Quantities and units - Part 2: Mathematics (ISO 80000-2:2019, Corrected version 2021-11)

This document specifies mathematical symbols, explains their meanings, and gives verbal equivalents and applications.
This document is intended mainly for use in the natural sciences and technology, but also applies to other areas where mathematics is used.

Größen und Einheiten - Teil 2: Mathematik (ISO 80000-2:2019, korrigierte Fassung 2021-11)

Dieses Dokument legt mathematische Zeichen fest, erläutert deren Bedeutung und gibt Sprechweise und Anwendungen an.
Dieses Dokument richtet sich hauptsächlich an Naturwissenschaft und Technik, ist jedoch auch in anderen Bereichen anwendbar, in denen Mathematik verwendet wird.

Grandeurs et unités - Partie 2: Mathématiques (ISO 80000-2:2019, Version corrigée 2021-11)

Le présent document spécifie les symboles mathématiques, explique leurs sens et donne leurs énoncés et leurs applications.
Le présent document est principalement destiné à être utilisé dans les sciences de la nature et dans la technique. Cependant, il s'applique également à d'autres domaines utilisant les mathématiques.

Veličine in enote - 2. del: Matematika (ISO 80000-2:2019, popravljena verzija 2021-11)

Ta dokument določa matematične simbole in razlaga njihov pomen ter podaja besedne ustreznice in načine uporabe. Ta dokument je namenjen zlasti uporabi v naravoslovnih vedah in tehniki, vendar se uporablja tudi na drugih področjih, kjer se uporablja matematika.

General Information

Status
Published
Publication Date
08-Oct-2019
Withdrawal Date
29-Apr-2020
Current Stage
6060 - Definitive text made available (DAV) - Publishing
Start Date
09-Oct-2019
Completion Date
09-Oct-2019

Relations

Overview

EN ISO 80000-2:2019 (Corrected version 2021-11) - Part 2 of the ISO 80000 series - defines standard quantities and units for mathematics, specifying recommended mathematical symbols, their meanings, verbal equivalents and typical applications. Published by ISO in collaboration with CEN, this edition replaces earlier versions (supersedes EN ISO 80000-2:2013) and is intended principally for the natural sciences and technology, but also for any field that relies on clear mathematical notation.

Key topics

The standard organizes mathematical notation into focused tables and clauses. Major technical topics include:

  • Variables, functions and operators - typographic conventions (italic vs upright for variables, constants and named functions), function argument notation and spacing rules.
  • Mathematical logic and sets - notation for logical operators, set symbols and common set constructions.
  • Number sets and intervals - standard symbols for ℕ, ℤ, ℝ, intervals and related usage.
  • Elementary geometry, operations and combinatorics - symbols for geometric constructs, operators and combinatorial notation.
  • Functions, exponentials, logs, circular and hyperbolic functions - standard function names and examples.
  • Complex numbers, matrices, coordinate systems, vectors and tensors - consistent symbols and remarks for multi‑dimensional objects.
  • Transforms and special functions - notation for common transforms and special mathematical functions.
  • Typography and layout rules such as spacing around binary operators, rules for splitting equations across lines, and use of parentheses to avoid ambiguity.
  • Tables (1–16) that list symbols, expressions, meanings and non‑normative examples for quick reference.

Practical applications

EN ISO 80000-2 provides a uniform foundation for:

  • Technical documentation and standards - ensuring consistent mathematical notation in engineering standards, test reports and regulatory documents.
  • Scientific publishing and education - common rules for typesetting equations and symbols in journals, textbooks and course materials.
  • Software and data exchange - clear symbol semantics for mathematical libraries, scientific computing, and interoperability between systems.
  • Quality management and international collaboration - reducing ambiguity when teams across countries or disciplines share models, formulas and specifications.

Typical users: engineers, scientists, technical authors, editors, standards writers, educators and software developers dealing with mathematical content.

Related standards

  • ISO 80000-1 - Quantities and units - Part 1: General (normative reference for typography and general rules).
  • Other parts of the ISO 80000 series cover physical quantities, units and domain‑specific notation.

By adopting EN ISO 80000-2:2019, organizations and authors improve clarity, reduce ambiguity and support consistent, internationally accepted mathematical notation across technical and scientific communication.

Standard
EN ISO 80000-2:2019
English language
45 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
EN ISO 80000-2:2019
English language
45 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard – translation
EN ISO 80000-2:2019
Slovenian language
48 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
01-december-2019
Nadomešča:
SIST EN ISO 80000-2:2013
Veličine in enote - 2. del: Matematika (ISO 80000-2:2019)
Quantities and units - Part 2: Mathematics (ISO 80000-2:2019)
Größen und Einheiten - Teil 2: Mathematik (ISO 80000-2:2019)
Grandeurs et unités - Partie 2: Mathématiques (ISO 80000-2:2019)
Ta slovenski standard je istoveten z: EN ISO 80000-2:2019
ICS:
01.060 Veličine in enote Quantities and units
07.020 Matematika Mathematics
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EN ISO 80000-2
EUROPEAN STANDARD
NORME EUROPÉENNE
October 2019
EUROPÄISCHE NORM
ICS 01.060; 01.075 Supersedes EN ISO 80000-2:2013
English Version
Quantities and units - Part 2: Mathematics (ISO 80000-
2:2019)
Grandeurs et unités - Partie 2: Mathématiques (ISO Größen und Einheiten - Teil 2: Mathematik (ISO 80000-
80000-2:2019) 2:2019)
This European Standard was approved by CEN on 5 May 2019.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 80000-2:2019 E
worldwide for CEN national Members.

Contents Page
European foreword . 3

European foreword
This document (EN ISO 80000-2:2019) has been prepared by Technical Committee ISO/TC 12
"Quantities and units" in collaboration with Technical Committee CEN/SS F02 “Units and symbols” the
secretariat of which is held by CCMC.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by April 2020, and conflicting national standards shall be
withdrawn at the latest by April 2020.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN ISO 80000-2:2013.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
Endorsement notice
The text of ISO 80000-2:2019 has been approved by CEN as EN ISO 80000-2:2019 without any
modification.
INTERNATIONAL ISO
STANDARD 80000-2
Second edition
2019-08
Quantities and units —
Part 2:
Mathematics
Grandeurs et unités —
Partie 2: Mathématiques
Reference number
ISO 80000-2:2019(E)
©
ISO 2019
ISO 80000-2:2019(E)
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved

ISO 80000-2:2019(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Variables, functions and operators . 1
5 Mathematical logic . 2
6 Sets . 3
7 Standard number sets and intervals. 4
8 Miscellaneous symbols . 6
9 Elementary geometry . 7
10 Operations . 8
11 Combinatorics .10
12 Functions .11
13 Exponential and logarithmic functions .15
14 Circular and hyperbolic functions .16
15 Complex numbers.18
16 Matrices .18
17 Coordinate systems .19
18 Scalars, vectors and tensors .21
19 Transforms .25
20 Special functions .26
Bibliography .32
Alphabetical index .33
ISO 80000-2:2019(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso
.org/iso/foreword .html.
This document was prepared by Technical Committee ISO/TC 12, Quantities and units, in collaboration
with Technical Committee IEC/TC 25, Quantities and units.
This second edition cancels and replaces the first edition (ISO 80000-2:2009), which has been
technically revised.
The main changes compared to the previous edition are as follows:
— Clause 4 revised to add clarification about writing of font types; revised rule for splitting equations
over two or more lines;
— Clause 18 revised to include clarification on scalars, vectors and tensors;
— missing symbols and expressions added in the second column "Symbol, expression" of the tables,
and additional clarifications given in the fourth column “Remarks and examples” when necessary;
— Annex A deleted.
NOTE Although missing symbols and expressions have been added in this second edition of ISO 80000-1, the
document remains non exhaustive.
A list of all parts in the ISO 80000 and IEC 80000 series can be found on the ISO and IEC websites.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/members .html.
iv © ISO 2019 – All rights reserved

ISO 80000-2:2019(E)
Introduction
Arrangement of the tables
Each table of symbols and expressions (except Table 13) gives hints (in the third column) about the
meaning or how the expression may be read for each item (numbered in the first column) of the
symbol under consideration, usually in the context of a typical expression (second column). If more
than one symbol or expression is given for the same item, they are on an equal footing. In some cases,
e.g. for exponentiation, there is only a typical expression and no symbol. The purpose of the entries is
identification of each concept and is not intended to be a complete mathematical definition. The fourth
column “Remarks and examples” gives further information and is not normative.
Table 13 has a different format. It gives the symbols of coordinates, as well as the position vectors and
their differentials, for coordinate systems in three-dimensional spaces.
INTERNATIONAL STANDARD ISO 80000-2:2019(E)
Quantities and units —
Part 2:
Mathematics
1 Scope
This document specifies mathematical symbols, explains their meanings, and gives verbal equivalents
and applications.
This document is intended mainly for use in the natural sciences and technology, but also applies to
other areas where mathematics is used.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 80000-1, Quantities and units — Part 1: General
3 Terms and definitions
Tables 1 to 16 give the symbols and expressions used in the different fields of mathematics.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https: //www .iso .org/obp
— IEC Electropedia: available at http: //www .electropedia .org/
4 Variables, functions and operators
It is customary to use different sorts of letters for different sorts of entities, e.g. x, y, … for numbers
or elements of some given set, f, g for functions, etc. This makes formulas more readable and helps in
setting up an appropriate context.
Variables such as x, y, etc., and running numbers, such as i in x are printed in italic type. Parameters,

