outil essentiel pour les concepteurs et les ingénieurs du secteur, assurant que les solutions de récupération de chaleur répondent aux exigences de performance fixées par l'industrie. En résumé, la SIST EN 308:2022 s'impose comme une référence incontournable pour ceux qui cherchent à optimiser l'efficacité énergétique des systèmes de ventilation et de conditionnement d'air, en fournissant des méthodes de test standardisées et des critères clairs pour l'évaluation des HRC.

The EN 308:2022 standard provides a comprehensive framework for the testing of air-to-air heat recovery components (HRC), detailing critical procedures and methodologies to assess their performance. This document is particularly relevant for professionals in the HVAC industry, as it establishes rigorous testing protocols to ensure the efficiency and functionality of HRC systems installed within ventilation and air conditioning systems. The scope of EN 308:2022 is well-defined, focusing on the evaluation of energy-saving components that facilitate the exchange of heat and humidity between exhaust air and supply air. By optimizing energy use within buildings, the standard contributes significantly to enhancing sustainability in air management systems. It thoroughly delineates three distinct test types-laboratory testing in controlled environments and on-site testing in operational units-which afford flexibility for varying scenarios found in real-world applications. This adaptability is a key strength of the standard as it caters to both controlled laboratory settings and actual installation conditions. One notable aspect of EN 308:2022 is the specificity of its testing protocols. It dictates precise input criteria for evaluating crucial performance metrics, including temperature and humidity efficiency, pressure drop, and leak rates-both internal and external. The inclusion of methods to account for fan power impacts further enriches the document by ensuring that measurements reflect true operational conditions. This enhances the relevance of the standard, as it allows for a more accurate representation of an HRC's performance in real-world applications. Moreover, by addressing recuperators, regenerators, and HRC with intermediary heat transfer mediums, the standard encapsulates a wide array of heat recovery technologies. However, it clearly notes the exclusion of HRC using heat pumps, delineating its focus and maintaining clarity regarding the components under consideration. In summary, EN 308:2022 stands out for its thoroughness and practical applicability in the assessment of air-to-air heat recovery components. By establishing a clear and standardized protocol for performance evaluation, this document is indispensable for manufacturers, engineers, and evaluators within the HVAC sector, fostering improved energy efficiency and sustainability in air handling processes.

SIST EN 308:2022 문서는 공기-공기 열 회수 구성 요소(HRC)의 성능을 평가하기 위한 시험 절차를 규정하고 있습니다. 이 표준은 HRC의 주요 목적이 배기 공기와 공급 공기 간의 열 교환을 통해 에너지를 절약하는 것임을 명확히 하고 있으며, 이는 환기 시스템이나 공기 조화 시스템에서 공급 공기를 사전 가열 또는 냉각하는 데 기여합니다. 이 표준의 강점 중 하나는 다양한 시험 조건에서 HRC의 성능을 평가할 수 있는 포괄적인 절차를 제공한다는 점입니다. 특히, 지속적으로 안정적인 공기 흐름과 온도, 습도가 유지되는 환경에서의 성능 검증을 위해 설계된 세 가지 시험 유형(A, B, C)이 포함되어 있습니다. 이를 통해 사용자는 HRC의 성능을 실험실뿐만 아니라 현장에서 검증할 수 있는 유용성을 갖게 됩니다. 또한, 이 문서는 열 교환기와 공기 습도의 교환 기능을 포함한 HRC의 모든 주요 기능을 평가하기 위한 시험 방법을 명시하고 있습니다. 여기에는 온도 및 습도 효율성, 압력 강하, 내부 및 외부 누수, 그리고 HRC 운영에 사용되는 보조 에너지를 측정하는 것이 포함됩니다. 이러한 측정 항목들은 HRC의 성능을 정량적으로 평가하는 데 중요한 요소가 됩니다. SIST EN 308:2022는 회수기, 재생기 및 중간 열 전달 매체를 사용하는 HRC에 적용되며, 해당 분야의 연구자 및 엔지니어들이 효과적인 설계 및 운영을 위해 이 문서를 참고할 수 있도록 지원합니다. 열 펌프를 사용하는 HRC는 제외되지만, 다양한 응용 프로그램에서 HRC의 성능을 일관되게 평가할 수 있는 기준을 제공하여, 에너지 효율성을 높이는 데 큰 기여를 합니다. 이 문서는 HRC의 공학적 이해를 높이고, 지속 가능한 에너지 사용을 촉진하는 데 필수적인 지침을 제공하는 중요한 표준으로, HVAC 시스템 분야에서의 관련성을 높입니다.

SIST EN 308:2022は、空気から空気への熱回収コンポーネント(HRC)の性能を確立するための試験手順を定めた重要な標準文書です。この標準は、HRCの試験方法を明確に規定しており、その目的は廃棄空気と供給空気の間で熱を交換し、エネルギーを節約することです。このため、換気システムや空調システムにおいて、供給空気を予熱または加熱、冷却することを可能にします。 この標準の強みは、適切な試験方法を詳細に説明している点です。具体的には、HRCの性能を測定するために必要な手順と入力基準が規定されており、連続的で定常的な空気流、温度、および湿度の下で複数の試験条件でHRCを評価することができます。また、試験のタイプとして、実験室での設置、非居住用換気ユニットでの設置、現場試験が含まれています。このように多様な試験形態を設けることで、さまざまな状況でのHRCの性能を適切に評価できる点が特筆されます。 さらに、SIST EN 308:2022は、温度および湿度の効率、圧力降下、内外の漏れ、そしてHRCの運転に必要な補助エネルギーの使用量といった重要なパラメータを測定するための方法を規定しています。これにより、HRCの性能に関する包括的なデータを得ることができ、実際の運用における効率化に貢献することが期待されます。 HRCの技術的要求に対応しつつ、エネルギー効率の向上を追求するこの標準は、特にエネルギー消費が問題視される現代の環境において、極めて関連性の高いものです。全体として、SIST EN 308:2022は、空気-to-空気熱回収コンポーネントの性能評価において、信頼性の高い指針を提供する重要な文書であると言えます。