i
i
such as a, b, etc., which may be considered as constant in a particular context, are printed in italic type.
The same applies to functions in general, e.g. f, g.
An explicitly defined function not depending on the context is, however, printed in upright type, e.g.
sin, exp, ln, Γ. Mathematical constants, the values of which never change, are printed in upright type,
e.g. e = 2,718 281 828 …; π = 3,141 592 …; i = −1. Well-defined operators are also printed in upright
type, e.g. div, δ in δx and each d in df/dx. Some transforms use special capital letters (see Clause 19,
Transforms).
Numbers expressed in the form of digits are always printed in upright type, e.g. 351 204; 1,32; 7/8.
Binary operators, for example +, −, /, shall be preceded and followed by thin spaces. This rule does not
apply in case of unary operators, as in −17,3.
ISO 80000-2:2019(E)
The argument of a function is written in parentheses after the symbol for the function, without a space
between the symbol for the function and the first parenthesis, e.g. f(x), cos(ω t + φ). If the symbol for the
function consists of two or more letters and the argument contains no operation symbol, such as +, −, × ,
or /, the parentheses around the argument may be omitted. In these cases, there shall be a thin space
between the symbol for the function and the argument, e.g. int 2,4; sin nπ; arcosh 2A; Ei x.
If there is any risk of confusion, parentheses should always be inserted. For example, write cos(x) + y;
do not write cos x + y, which could be mistaken for cos(x + y).
A comma, semicolon or other appropriate symbol can be used as a separator between numbers or
expressions. The comma is generally preferred, except when numbers with a decimal comma are used.
If an expression or equation must be split into two or more lines, the following method shall be used:
— Place the line breaks immediately before one of the symbols =, +, −, ±, or  , or, if necessary,
immediately before one of the symbols ×, ⋅, or /.
The symbol shall not be given twice around the line break; two minus signs could for example give rise
to sign errors. If possible, the line break should not be inside of an expression in parentheses.
5 Mathematical logic
Table 1 — Symbols and expressions in mathematical logic
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-5.1 p ∧ q conjunction of p and q,
p and q
2-5.2 p ∨ q disjunction of p and q, This “or” is inclusive, i.e. p ∨ q is true, if
either p or q, or both are true.
p or q
2-5.3 ¬ p negation of p,
not p
2-5.4 p ⇒ q p implies q, q ⇐ p has the same meaning as p ⇒ q.
if p, then q ⇒ is the implication symbol.
→ is also used as implication symbol.
2-5.5 p ⇔ q p is equivalent to q (p ⇒ q) ∧ (q ⇒ p) has the same meaning as
p ⇔ q.
⇔ is the equivalence symbol.
↔ is also used as equivalence symbol.
2-5.6 ∀x ∈ A p(x) for every x belonging to A, the If it is clear from the context which set A is
proposition p(x) is true considered, the notation ∀x p(x) can be used.
∀ is the universal quantifier.
For x ∈ A, see 2-6.1.
2-5.7 ∃x ∈ A p(x) there exists an x belonging to A for If it is clear from the context which set A is
which p(x) is true considered, the notation ∃x p(x) can be used.
∃ is the existential quantifier.
For x ∈ A, see 2-6.1.
∃ x p(x) is used to indicate that there is ex-
actly one element for which p(x) is true.
∃! is also used for ∃ .
2 © ISO 2019 – All rights reserved

ISO 80000-2:2019(E)
6 Sets
Table 2 — Symbols and expressions for sets
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-6.1 x ∈ A x belongs to A, A ∋ x has the same meaning as x ∈ A.
x is an element of the set A
2-6.2 y ∉ A y does not belong to A, A ∌ y has the same meaning as y ∉ A.
y is not an element of the set A The negating stroke may also be vertical.
2-6.3 {x , x , …, x } set with elements x , x , …, x Also {x | i ∈ I}, where I denotes a set of sub-
1 2 n 1 2 n i
scripts.
2-6.4 {x ∈ A | p(x)} set of those elements of A for EXAMPLE
which the proposition p(x) is true
{x ∈ R | x ≥ 5}
If it is clear from the context which set A is
considered, the notation {x | p(x)} can be
used (for example {x | x ≥ 5}, if it is clear that
real numbers are considered).
Instead of the vertical line often a colon is
used as separator:
{x ∈ A : p(x)}.
2-6.5 card A number of elements in A, The cardinality can be a transfinite number.
cardinality of A The symbol ∣∣ is also used for absolute value
A
of a real number (see 2-10.16), modulus of a
complex number (see 2-15.4) and magnitude
of a vector (see 2-18.4).
2-6.6 the empty set

{}
2-6.7 B ⊆ A B is included in A, Every element of B belongs to A.
B is a subset of A ⊂ is also used, but see remark to 2-6.8.
A ⊇ B has the same meaning as B ⊆ A.
2-6.8 B ⊂ A B is properly included in A, Every element of B belongs to A, but at least
one element of A does not belong to B.
B is a proper subset of A
If ⊂ is used for 2-6.7, then ⊊ shall be used
for 2-6.8.
A ⊃ B has the same meaning as B ⊂ A.
2-6.9 A ∪ B union of A and B The set of elements which belong to at least
one of the sets A and B.
A ∪ B = {x | x ∈ A ∨ x ∈ B}
2-6.10 A ∩ B intersection of A and B The set of elements which belong to both
sets A and B.
A ∩ B = {x | x ∈ A ∧ x ∈ B}
2-6.11 union of the sets A , A , …, A The set of elements belonging to at least one
1 2 n
n
of the sets A , A , ., A
1 2 n
A
n

i
i=1 n
A = A ∪ … ∪ A
1 n
 i
, and are also used,
  
i=1 iI∈
i=1
iI∈
where I denotes a set of subscripts.
ISO 80000-2:2019(E)
Table 2 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-6.12 intersection of the sets The set of elements belonging to all sets A ,
n
A , ., A
2 n
A , A ,…, A
A
1 2 n
 i
n
i=1
n
, and are also used,
  
i=1 iI∈
A = A ∩ … ∩ A
1 n iI∈
 i
i=1
where I denotes a set of subscripts.
2-6.13 A ∖ B difference of A and B, The set of elements which belong to A but
not to B.
A minus B
A ∖ B = {x | x ∈ A ∧ x ∉ B}
The notation A − B should not be used.
CB is also used. CB is mainly used when
A A
B is a subset of A, and the symbol A may be
omitted if it is clear from the context which
set A is considered.
2-6.14 (a, b) ordered pair a, b, (a, b) = (c, d) if and only if a = c and b = d.
couple a, b If the comma can be mistaken as the deci-
mal sign, then the semicolon (;) or a stroke
(|) may be used as separator.
2-6.15 (a , a , …, a ) ordered n-tuple See remark to 2-6.14.
1 2 n
2-6.16 A × B Cartesian product of the sets A The set of ordered pairs (a, b) such that a ∈ A
and B and b ∈ B.
A × B = {(x, y) | x ∈ A ∧ y ∈ B}
2-6.17 Cartesian product of the sets The set of ordered n-tuples (x , x , …, x )
1 2 n
n
such that x ∈ A , x ∈ A , …, x ∈ A .
1 1 2 2 n n
A , A , …, A
A
1 2 n
∏ i
n
AA××.×A is denoted by A , where n is the
i=1
n
number of factors in the product.
AA=×…×A
∏ in1
i=1
2-6.18 id identity relation on set A, id is the set of all pairs (x, x) where x ∈ A.
A A
If the set A is clear from the context, the
diagonal of A × A
subscript A can be omitted.
7 Standard number sets and intervals
Table 3 — Symbols and expressions for standard number sets and intervals
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-7.1 the set of natural numbers,
N N = {0, 1, 2, 3, …}
the set of positive integers and zero
*
N = {1, 2, 3, …}
Other restrictions can be indicated in an
obvious way, as shown below.
N = {n ∈ N | n > 5}
> 5
The symbols IN and  are also used.
4 © ISO 2019 – All rights reserved

ISO 80000-2:2019(E)
Table 3 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-7.2 the set of integers
Z Z = {…, −2, −1, 0, 1, 2, …}
*
Z = {n ∈ Z | n ≠ 0}
Other restrictions can be indicated in an
obvious way, as shown below.
Z = {n ∈ Z | n > −3}
> −3
The symbol  is also used.
2-7.3 the set of rational numbers
Q
*
Q = {r ∈ Q | r ≠ 0}
Other restrictions can be indicated in an
obvious way, as shown below.
Q = {r ∈ Q | r < 0}
< 0
The symbols QI and ℚ are also used.
2-7.4 the set of real numbers
R
*
R = {x ∈ R | x ≠ 0}
Other restrictions can be indicated in an
obvious way, as shown below.
R = {x ∈ R | x > 0}
> 0
The symbols IR and  are also used.
2-7.5 the set of complex numbers
C *
C = {z ∈ C | z ≠ 0}
The symbol  is also used.
2-7.6 the set of prime numbers
P P = {2, 3, 5, 7, 11, 13, 17, …}
The symbol ℙ is also used.
2-7.7 [a, b] closed interval from a included
[a, b] = {x ∈ R | a ≤ x ≤ b}
to b included
2-7.8 (a, b] left half-open interval from a
(a, b] = {x ∈ R | a < x ≤ b}
excluded to b included
The notation ]a, b] is also used.
2-7.9 [a, b) right half-open interval from a
[a, b) = {x ∈ R | a ≤ x < b}
included to b excluded
The notation [a, b[ is also used.
2-7.10 (a, b) open interval from a excluded to b
(a, b) = {x ∈ R | a < x < b}
excluded
The notation ]a, b[ is also used.
2-7.11 (−∞, b] closed unbounded interval up to b
(−∞, b] = {x ∈ R | x ≤ b}
included
The notation ]−∞, b] is also used.
2-7.12 (−∞, b) open unbounded interval up to b
(−∞, b) = {x ∈ R | x < b}
excluded
The notation ]−∞, b[ is also used.
2-7.13 [a, +∞) closed unbounded interval on-
[a, +∞) = {x ∈ R | a ≤ x}
ward from a included
The notations [a, ∞), [a, +∞[ and [a, ∞[ are
also used.
ISO 80000-2:2019(E)
Table 3 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-7.14 (a, +∞) open unbounded interval onward
(a, +∞) = {x ∈ R | a < x}
from a excluded
The notations (a, ∞), ]a, +∞[ and ]a, ∞[ are
also used.
8 Miscellaneous symbols
Table 4 — Miscellaneous symbols and expressions
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-8.1 a = b a is equal to b The symbol ≡ may be used to emphasize
that a particular equality is an identity, i.e.
a equals b
holds universally.
But see 2-8.18 for another meaning.
2-8.2 a ≠ b a is not equal to b The negating stroke may also be vertical.
2-8.3 a ≔ b a is by definition equal to b EXAMPLE
p ≔ mv , where p is momentum, m is mass
and v is velocity.
The symbols = and ≝ are also used.
def
2-8.4 a ≙ b a corresponds to b EXAMPLES
When E = kT, then 1 eV ≙ 11 604,5 K.
When 1 cm on a map corresponds
to a length of 10 km, one may write
1 cm ≙ 10 km.
The correspondence is not symmetric.
2-8.5 a ≈ b a is approximately equal to b It depends on the user whether an approx-
imation is sufficiently good. Equality is not
excluded.
2-8.6 a ≃ b a is asymptotically equal to b EXAMPLE
1 1
≃ as x → a
sin xa− xa−
()
(For x → a, see 2-8.16.)
2-8.7 a ~ b a is proportional to b The symbol ~ is also used for equivalence
relations.
The notation a ∝ b is also used.
2-8.8 M ≅ N M is congruent to N, M and N are point sets (geometrical figures).
M is isomorphic to N This symbol is also used for isomorphisms
of mathematical structures.
2-8.9 a < b a is less than b
2-8.10 b > a b is greater than a
2-8.11 a ≤ b a is less than or equal to b
2-8.12 b ≥ a b is greater than or equal to a
2-8.13 a ≪ b a is much less than b It depends on the situation whether a is
sufficiently small as compared to b.
6 © ISO 2019 – All rights reserved

ISO 80000-2:2019(E)
Table 4 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-8.14 b ≫ a b is much greater than a It depends on the situation whether b is
sufficiently great as compared to a.
2-8.15 ∞ infinity This symbol does not denote a number but
is often part of various expressions dealing
with limits.
The notations +∞, −∞ are also used.
2-8.16 x → a x tends to a This symbol occurs as part of various ex-
pressions dealing with limits.
a may be also ∞, +∞, or −∞.
2-8.17 m ∣ n m divides n For integers m and n:
∃ k ∈ Z m⋅k = n
2-8.18 n ≡ k mod m n is congruent to k modulo m For integers n, k and m:
m ∣ (n − k)
This concept of number theory must not be
confused with identity of an equation, men-
tioned in 2-8.1, column 4.
2-8.19 (a + b) parentheses It is recommended to use only parentheses
for grouping, since brackets and braces
[a + b] square brackets
often have a specific meaning in particular
{a + b} braces fields. Parentheses can be nested without
ambiguity.
〈a + b〉 angle brackets
9 Elementary geometry
Table 5 — Symbols and expressions in elementary geometry
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-9.1 AB∥CD the straight line AB is parallel to It is written g ∥ h if g and h are the straight
the straight line CD lines determined by the points A and B, and
the points C and D, respectively.
2-9.2 AB⊥CD the straight line AB is perpendicu- It is written g ⊥ h if g and h are the straight
lar to the straight line CD lines determined by the points A and B, and
the points C and D, respectively. In a plane,
the straight lines intersect.
2-9.3 ∢ABC angle at vertex B in the triangle The angle is not oriented, it holds that
ABC ∢ABC = ∢CBA and
0 ≤ ∢ABC ≤ π rad.
For a more general definition including rota-
tion angles see ISO 80000-3.
2-9.4 line segment from A to B The line segment is the set of points
AB
between A and B on the straight line AB
including the end points A and B.
2-9.5  vector from A to B 
AB If AB=CD then B, seen from A, is in the
same direction and distance as D is, seen
from C. It does not follow that A = C and B = D.
ISO 80000-2:2019(E)
Table 5 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-9.6 d(A, B) distance between points A and B The distance is the length of the line
segment AB and also the magnitude of the

vectorAB .
10 Operations
Table 6 — Symbols and expressions for mathematical operations
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-10.1 a + b a plus b This operation is named addition. The sym-
bol + is the addition symbol.
2-10.2 a − b a minus b This operation is named subtraction. The
symbol − is the subtraction symbol.
2-10.3 a ± b a plus or minus b This is a combination of two values into one
expression.
2-10.4 a ∓ b a minus or plus b −(a ± b) = −a ∓ b
2-10.5 a ⋅ b a multiplied by b, This operation is named multiplication. The
symbol for multiplication is a half-high dot
a times b
ab×
(⋅) or a cross (× ).
a b
Either symbol may be omitted if no misun-
derstanding is possible.
ab
See also 2-6.16, 2-6.17, 2-18.11, 2-18.12,
2-18.23 and 2-18.24 for the use of the dot
and cross in various products.
2-10.6 a divided by b
a a
−1
=⋅ab
b b
a/b The symbol : is often used for ratios of quan-
tity values of the same dimension.
a : b
The symbol ÷ should not be used.
2-10.7 a + a + … + a ,
1 2 n
n n
The notations a , a , a and
∑ ∑ ∑
i i i
a sum of a , a , …, a i=1 i
1 2 n
∑ i
i
i=1
a are also used.

i
2-10.8 a ⋅ a ⋅ … ⋅ a ,
1 2 n
n n
The notations a , a , a and
∏ i ∏ i ∏ i
product of a , a , …, a i=1 i
a
1 2 n
∏ i
i
i=1
a are also used.
∏ i
p 2
2-10.9 a a to the power p The verbal equivalent of a is a squared; the
verbal equivalent of a is a cubed.
1/2
2-10.10 a a to the power 1/2,
If a ≥ 0, then a ≥ 0.
square root of a
a
The symbol √a should be avoided.
See remark to 2-10.11.
8 © ISO 2019 – All rights reserved

ISO 80000-2:2019(E)
Table 6 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
1/n
2-10.11 a a to the power 1/n,
n
If a ≥ 0, then a ≥ 0.
th
n root of a
n
a
n
The symbol without the upper line √a
should be avoided.
n
If however the symbol √ or √ is used acting
on a composite expression, parentheses
shall be used to avoid ambiguity.
2-10.12 mean value of x, Mean values obtained by other methods are
x
the
arithmetic mean of x
〈x〉
— harmonic mean denoted by subscript h,
x
a — geometric mean denoted by subscript g,
— quadratic mean, often called “root mean
square”, denoted by subscript q or rms.
The subscript may only be omitted for the
arithmetic mean.
In mathematics, x is also used for the
complex conjugate of x; see 2-15.6.
2-10.13 sgn a signum a For real a:
10if a>


sgn a= 00if a=


−<10if a

See also item 2-15.7. Sometimes sgn 0 is left
undefined.
2-10.14 inf M infimum of M Greatest lower bound of a non-empty set of
numbers bounded from below.
2-10.15 sup M supremum of M Smallest upper bound of a non-empty set of
numbers bounded from above.
2-10.16 absolute value of a, The notation abs a is also used.
a
modulus of a, The symbol ∣∣ is also used for cardinality
of a set (see 2-6.5), modulus of a complex
magnitude of a
number (2-15.4) and magnitude of a vector
(see 2-18.4).
2-10.17 floor a, The notation ent a is also used.
a
 
the greatest integer less than or EXAMPLES
equal to the real number a
24, =2
 
−24, =−3
 
 
2-10.18 ceil a, “ceil” is an abbreviation of the English word
a
 
 
“ceiling”.
the least integer greater than or
equal to the real number a EXAMPLES
24, =3
 
 
−24, =−2
 
 
ISO 80000-2:2019(E)
Table 6 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-10.19 int a integer part of the real number a
intsaa=⋅gn a
 
 
EXAMPLES
int(2,4) = 2
int(−2,4) = −2
2-10.20 frac a fractional part of the real number a frac a = a − int a
EXAMPLES
frac(2,4) = 0,4
frac(−2,4) = −0,4
2-10.21 min(a, b) minimum of a and b The operation generalizes to more than two
numbers and to sets of numbers. However,
an infinite set of numbers need not have a
smallest element, in this case use inf (see
2-10.14).
2-10.22 max(a, b) maximum of a and b The operation generalizes to more than two
numbers and to sets of numbers. However,
an infinite set of numbers need not have a
greatest element, in this case use sup (see
2-10.15).
11 Combinatorics
In this clause, n and k are natural numbers, with k ≤ n.
Table 7 — Symbols and expressions in combinatorics
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-11.1 n! factorial
n
nk!==12⋅⋅3⋅…⋅n  (for n > 0)

k=1
0! = 1
2-11.2 falling factorial
k k
a a = a⋅(a − 1)⋅…⋅(a − k + 1) (for k > 0)
a = 1
a may be a complex number.
For a natural number n:
n!
k
n =
()nk− !
In combinatorics and statistics, the symbol
(a) is often used for the falling factorial.
k
In the theory of special functions, however,
the same symbol is often used for the rising
factorial and called Pochhammer symbol.
10 © ISO 2019 – All rights reserved

ISO 80000-2:2019(E)
Table 7 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-11.3 rising factorial
k k
a a = a⋅(a + 1)⋅…⋅(a + k − 1) (for k > 0)
a = 1
a may be a complex number.
For a natural number n:
()nk+−1 !
k
n =
n−1 !
()
In the theory of special functions, the
symbol a is often used for the rising
()
k
factorial and called Pochhammer symbol. In
combinatorics and statistics, however, the
same symbol is often used for the falling
factorial.
2-11.4 binomial coefficient
n n
   
n!
=  ()for0≤≤kn
   
kn!!()−k
k k
   
2-11.5 B Bernoulli numbers
n
n−1
n+1
 
BB=−
 
n ∑ k
n+1
k
 
k=0
(for n > 0)
B = 1
B =−12/ , B =0
1 23n+
2-11.6 number of combinations without
k
n
 
C n!
repetition
n k
C = =
 
n
kn!!()−k
k
 
2-11.7 number of combinations with
R k
nk+−1
 
C
repetition R k
n
C =
 
n
k
 
2-11.8 number of variations without
k
n!
V
kk
repetition
n
V ==n
n
()nk− !
The term “permutation” is used when n = k.
2-11.9 number of variations with repeti-
R k R kk
V V =n
tion
n n
12 Functions
Items 2-12.1 up to 2-12.13 concern functions in general, items 2-12.14 to 2-12.27 concern functions with
numbers as values as used in calculus.
ISO 80000-2:2019(E)
Table 8 — Symbols and expressions for functions
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-12.1 f, g, h, … functions A function assigns to any argument in its
domain a unique value in its range.
The arguments are said to be mapped by the
function onto the values, which are called
images of the arguments under the function.
2-12.2 f(x) value of function f for argument A function having a set of n-tuples as its
x or for argument (x , …, x ), re- domain is an n-place function.
1 n
f(x , …, x )
1 n
spectively
2-12.3 dom f domain of f Set of objects to which f assigns a value.
D( f ) is also used.
2-12.4 ran f range of f Set of values of the function f .
R( f ) is also used.
2-12.5 f: A → B f maps A into B dom f = A and ran f ⊆ B
It is not necessary that all elements of B are
values of the function f.
2-12.6 f: A ↠ B f maps A surjectively onto B dom f = A and ran f = B
2-12.7 f: A ↣ B f maps A injectively into B f: A → B and for all x, y ∈ A
if x ≠ y then f(x) ≠ f( y).
The function f is then said to be injective or
one-one.
2-12.8 f: A ⤖ B f maps A bijectively onto B f: A ↠ B and f: A ↣ B
2-12.9 x↦T(x), x ∈ A function that maps any x ∈ A onto T(x) is a defining term denoting the values
T(x) of some function for the arguments x ∈ A.
If this function is called f, then it holds
f(x) = T(x) for any x ∈ A. Therefore the de-
fining term T(x) is often used to denote the
function f .
EXAMPLE
x↦3x y, x ∈ [0, 2]
This is the quadratic function (of x depend-
ing on the parameter y) defined on the
stated interval by the term 3x y.
If no function symbol is introduced, the
term 3x y is used to denote this function.
-1 -1
2-12.10 f inverse function of f The inverse function f of a function f is
only defined if f is injective.
If f is injective then
-1 -1
dom( f ) = ran( f ), ran( f ) = dom( f ), and
-1
f ( f(x)) = x for x ∈ dom f.
-1
The inverse function f should not be
confused with the pointwise reciprocal
-1
function x ↦ f(x) .
2-12.11 composite function of f and g,
gf
()gf ()xg= ()fx()
g circle f
In the composite gf , the function g is
applied after function f has been applied.
12 © ISO 2019 – All rights reserved

ISO 80000-2:2019(E)
Table 8 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-12.12 f(x) = y, EXAMPLE
f
xy→
f maps x onto y
cos
π→−1
f : x ↦ y
2-12.13 This notation is used mainly when evaluat-
b
fb()−fa()
f
ing definite integrals.
a
fb()., , . −fa()., , .
ub=
fu(., ,.)
ua=
2-12.14 limit of f(x) as x tends to a f(x) → b as x → a
lim(fx)
xa→
may be written for lim(fx)=b .
xa→
lim(fx)
xa→
Limits “from the right” (x > a) and “from the
left” (x < a) are denoted by
lim(fx) and
xa→+
lim(fx) , respectively.
xa→−
2-12.15 f(x) = O(g(x)) f(x) is upper case O of g(x), The symbol “=” here is used for historical
reasons and does not have the meaning
∣f(x)/g(x)∣ is bounded from above
of equality, because transitivity does not
in the limit implied by the context,
apply.
f(x) is of the order comparable
EXAMPLE
with or inferior to g(x)
sin(xx=O ) , when x → 0
2-12.16 f(x) = o(g(x)) f(x) is lower case o of g(x), The symbol “=” here is used for historical
reasons and does not have the meaning
f(x)/g(x) → 0 in the limit implied
of equality, because transitivity does not
by the context,
apply.
f(x) is of the order inferior to g(x)
EXAMPLE
cos(xx=+1o ) , when x → 0
2-12.17 Δf delta f, Difference of two function values implied by
the context.
finite increment of f
EXAMPLES
Δ=xx −x
Δfx = fx − fx
() () ()
2-12.18 derivative of f with respect to x Only to be used for functions of one varia-
df
ble.
dx
The independent variable may also be indi-
ddfx/
cated, for example
f ′
dfx()
, ddfx / x , fx′ and Dfx .
() () ()
dx
Df

If the independent variable is time t, f is
also used for f ′ .
ISO 80000-2:2019(E)
Table 8 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-12.19 value of the derivative of f for x = a See also 2-12.18
df
 
 
 dx 
xa=
()ddfx/
xa=
fa′()
Dfa
()
th
2-12.20 n derivative of f with respect to x Only to be used for functions of one variable.
n
d f
n
n
d fx
dx ()
n
nn () n
, ddfx()/ x , fx() and D f are
n
nn dx
ddfx/
also used.
()n
f
(2) (3)
f ″ and f ″′ are also used for f and f ,
n
D f
respectively.

If the independent variable is time t, f is
also used for f ″′ .
2-12.21 partial derivative of f with re- Only to be used for functions of several
∂f
spect to x variables.
∂x
∂fx(, y,.)
∂f/∂x
, ∂f (x, y, …)∕∂x, ∂ f (x, y, …) and
x
∂x
∂ f
x
D fx(),,y … are also used.
x
The other independent variables may be
∂f
 
shown as subscripts, e.g. .
 
 ∂x 
y.
This partial derivative notation is extended
to derivatives of higher order, e.g.
∂ f ∂ ∂f
 
=
 
∂x ∂x
∂x  
∂ f ∂ ∂f
 
=
 
∂∂xy ∂x ∂y
 
∂ ∂f
 
Other notations, e.g. f = , are
 
xy
∂x ∂y
 
also used.
2-12.22 df total differential of f
∂f ∂f
ddfx,,y … = x+ dy+…
()
∂x ∂y
2-12.23 δf (infinitesimal) variation of f This symbol is used in variational calculus.
2-12.24 indefinite integral of f
fx()dx

14 © ISO 2019 – All rights reserved

ISO 80000-2:2019(E)
Table 8 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-12.25 definite integral of f from a to b This is the simple case of a function defined
b
on an interval. Integration of functions
fx()dx
defined on more general domains may also

a
be defined. Special notations, e.g. ,, ,,
∫∫ ∫∫
CS V
are used for integration over a curve C, a
surface S, a three-dimensional domain V,
and a closed curve or surface, respectively.
Multiple integrals are also denoted ,
,
∫∫∫∫
etc.
2-12.26 Cauchy principal value of the
b c−δ b
 
integral of f with singularity at c,
 
− fx() dx lim fx()ddxf+ ()xx
∫ ∫∫
where ac<  
δ→+0
 
a a c+δ
2-12.27 Cauchy principal value of the inte-
∞ a
gral of f
− fx()dx limd− fx() x
∫ ∫
a→∞
_
∞ −a
See 2-12.26.
13 Exponential and logarithmic functions
Complex arguments can be used, in particular for the base e.
Table 9 — Symbols and expressions for exponential and logarithmic functions
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-13.1 e base of natural logarithm
n
 
e ≔ lim 1+ = 2,718 81 28 .
 
n
n→∞ 
This number is called Euler number.
x
2-13.2 a a to the power of x, See also 2-10.9.
exponential function to the base a
of argument x
x
2-13.3 e e to the power of x, See 2-15.5.
exp x exponential function to the base e
of argument x
2-13.4 log x logarithm to the base a of argu- log x is used when the base does not need to
a
ment x be specified.
2-13.5 ln x natural logarithm of x ln x = log x
e
log x shall not be used in place of ln x, lg x,
lb x, or log x, log x, log x.
e 10 2
2-13.6 lg x decimal logarithm of x, lg x = log x
common logarithm of x See remark to 2-13.5.
2-13.7 lb x binary logarithm of x lb x = log x
See remark to 2-13.5.
ISO 80000-2:2019(E)
14 Circular and hyperbolic functions
Table 10 — Symbols and expressions
...


SLOVENSKI STANDARD
01-december-2019
Nadomešča:
SIST EN ISO 80000-2:2013
SIST ISO 80000-2:2013
Veličine in enote - 2. del: Matematika (ISO 80000-2:2019, popravljena verzija 2021-
11)
Quantities and units - Part 2: Mathematics (ISO 80000-2:2019, Corrected version 2021-
11)
Größen und Einheiten - Teil 2: Mathematik (ISO 80000-2:2019)
Grandeurs et unités - Partie 2: Mathématiques (ISO 80000-2:2019)
Ta slovenski standard je istoveten z: EN ISO 80000-2:2019
ICS:
01.060 Veličine in enote Quantities and units
07.020 Matematika Mathematics
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EN ISO 80000-2
EUROPEAN STANDARD
NORME EUROPÉENNE
October 2019
EUROPÄISCHE NORM
ICS 01.060; 01.075 Supersedes EN ISO 80000-2:2013
English Version
Quantities and units - Part 2: Mathematics (ISO 80000-
2:2019, Corrected version 2021-11)
Grandeurs et unités - Partie 2: Mathématiques (ISO Größen und Einheiten - Teil 2: Mathematik (ISO 80000-
80000-2:2019, Version corrigée 2021-11) 2:2019, korrigierte Fassung 2021-11)
This European Standard was approved by CEN on 5 May 2019.

This European Standard was corrected and reissued by the CEN-CENELEC Management Centre on 8 December 2021.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATIO N

EUROPÄISCHES KOMITEE FÜR NORMUN G

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 80000-2:2019 E
worldwide for CEN national Members.

Contents Page
European foreword . 3

European foreword
This document (EN ISO 80000-2:2019) has been prepared by Technical Committee ISO/TC 12
"Quantities and units" in collaboration with Technical Committee CEN/SS F02 “Units and symbols” the
secretariat of which is held by CCMC.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by April 2020, and conflicting national standards shall be
withdrawn at the latest by April 2020.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN ISO 80000-2:2013.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
Endorsement notice
The text of ISO 80000-2:2019, Corrected version 2021-11 has been approved by CEN as EN ISO 80000-
2:2019 without any modification.

INTERNATIONAL ISO
STANDARD 80000-2
Second edition
2019-08
Corrected version
2021-11
Quantities and units —
Part 2:
Mathematics
Grandeurs et unités —
Partie 2: Mathématiques
Reference number
ISO 80000-2:2019(E)
ISO 80000-2:2019(E)
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
ISO 80000-2:2019(E)
Contents Page
Foreword .iv
Introduction . vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Variables, functions and operators .1
5 Mathematical logic .2
6 Sets . 3
7 Standard number sets and intervals .4
8 Miscellaneous symbols .6
9 Elementary geometry .7
10 Operations . 8
11 Combinatorics .10
12 Functions .11
13 Exponential and logarithmic functions .14
14 Circular and hyperbolic functions .15
15 Complex numbers .17
16 Matrices .18
17 Coordinate systems.19
18 Scalars, vectors and tensors .21
19 Transforms .25
20 Special functions .26
Bibliography .31
Alphabetical index .32
iii
ISO 80000-2:2019(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 12, Quantities and units, in collaboration
with Technical Committee IEC/TC 25, Quantities and units.
This second edition cancels and replaces the first edition (ISO 80000-2:2009), which has been
technically revised.
The main changes compared to the previous edition are as follows:
— Clause 4 revised to add clarification about writing of font types; revised rule for splitting equations
over two or more lines;
— Clause 18 revised to include clarification on scalars, vectors and tensors;
— missing symbols and expressions added in the second column "Symbol, expression" of the tables,
and additional clarifications given in the fourth column “Remarks and examples” when necessary;
— Annex A deleted.
NOTE Although missing symbols and expressions have been added in this second edition of ISO 80000-1, the
document remains non exhaustive.
A list of all parts in the ISO 80000 and IEC 80000 series can be found on the ISO and IEC websites.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
This corrected version of ISO 80000-2:2019 incorporates the following corrections:
— in 2-12.20, under "Remarks and examples", last line, f ″′ has been replaced with f ″ ;
— in 2-13.1, under "Remarks and examples", the value 2,718 81 28 . has been replaced with
2,718 281 828 .;
iv
ISO 80000-2:2019(E)
— in 2-20.20, under "Remarks and examples", the first formula has been corrected to read
m
d
m
m
L z =−1 L z ; i.e. addition of +m in the subscript of L;
() () ()
n nm+
m
dz
— in 2-20.21, under "Remarks and examples", second line, the parenthesis has been corrected to read
(for n ∈ N , z ≤ 1); i.e. addition of z ≤ 1.
v
ISO 80000-2:2019(E)
Introduction
Arrangement of the tables
Each table of symbols and expressions (except Table 13) gives hints (in the third column) about the
meaning or how the expression may be read for each item (numbered in the first column) of the
symbol under consideration, usually in the context of a typical expression (second column). If more
than one symbol or expression is given for the same item, they are on an equal footing. In some cases,
e.g. for exponentiation, there is only a typical expression and no symbol. The purpose of the entries is
identification of each concept and is not intended to be a complete mathematical definition. The fourth
column “Remarks and examples” gives further information and is not normative.
Table 13 has a different format. It gives the symbols of coordinates, as well as the position vectors and
their differentials, for coordinate systems in three-dimensional spaces.
vi
INTERNATIONAL STANDARD ISO 80000-2:2019(E)
Quantities and units —
Part 2:
Mathematics
1 Scope
This document specifies mathematical symbols, explains their meanings, and gives verbal equivalents
and applications.
This document is intended mainly for use in the natural sciences and technology, but also applies to
other areas where mathematics is used.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 80000-1, Quantities and units — Part 1: General
3 Terms and definitions
Tables 1 to 16 give the symbols and expressions used in the different fields of mathematics.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
4 Variables, functions and operators
It is customary to use different sorts of letters for different sorts of entities, e.g. x, y, … for numbers
or elements of some given set, f, g for functions, etc. This makes formulas more readable and helps in
setting up an appropriate context.
Variables such as x, y, etc., and running numbers, such as i in x are printed in italic type. Parameters,

i
i
such as a, b, etc., which may be considered as constant in a particular context, are printed in italic type.
The same applies to functions in general, e.g. f, g.
An explicitly defined function not depending on the context is, however, printed in upright type, e.g.
sin, exp, ln, Γ. Mathematical constants, the values of which never change, are printed in upright type,
e.g. e = 2,718 281 828 …; π = 3,141 592 …; i = −1. Well-defined operators are also printed in upright
type, e.g. div, δ in δx and each d in df/dx. Some transforms use special capital letters (see Clause 19,
Transforms).
Numbers expressed in the form of digits are always printed in upright type, e.g. 351 204; 1,32; 7/8.
Binary operators, for example +, −, /, shall be preceded and followed by thin spaces. This rule does not
apply in case of unary operators, as in −17,3.
ISO 80000-2:2019(E)
The argument of a function is written in parentheses after the symbol for the function, without a space
between the symbol for the function and the first parenthesis, e.g. f(x), cos(ω t + φ). If the symbol for the
function consists of two or more letters and the argument contains no operation symbol, such as +, −, × ,
or /, the parentheses around the argument may be omitted. In these cases, there shall be a thin space
between the symbol for the function and the argument, e.g. int 2,4; sin nπ; arcosh 2A; Ei x.
If there is any risk of confusion, parentheses should always be inserted. For example, write cos(x) + y;
do not write cos x + y, which could be mistaken for cos(x + y).
A comma, semicolon or other appropriate symbol can be used as a separator between numbers or
expressions. The comma is generally preferred, except when numbers with a decimal comma are used.
If an expression or equation must be split into two or more lines, the following method shall be used:
— Place the line breaks immediately before one of the symbols =, +, −, ±, or  , or, if necessary,
immediately before one of the symbols ×, ⋅, or /.
The symbol shall not be given twice around the line break; two minus signs could for example give rise
to sign errors. If possible, the line break should not be inside of an expression in parentheses.
5 Mathematical logic
Table 1 — Symbols and expressions in mathematical logic
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-5.1 p ∧ q conjunction of p and q,
p and q
2-5.2 p ∨ q disjunction of p and q, This “or” is inclusive, i.e. p ∨ q is true, if
either p or q, or both are true.
p or q
2-5.3 ¬ p negation of p,
not p
2-5.4 p ⇒ q p implies q, q ⇐ p has the same meaning as p ⇒ q.
if p, then q ⇒ is the implication symbol.
→ is also used as implication symbol.
2-5.5 p ⇔ q p is equivalent to q (p ⇒ q) ∧ (q ⇒ p) has the same meaning as
p ⇔ q.
⇔ is the equivalence symbol.
↔ is also used as equivalence symbol.
2-5.6 ∀x ∈ A p(x) for every x belonging to A, the If it is clear from the context which set A is
proposition p(x) is true considered, the notation ∀x p(x) can be used.
∀ is the universal quantifier.
For x ∈ A, see 2-6.1.
2-5.7 ∃x ∈ A p(x) there exists an x belonging to A for If it is clear from the context which set A is
which p(x) is true considered, the notation ∃x p(x) can be used.
∃ is the existential quantifier.
For x ∈ A, see 2-6.1.
∃ x p(x) is used to indicate that there is ex-
actly one element for which p(x) is true.
∃! is also used for ∃ .
ISO 80000-2:2019(E)
6 Sets
Table 2 — Symbols and expressions for sets
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-6.1 x ∈ A x belongs to A, A ∋ x has the same meaning as x ∈ A.
x is an element of the set A
2-6.2 y ∉ A y does not belong to A, A ∌ y has the same meaning as y ∉ A.
y is not an element of the set A The negating stroke may also be vertical.
2-6.3 {x , x , …, x } set with elements x , x , …, x Also {x | i ∈ I}, where I denotes a set of sub-
1 2 n 1 2 n i
scripts.
2-6.4 {x ∈ A | p(x)} set of those elements of A for EXAMPLE
which the proposition p(x) is true
{x ∈ R | x ≥ 5}
If it is clear from the context which set A is
considered, the notation {x | p(x)} can be
used (for example {x | x ≥ 5}, if it is clear that
real numbers are considered).
Instead of the vertical line often a colon is
used as separator:
{x ∈ A : p(x)}.
2-6.5 card A number of elements in A, The cardinality can be a transfinite number.
A cardinality of A The symbol ∣∣ is also used for absolute value
of a real number (see 2-10.16), modulus of a
complex number (see 2-15.4) and magnitude
of a vector (see 2-18.4).
2-6.6 ∅ the empty set
{}
2-6.7 B ⊆ A B is included in A, Every element of B belongs to A.
B is a subset of A ⊂ is also used, but see remark to 2-6.8.
A ⊇ B has the same meaning as B ⊆ A.
2-6.8 B ⊂ A B is properly included in A, Every element of B belongs to A, but at least
one element of A does not belong to B.
B is a proper subset of A
If ⊂ is used for 2-6.7, then ⊊ shall be used for
2-6.8.
A ⊃ B has the same meaning as B ⊂ A.
2-6.9 A ∪ B union of A and B The set of elements which belong to at least
one of the sets A and B.
A ∪ B = {x | x ∈ A ∨ x ∈ B}
2-6.10 A ∩ B intersection of A and B The set of elements which belong to both
sets A and B.
A ∩ B = {x | x ∈ A ∧ x ∈ B}
2-6.11 n union of the sets A , A , …, A The set of elements belonging to at least one
1 2 n
of the sets A , A , ., A
A
1 2 n
 i
n
i=1
n
A = A ∪ … ∪ A
 1 n
i
, and are also used,
  
i=1 iI∈
i=1
iI∈
where I denotes a set of subscripts.
ISO 80000-2:2019(E)
Table 2 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-6.12 n intersection of the sets The set of elements belonging to all sets A ,
A , ., A
A
2 n

i
A , A ,…, A
1 2 n
i=1
n
n
, and are also used,
  
i=1 iI∈
A = A ∩ … ∩ A
1 n iI∈
 i
where I denotes a set of subscripts.
i=1
2-6.13 A ∖ B difference of A and B, The set of elements which belong to A but
not to B.
A minus B
A ∖ B = {x | x ∈ A ∧ x ∉ B}
The notation A − B should not be used.
CB is also used. CB is mainly used when
A A
B is a subset of A, and the symbol A may be
omitted if it is clear from the context which
set A is considered.
2-6.14 (a, b) ordered pair a, b, (a, b) = (c, d) if and only if a = c and b = d.
couple a, b If the comma can be mistaken as the deci-
mal sign, then the semicolon (;) or a stroke
(|) may be used as separator.
2-6.15 (a , a , …, a ) ordered n-tuple See remark to 2-6.14.
1 2 n
2-6.16 A × B Cartesian product of the sets A The set of ordered pairs (a, b) such that a ∈ A
and B and b ∈ B.
A × B = {(x, y) | x ∈ A ∧ y ∈ B}
2-6.17 n Cartesian product of the sets The set of ordered n-tuples (x , x , …, x )
1 2 n
such that x ∈ A , x ∈ A , …, x ∈ A .
A
1 1 2 2 n n
∏ i
A , A , …, A
1 2 n
i=1 n
AA××.×A is denoted by A , where n is the
n
number of factors in the product.
AA=×…×A
∏ in1
i=1
2-6.18 id identity relation on set A, id is the set of all pairs (x, x) where x ∈ A.
A A
If the set A is clear from the context, the
diagonal of A × A
subscript A can be omitted.
7 Standard number sets and intervals
Table 3 — Symbols and expressions for standard number sets and intervals
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-7.1 N the set of natural numbers, N = {0, 1, 2, 3, …}
*
the set of positive integers and
N = {1, 2, 3, …}
zero
Other restrictions can be indicated in an
obvious way, as shown below.
N = {n ∈ N | n > 5}
> 5
The symbols IN and  are also used.
ISO 80000-2:2019(E)
Table 3 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-7.2 the set of integers
Z Z = {…, −2, −1, 0, 1, 2, …}
*
Z = {n ∈ Z | n ≠ 0}
Other restrictions can be indicated in an
obvious way, as shown below.
Z = {n ∈ Z | n > −3}
> −3
The symbol  is also used.
2-7.3 Q the set of rational numbers
*
Q = {r ∈ Q | r ≠ 0}
Other restrictions can be indicated in an
obvious way, as shown below.
Q = {r ∈ Q | r < 0}
< 0
The symbols QI and ℚ are also used.
2-7.4 R the set of real numbers
*
R = {x ∈ R | x ≠ 0}
Other restrictions can be indicated in an
obvious way, as shown below.
R = {x ∈ R | x > 0}
> 0
The symbols IR and  are also used.
2-7.5 the set of complex numbers
C *
C = {z ∈ C | z ≠ 0}
The symbol  is also used.
2-7.6 P the set of prime numbers P = {2, 3, 5, 7, 11, 13, 17, …}
The symbol ℙ is also used.
2-7.7 [a, b] closed interval from a included
[a, b] = {x ∈ R | a ≤ x ≤ b}
to b included
2-7.8 (a, b] left half-open interval from a
(a, b] = {x ∈ R | a < x ≤ b}
excluded to b included
The notation ]a, b] is also used.
2-7.9 [a, b) right half-open interval from a [a, b) = {x ∈ R | a ≤ x < b}
included to b excluded
The notation [a, b[ is also used.
2-7.10 (a, b) open interval from a excluded to b
(a, b) = {x ∈ R | a < x < b}
excluded
The notation ]a, b[ is also used.
2-7.11 (−∞, b] closed unbounded interval up to b (−∞, b] = {x ∈ R | x ≤ b}
included
The notation ]−∞, b] is also used.
2-7.12 (−∞, b) open unbounded interval up to b
(−∞, b) = {x ∈ R | x < b}
excluded
The notation ]−∞, b[ is also used.
2-7.13 [a, +∞) closed unbounded interval on- [a, +∞) = {x ∈ R | a ≤ x}
ward from a included
The notations [a, ∞), [a, +∞[ and [a, ∞[ are
also used.
2-7.14 (a, +∞) open unbounded interval onward
(a, +∞) = {x ∈ R | a < x}
from a excluded
The notations (a, ∞), ]a, +∞[ and ]a, ∞[ are
also used.
ISO 80000-2:2019(E)
8 Miscellaneous symbols
Table 4 — Miscellaneous symbols and expressions
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-8.1 a = b a is equal to b The symbol ≡ may be used to emphasize
that a particular equality is an identity, i.e.
a equals b
holds universally.
But see 2-8.18 for another meaning.
2-8.2 a ≠ b a is not equal to b The negating stroke may also be vertical.
2-8.3 a ≔ b a is by definition equal to b EXAMPLE
p ≔ mv , where p is momentum, m is mass
and v is velocity.
The symbols = and ≝ are also used.
def
2-8.4 a ≙ b a corresponds to b EXAMPLES
When E = kT, then 1 eV ≙ 11 604,5 K.
When 1 cm on a map corresponds
to a length of 10 km, one may write
1 cm ≙ 10 km.
The correspondence is not symmetric.
2-8.5 a ≈ b a is approximately equal to b It depends on the user whether an approx-
imation is sufficiently good. Equality is not
excluded.
2-8.6 a ≃ b a is asymptotically equal to b EXAMPLE
1 1
≃ as x → a
sin xa− xa−
()
(For x → a, see 2-8.16.)
2-8.7 a ~ b a is proportional to b The symbol ~ is also used for equivalence
relations.
The notation a ∝ b is also used.
2-8.8 M ≅ N M is congruent to N, M and N are point sets (geometrical figures).
M is isomorphic to N This symbol is also used for isomorphisms
of mathematical structures.
2-8.9 a < b a is less than b
2-8.10 b > a b is greater than a
2-8.11 a ≤ b a is less than or equal to b
2-8.12 b ≥ a b is greater than or equal to a
2-8.13 a ≪ b a is much less than b It depends on the situation whether a is
sufficiently small as compared to b.
2-8.14 b ≫ a b is much greater than a It depends on the situation whether b is
sufficiently great as compared to a.
2-8.15 ∞ infinity This symbol does not denote a number but
is often part of various expressions dealing
with limits.
The notations +∞, −∞ are also used.
2-8.16 x → a x tends to a This symbol occurs as part of various ex-
pressions dealing with limits.
a may be also ∞, +∞, or −∞.
ISO 80000-2:2019(E)
Table 4 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-8.17 m ∣ n m divides n For integers m and n:
∃ k ∈ Z m ⋅ k = n
2-8.18 n ≡ k mod m n is congruent to k modulo m For integers n, k and m:
m ∣ (n − k)
This concept of number theory must not be
confused with identity of an equation, men-
tioned in 2-8.1, column 4.
2-8.19 (a + b) parentheses It is recommended to use only parentheses
for grouping, since brackets and braces
[a + b] square brackets
often have a specific meaning in particular
{a + b} braces fields. Parentheses can be nested without
ambiguity.
〈a + b〉 angle brackets
9 Elementary geometry
Table 5 — Symbols and expressions in elementary geometry
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-9.1 AB∥CD the straight line AB is parallel to It is written g ∥ h if g and h are the straight
the straight line CD lines determined by the points A and B, and
the points C and D, respectively.
2-9.2 AB⊥CD the straight line AB is perpendicu- It is written g ⊥ h if g and h are the straight
lar to the straight line CD lines determined by the points A and B, and
the points C and D, respectively. In a plane,
the straight lines intersect.
2-9.3 ∢ABC angle at vertex B in the triangle The angle is not oriented, it holds that
ABC ∢ABC = ∢CBA and
0 ≤ ∢ABC ≤ π rad.
For a more general definition including rota-
tion angles see ISO 80000-3.
2-9.4 line segment from A to B The line segment is the set of points
AB
between A and B on the straight line AB
including the end points A and B.
 
2-9.5 vector from A to B
AB If AB=CD then B, seen from A, is in the
same direction and distance as D is, seen
from C. It does not follow that A = C and
B = D.
2-9.6 d(A, B) distance between points A and B The distance is the length of the line
segment AB and also the magnitude of the

vectorAB .
ISO 80000-2:2019(E)
10 Operations
Table 6 — Symbols and expressions for mathematical operations
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-10.1 a + b a plus b This operation is named addition. The sym-
bol + is the addition symbol.
2-10.2 a − b a minus b This operation is named subtraction. The
symbol − is the subtraction symbol.
2-10.3 a ± b a plus or minus b This is a combination of two values into one
expression.
2-10.4 a ∓ b a minus or plus b −(a ± b) = −a ∓ b
2-10.5 a ⋅ b a multiplied by b, This operation is named multiplication. The
symbol for multiplication is a half-high dot
a × b a times b
(⋅) or a cross (× ).
a b
Either symbol may be omitted if no misun-
ab derstanding is possible.
See also 2-6.16, 2-6.17, 2-18.11, 2-18.12,
2-18.23 and 2-18.24 for the use of the dot
and cross in various products.
2-10.6 a divided by b
a a
−1
=⋅ab
b b
a/b The symbol : is often used for ratios of quan-
tity values of the same dimension.
a : b
The symbol ÷ should not be used.
n
2-10.7 n a + a + … + a ,
1 2 n
The notations a , a , a and
∑ i ∑ i ∑ i
i=1 i
a
∑ i
sum of a , a , …, a
i
1 2 n
i=1
a are also used.
∑ i
n n
2-10.8 a ⋅ a ⋅ … ⋅ a ,
1 2 n
The notations a , a , a and
∏ ∏ ∏
i i i
a i=1 i
∏ i
product of a , a , …, a
i
1 2 n
i=1
a are also used.

i
p 2
2-10.9 a a to the power p The verbal equivalent of a is a squared; the
verbal equivalent of a is a cubed.
1/2
2-10.10 a a to the power 1/2,
If a ≥ 0, then a ≥ 0.
square root of a
a
The symbol √a should be avoided.
See remark to 2-10.11.
1/n
n
2-10.11 a a to the power 1/n,
If a ≥ 0, then a ≥ 0.
th
n
n root of a
n
a
The symbol without the upper line √a
should be avoided.
n
If however the symbol √ or √ is used acting
on a composite expression, parentheses
shall be used to avoid ambiguity.
ISO 80000-2:2019(E)
Table 6 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-10.12 x mean value of x, Mean values obtained by other methods are
the
〈x〉 arithmetic mean of x
— harmonic mean denoted by subscript h,
x
a
— geometric mean denoted by subscript g,
— quadratic mean, often called “root mean
square”, denoted by subscript q or rms.
The subscript may only be omitted for the
arithmetic mean.
In mathematics, x is also used for the
complex conjugate of x; see 2-15.6.
2-10.13 sgn a signum a For real a:
10if a>


sgn a= 00if a=


−<10if a

See also item 2-15.7. Sometimes sgn 0 is left
undefined.
2-10.14 inf M infimum of M Greatest lower bound of a non-empty set of
numbers bounded from below.
2-10.15 sup M supremum of M Smallest upper bound of a non-empty set of
numbers bounded from above.
2-10.16 absolute value of a, The notation abs a is also used.
a
modulus of a, The symbol ∣∣ is also used for cardinality
of a set (see 2-6.5), modulus of a complex
magnitude of a
number (2-15.4) and magnitude of a vector
(see 2-18.4).
2-10.17 floor a, The notation ent a is also used.
a
 
 
the greatest integer less than or EXAMPLES
equal to the real number a
24, =2
 
−24, =−3
 
 
2-10.18 a ceil a, “ceil” is an abbreviation of the English word
 
 
“ceiling”.
the least integer greater than or
equal to the real number a EXAMPLES
24, =3
 
−24, =−2
 
 
2-10.19 int a integer part of the real number a intsaa=⋅gn a
 
EXAMPLES
int(2,4) = 2
int(−2,4) = −2
2-10.20 frac a fractional part of the real num- frac a = a − int a
ber a
EXAMPLES
frac(2,4) = 0,4
frac(−2,4) = −0,4
ISO 80000-2:2019(E)
Table 6 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-10.21 min(a, b) minimum of a and b The operation generalizes to more than two
numbers and to sets of numbers. However,
an infinite set of numbers need not have a
smallest element, in this case use inf (see
2-10.14).
2-10.22 max(a, b) maximum of a and b The operation generalizes to more than two
numbers and to sets of numbers. However,
an infinite set of numbers need not have a
greatest element, in this case use sup (see
2-10.15).
11 Combinatorics
In this clause, n and k are natural numbers, with k ≤ n.
Table 7 — Symbols and expressions in combinatorics
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
n
2-11.1 n! factorial
nk!==12⋅⋅3⋅…⋅n  (for n > 0)

k=1
0! = 1
2-11.2 k falling factorial k
a a = a⋅(a − 1)⋅…⋅(a − k + 1) (for k > 0)
a = 1
a may be a complex number.
For a natural number n:
n!
k
n =
()nk− !
In combinatorics and statistics, the symbol
(a) is often used for the falling factorial.
k
In the theory of special functions, however,
the same symbol is often used for the rising
factorial and called Pochhammer symbol.
2-11.3 k rising factorial k
a a = a⋅(a + 1)⋅…⋅(a + k − 1) (for k > 0)
a = 1
a may be a complex number.
For a natural number n:
()nk+−1 !
k
n =
()n−1 !
In the theory of special functions, the
symbol a is often used for the rising
()
k
factorial and called Pochhammer symbol. In
combinatorics and statistics, however, the
same symbol is often used for the falling
factorial.
2-11.4 binomial coefficient
n n
   
n!
=  ()for0≤≤kn
   
kn!!()−k
k k
   
ISO 80000-2:2019(E)
Table 7 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-11.5 B Bernoulli numbers n−1
n
n+1
 
BB=−
 

n k
n+1
k
 
k=0
(for n > 0)
B = 1
B =−12/ , B =0
1 23n+
2-11.6 k number of combinations without
n
  n!
C
n k
C = =
repetition  
n
kn!!()−k
k
 
R k
2-11.7 number of combinations with nk+−1
C  
R k
n
C =
repetition  
n
k
 
2-11.8 k number of variations without
n!
V
kk
n
V ==n
repetition n
()nk− !
The term “permutation” is used when n = k.
R k R kk
2-11.9 number of variations with repeti-
V V =n
n n
tion
12 Functions
Items 2-12.1 up to 2-12.13 concern functions in general, items 2-12.14 to 2-12.27 concern functions with
numbers as values as used in calculus.
Table 8 — Symbols and expressions for functions
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-12.1 f, g, h, … functions A function assigns to any argument in its
domain a unique value in its range.
The arguments are said to be mapped by the
function onto the values, which are called
images of the arguments under the function.
2-12.2 f(x) value of function f for argument x A function having a set of n-tuples as its
or for argument (x , …, x ), respec- domain is an n-place function.
1 n
f(x , …, x )
1 n
tively
2-12.3 dom f domain of f Set of objects to which f assigns a value.
D( f ) is also used.
2-12.4 ran f range of f Set of values of the function f .
R( f ) is also used.
2-12.5 f: A → B f maps A into B dom f = A and ran f ⊆ B
It is not necessary that all elements of B are
values of the function f.
2-12.6 f: A ↠ B f maps A surjectively onto B dom f = A and ran f = B
2-12.7 f: A ↣ B f maps A injectively into B f: A → B and for all x, y ∈ A
if x ≠ y then f(x) ≠ f( y).
The function f is then said to be injective or
one-one.
2-12.8 f: A ⤖ B f maps A bijectively onto B f: A ↠ B and f: A ↣ B
ISO 80000-2:2019(E)
Table 8 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-12.9 x↦T(x), x ∈ A function that maps any x ∈ A onto T(x) is a defining term denoting the values
T(x) of some function for the arguments x ∈ A.
If this function is called f, then it holds
f(x) = T(x) for any x ∈ A. Therefore the de-
fining term T(x) is often used to denote the
function f .
EXAMPLE
x↦3x y, x ∈ [0, 2]
This is the quadratic function (of x depend-
ing on the parameter y) defined on the
stated interval by the term 3x y.
If no function symbol is introduced, the
term 3x y is used to denote this function.
-1 -1
2-12.10 f inverse function of f The inverse function f of a function f is
only defined if f is injective.
If f is injective then
-1 -1
dom( f ) = ran( f ), ran( f ) = dom( f ), and
-1
f ( f(x)) = x for x ∈ dom f.
-1
The inverse function f should not be
confused with the pointwise reciprocal
-1
function x ↦ f(x) .
gf
2-12.11 composite function of f and g, gf xg= fx
()() ()()
g circle f
In the composite gf , the function g is
applied after function f has been applied.
f
2-12.12 f(x) = y, EXAMPLE
xy→
cos
f maps x onto y
f : x ↦ y π→−1
2-12.13 b This notation is used mainly when evaluat-
fb()−fa()
f
a
ing definite integrals.
fb., , . −fa., , .
() ()
ub=
fu(., , .)
ua=
2-12.14 limit of f(x) as x tends to a f(x) → b as x → a
lim(fx)
xa→
may be written for lim(fx)=b .
lim(fx)
xa→
xa→
Limits “from the right” (x > a) and “from the
left” (x < a) are denoted by
lim(fx) and
xa→+
lim(fx) , respectively.
xa→−
2-12.15 f(x) = O(g(x)) f(x) is upper case O of g(x), The symbol “=” here is used for historical
reasons and does not have the meaning
∣f(x)/g(x)∣ is bounded from above
of equality, because transitivity does not
in the limit implied by the context,
apply.
f(x) is of the order comparable
EXAMPLE
with or inferior to g(x)
sin(xx=O ) , when x → 0
ISO 80000-2:2019(E)
Table 8 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-12.16 f(x) = o(g(x)) f(x) is lower case o of g(x), The symbol “=” here is used for historical
reasons and does not have the meaning
f(x)/g(x) → 0 in the limit implied
of equality, because transitivity does not
by the context,
apply.
f(x) is of the order inferior to g(x)
EXAMPLE
cos(xx=+1o ) , when x → 0
2-12.17 Δf delta f, Difference of two function values implied by
the context.
finite increment of f
EXAMPLES
Δ=xx −x
Δfx()= fx()− fx()
2-12.18 derivative of f with respect to x Only to be used for functions of one varia-
df
ble.
dx
ddfx/
The independent variable may also be indi-
cated, for example
f ′
dfx()
Df
, ddfx()/ x , fx′() and Dfx() .
dx

If the independent variable is time t, f is
also used for f ′ .
2-12.19 value of the derivative of f for x = a See also 2-12.18
df
 
 
dx
 
xa=
ddfx/
()
xa=
fa′
()
Dfa()
th
n
2-12.20 n derivative of f with respect to x Only to be used for functions of one varia-
d f
ble.
n
dx
n
nn
d fx
ddfx/ ()
nn ()n
n
, ddfx / x , fx and D f are
() ()
n
n dx
()
f
also used.
n
D f
(2) (3)
f ″ and f ″′ are also used for f and f ,
respectively.

If the independent variable is time t, f is
also used for f ″ .
ISO 80000-2:2019(E)
Table 8 (continued)
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-12.21 partial derivative of f with respect Only to be used for functions of several
∂f
to x variables.
∂x
∂f/∂x
∂fx(, y,.)
, ∂f (x, y, …)∕∂x, ∂ f (x, y, …) and
x
∂x
∂ f
x
D fx(),,y … are also used.
x
The other independent variables may be
∂f
 
shown as subscripts, e.g. .
 
 ∂x 
y.
This partial derivative notation is extended
to derivatives of higher order, e.g.
∂ f ∂ ∂f
 
=
 
∂x ∂x
∂x  
∂ f ∂ ∂f
 
=
 
∂∂xy ∂x ∂y
 
∂ ∂f
 
Other notations, e.g. f = , are also
 
xy
∂x ∂y
 
used.
2-12.22 df total differential of f
∂f ∂f
ddfx,,y … = x+ dy+…
()
∂x ∂y
2-12.23 δf (infinitesimal) variation of f This symbol is used in variational calculus.
2-12.24 indefinite integral of f
fx()dx

b
2-12.25 definite integral of f from a to b This is the simple case of a function defined
on an interval. Integration of functions
fx dx
()

defined on more general domains may also
a
be defined. Special notations, e.g. ,, ,,
∫∫∫∫
CS V
are used for integration over a curve C, a
surface S, a three-dimensional domain V,
and a closed curve or surface, respectively.
Multiple integrals are also denoted ,
,
∫∫∫∫
etc.
b c−δ b
2-12.26 Cauchy principal value of the
 
integral of f with singularity at c,  
− fx dx lim fx ddxf+ xx
() () ()
∫ ∫∫
δ→+0  
where ac< a  a c+δ 
∞ a
2-12.27 Cauchy principal value of the inte-
gral of f
− fx()dx limd− fx() x
∫ ∫
a→∞
_
∞ −a
See 2-12.26.
13 Exponential and logarithmic functions
Complex arguments can be used, in particular for the base e.
ISO 80000-2:2019(E)
Table 9 — Symbols and expressions for exponential and logarithmic functions
Symbol,
Item No. Meaning, verbal equivalent Remarks and examples
expression
2-13.1 e base of natural logarithm n
 
e ≔ lim 1+ = 2,718 281 828 .
 
n→∞ n
This number is called Euler number.
x
2-13.2 a a to the power of x, See also 2-10.9.
exponential function to the base a
of ar
...


SLOVENSKI SIST EN ISO 80000-2

STANDARD
december 2019
Veličine in enote – 2. del: Matematika
(ISO 80000-2:2019, popravljena verzija 2021-11)

Quantities and units – Part 2: Mathematics
(ISO 80000-2:2019, corrected version 2021-11)

Größen und Einheiten – Teil 2: Mathematik
(ISO 80000-2:2019, korrigierte Fassung 2021-11)

Grandeurs et unités – Partie 2: Mathématiques
(ISO 80000-2:2019, version corrigée 2021-11)

Referenčna oznaka
ICS 01.060; 07.020 SIST EN ISO 80000-2:2019 (sl)

Nadaljevanje na strani II ter od 1 do 47

© 2023-10. Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

SIST EN ISO 80000-2 : 2019
NACIONALNI UVOD
Standard SIST EN ISO 80000-2:2019 (sl), Veličine in enote – 2. del: Matematika (ISO 80000-2:2019,
popravljena verzija 2021-11), ima status slovenskega standarda in je istoveten evropskemu standardu
verzija 2021-11).
Ta standard nadomešča SIST EN ISO 80000-2:2013 in SIST ISO 80000-2:2013.

NACIONALNI PREDGOVOR
Evropski standard EN ISO 80000-2:2019 je pripravil tehnični odbor ISO/TC 12 "Veličine in enote" v
sodelovanju s tehničnim odborom CEN/SS F02 "Enote in simboli", katerega sekretariat vodi CCMC.

Slovenski standard SIST EN ISO 80000-2:2019 je prevod evropskega standarda EN ISO 80000-2:2019.
V primeru spora glede besedila slovenskega prevoda v tem standardu je odločilen izvirni evropski
standard v angleškem jeziku. Slovensko izdajo standarda je pripravil tehnični odbor SIST/TC TRS
Tehnično risanje, veličine, enote, simboli in grafični simboli.

Odočitev za izdajo tega standarda je 16. 10. 2019 sprejel SIST/TC TRS Tehnično risanje, veličine,
enote, simboli in grafični simboli.

ZVEZA Z NACIONALNIMI STANDARDI

S privzemom tega evropskega standarda, ki je istoveten mednarodnemu standardu, veljajo za omejeni
namen referenčnih standardov vsi standardi, navedeni v izvirniku, razen standardov, ki so že sprejeti v
nacionalno standardizacijo:
SIST EN ISO 80000-1:2023 (en) Veličine in enote – 1. del: Splošno (ISO 80000-1:2022)

PREDHODNA IZDAJA
– SIST ISO 80000-2:2013 (sl), Veličine in enote – 2. del: Matematični znaki in simboli za uporabo v
naravoslovnih vedah in tehniki

OPOMBE
– Povsod, kjer se v besedilu standarda uporablja izraz "evropski standard" ali "mednarodni standard",
v SIST EN ISO 80000-2:2019 to pomeni "slovenski standard".

– Nacionalni uvod in nacionalni predgovor nista sestavni del evropskega standarda.

II
EVROPSKI STANDARD
EN ISO 80000‐2
EUROPEAN STANDARD
NORME EUROPÉENNE
oktober 2019
EUROPÄISCHE NORM
ICS 01.060; 01.075 Nadomešča EN ISO 80000-2:2013

Slovenska izdaja
Veličine in enote – 2. del: Matematika
(ISO 80000‐2:2019, popravljena verzija 2021‐11)

Quantities and units – Part 2: Grandeurs et unités – Partie 2: Größen und Einheiten – Teil 2:
Mathematics (ISO 80000- Mathématiques (ISO 80000- Mathematik (ISO 80000-2:2019,
2:2019, corrected version 2:2019, version corrigée korrigierte Fassung 2021-11)
2021-11) 2021-11)
Ta evropski standard je CEN sprejel 5. maja 2019.

Upravni center CEN-CENELEC je ta evropski standard popravil in ponovno izdal 8. decembra
2021.
Člani CEN morajo izpolnjevati določila notranjih predpisov CEN/CENELEC, s katerimi je
predpisano, da mora biti ta evropski standard brez kakršnihkoli sprememb sprejet kot
nacionalni standard. Seznami najnovejših izdaj teh nacionalnih standardov in njihovi
bibliografski podatki so na zahtevo na voljo pri Upravnem centru CEN-CENELEC ali
kateremkoli članu CEN.
Ta evropski standard obstaja v treh uradnih izdajah (angleški, francoski in nemški). Izdaje v
drugih jezikih, ki jih člani CEN na lastno odgovornost prevedejo in izdajo ter prijavijo pri
Upravnem centru CEN-CENELEC, veljajo kot uradne izdaje.

Člani CEN so nacionalni organi za standarde Avstrije, Belgije, Bolgarije, Cipra, Češke republike,
Danske, Estonije, Finske, Francije, Grčije, Hrvaške, Irske, Islandije, Italije, Latvije, Litve,
Luksemburga, Madžarske, Malte, Nemčije, Nizozemske, Norveške, Poljske, Portugalske,
Republike Severne Makedonije, Romunije, Slovaške, Slovenije, Srbije, Španije, Švedske, Švice,
Turčije in Združenega kraljestva.

CEN
EVROPSKI ODBOR ZA STANDARDIZACIJO
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Upravni center CEN‐CENELEC: Rue de la Science 23, B‐1040 Bruselj

© 2019 CEN Vse pravice do izkoriščanja v kakršnikoli obliki in na Ref. oz. EN ISO 80000-2:2019 E
kakršenkoli način imajo nacionalni člani CEN.

SIST EN ISO 80000-2 : 2019
Evropski predgovor
Ta dokument (EN ISO 80000-2:2019) je pripravil tehnični odbor ISO/TC 12 "Veličine in enote" v
sodelovanju s tehničnim odborom CEN/SS F02 "Enote in simboli", katerega sekretariat vodi
CCMC.
Ta evropski standard mora dobiti status nacionalnega standarda bodisi z objavo istovetnega
besedila ali z razglasitvijo najpozneje do aprila 2020, nacionalne standarde, ki so v nasprotju s
tem standardom, pa je treba razveljaviti najpozneje do aprila 2020.

Opozoriti je treba na možnost, da je lahko nekaj elementov tega dokumenta predmet patentnih
pravic. CEN ne prevzema odgovornosti za identifikacijo katerihkoli ali vseh takih patentnih pravic.

Ta dokument nadomešča standard EN ISO 80000-2:2013.

V skladu z notranjimi pravili CEN/CENELEC morajo ta evropski standard obvezno uvesti
nacionalne organizacije za standarde naslednjih držav: Avstrije, Belgije, Bolgarije, Cipra, Češke
republike, Danske, Estonije, Finske, Francije, Grčije, Hrvaške, Irske, Islandije, Italije, Latvije, Litve,
Luksemburga, Madžarske, Malte, Nemčije, Nizozemske, Norveške, Poljske, Portugalske, Republike
Severne Makedonije, Romunije, Slovaške, Slovenije, Srbije, Španije, Švedske, Švice, Turčije in
Združenega kraljestva.
Razglasitvena objava
Besedilo mednarodnega standarda ISO 80000-2:2019, popravljena verzija 2021-11, je CEN
odobril kot evropski standard EN ISO 80000-2:2019 brez kakršnihkoli sprememb.

SIST EN ISO 80000-2 : 2019
VSEBINA Stran
Evropski predgovor . 2
Predgovor . 4
Uvod . 6
1 Področje uporabe . 7
2 Zveze s standardi . 7
3 Izrazi in definicije . 7
4 Spremenljivke, funkcije in operatorji . 7
5 Matematična logika . 8
6 Množice . 9
7 Standardne številske množice in intervali . 11
8 Razni simboli . 12
9 Elementarna geometrija . 14
10 Operacije . 14
11 Kombinatorika . 17
12 Funkcije . 19
13 Eksponentne in logaritemske funkcije . 23
14 Krožne in hiperbolične funkcije . 24
15 Kompleksna števila . 26
16 Matrike . 26
17 Koordinatni sistemi . 28
18 Skalarji, vektorji in tenzorji . 30
19 Transformi . 33
20 Posebne funkcije . 35
Literatura . 41
Abecedno kazalo . 42

SIST EN ISO 80000-2 : 2019
Predgovor
ISO (Mednarodna organizacija za standardizacijo) je svetovna zveza nacionalnih organov za
standarde (članov ISO). Mednarodne standarde praviloma pripravljajo tehnični odbori ISO. Vsak
član, ki želi delovati na določenem področju, za katero je bil ustanovljen tehnični odbor, ima
pravico biti zastopan v tem odboru. Pri delu sodelujejo tudi vladne in nevladne mednarodne
organizacije, povezane z ISO. V vseh zadevah, ki so povezane s standardizacijo na področju
elektrotehnike, ISO tesno sodeluje z Mednarodno elektrotehniško komisijo (IEC).

Postopki, uporabljeni pri razvoju tega dokumenta, in postopki, predvideni za njegovo nadaljnje
vzdrževanje, so opisani v Direktivah ISO/IEC, 1. del. Posebna pozornost naj se nameni različnim
kriterijem odobritve, potrebnim za različne vrste dokumentov ISO. Ta dokument je bil pripravljen
v skladu z uredniškimi pravili Direktiv ISO/IEC, 2. del (glej www.iso.org/directives).

Opozoriti je treba na možnost, da je lahko nekaj elementov tega dokumenta predmet patentnih
pravic. ISO ne prevzema odgovornosti za identifikacijo katerihkoli ali vseh takih patentnih pravic.
Podrobnosti o morebitnih patentnih pravicah, identificiranih med pripravo tega dokumenta, bodo
navedene v uvodu in/ali na seznamu patentnih izjav, ki jih je prejela organizacija ISO (glej
www.iso.org/patents).
Morebitna trgovska imena, uporabljena v tem dokumentu, so informacije za uporabnike in ne
pomenijo podpore blagovni znamki.

Za razlago prostovoljne narave standardov, pomena specifičnih pojmov in izrazov ISO, povezanih
z ugotavljanjem skladnosti, ter informacij o tem, kako ISO spoštuje načela Mednarodne trgovinske
organizacije (WTO) v Tehničnih ovirah pri trgovanju (TBT), glej www.iso.org/iso/foreword.html.

Ta dokument je pripravil tehnični odbor ISO/TC 12, Veličine in enote, v sodelovanju s tehničnim
odborom IEC/TC 25, Veličine in enote.

Ta druga izdaja razveljavlja in nadomešča prvo izdajo (ISO 80000-2:2009), ki je tehnično
spremenjena.
V primerjavi s prejšnjo izdajo so glavne tehnične spremembe naslednje:

‒ točka 4 je popravljena z dodanim pojasnilom glede pisanja vrst pisav; popravljeno je pravilo
za delitev enačb čez dve ali več vrstic;

‒ točka 18 je popravljena in vključuje pojasnilo glede skalarjev, vektorjev in tenzorjev;

‒ v drugem stolpcu preglednic "Simbol, izraz" so dodani manjkajoči simboli in izrazi, v četrtem
stolpcu "Opombe in primeri" so po potrebi podana dodatna pojasnila;

‒ dodatek A je izbrisan.
OPOMBA: Čeprav so bili v to drugo izdajo ISO 80000-1 dodani manjkajočo simboli in izrazi, pa je dokument še
vedno nepopoln.
Na spletnih straneh ISO in IEC je seznam vseh delov skupine standardov ISO 80000 in IEC 80000.

Za morebitne povratne informacije ali vprašanja glede tega dokumenta naj se uporabniki obrnejo
na svoj nacionalni organ za standarde. Popoln seznam teh organov je mogoče najti na povezavi
www.iso.org/members.html.
SIST EN ISO 80000-2 : 2019
Ta popravljena verzija ISO 80000-2:2019 vsebuje naslednje popravke:

‒ v 2-12.20, "Opombe in primeri", zadnja vrstica, f je zamenjan s f ;

‒ v 2-13.1, "Opombe in primeri", vrednost 2,718 81 28 . je zamenjana z 2,718 281 828 .;

‒ v 2-20.20, "Opombe in primeri", je prva enačba popravljena in se sedaj glasi:
m
d
m
m
L1zz L ; t.j. dodan je +m v podpisu pri L ;
  
nnm
m
dz
‒ v 2-20.21, "Opombe in primeri", druga vrstica, zveza v oklepajih je popravljena in se sedaj
glasi:
(za n ∈ N , z ≤ 1); t.j. doda se |z| ≤ 1.

SIST EN ISO 80000-2 : 2019
Uvod
Ureditev preglednic
V vsaki preglednici simbolov in izrazov (razen preglednice 13) je nakazan (v tretjem stolpcu)
pomen izraza oziroma kako se ta lahko prebere pri vsaki točki (v prvem stolpcu oštevilčenega)
obravnavanega simbola, ponavadi v okviru značilnega izraza (drugi stolpec). Če je za isto veličino
navedenih več simbolov ali izrazov, so vsi enakovredni. V nekaterih primerih, npr. pri
potenciranju, je samo en značilen izraz brez simbola. Vnosi so namenjeni prepoznavanju
posameznih pojmov in ne popolni matematični definiciji. V četrtem stolpcu, "Opombe in primeri",
so podane nadaljnje informacije in ni normativen.

Preglednica 13 ima drugačno obliko. V njej so za koordinatne sisteme v tridimenzionalnem
prostoru podani simboli koordinat ter položaj vektorjev in njihovih odvodov.

SIST EN ISO 80000-2 : 2019
Veličine in enote
2. del:
Matematika
1 Področje uporabe
Ta dokument opredeljuje matematične simbole, razlaga njihov pomen in podaja besedne
ekvivalente ter uporabo.
Ta dokument je v glavnem namenjen za uporabo v naravoslovnih vedah in tehniki, velja pa tudi
za druga področja, kjer se uporablja matematika.

2 Zveze s standardi
Naslednji dokumenti so v besedilu navedeni tako, da nekateri njihovi deli ali celotna vsebina
predstavlja zahteve tega dokumenta. Pri datiranih sklicevanjih se uporablja le navedena izdaja.
Pri nedatiranih sklicevanjih se uporablja zadnja izdaja dokumenta (vključno z morebitnimi
dopolnili).
ISO 80000-1 Veličine in enote – 1. del: Splošno

3 Izrazi in definicije
V preglednicah od 1 do 16 so podani simboli in izrazi, ki se uporabljajo na različnih področjih
matematike.
ISO in IEC vzdržujeta terminološke podatkovne baze za uporabo na področju standardizacije na
naslednjih naslovih:
‒ brskanje po spletni strani ISO: na voljo na https://www.iso.org/obp

‒ Elektropedija IEC: na voljo na http://www.electropedia.org/

4 Spremenljivke, funkcije in operatorji

Navadno se za različne vrste osnovnih delcev (edink) uporabljajo različne vrste črk, npr. x, y, … za
števila ali elemente neke dane množice, f, g za funkcije itd. To pripomore k čitljivosti formul in k
vzpostavljanju ustreznega sobesedila.

Spremenljivke, kot so x, y itd., in tekoče številke, kot je i v x , so natisnjene s poševnimi črkami.

i
i
Tudi parametri, kot so a, b itd., ki se lahko štejejo za konstante v določenem sobesedilu, so
natisnjeni poševno. Enako velja tudi za funkcije na splošno, npr. f, g.

Eksplicitno definirana funkcija, ki ni odvisna od sobesedila, pa je natisnjena s pokončnimi črkami,
npr. sin, exp, ln, Γ. Matematične konstante, katerih vrednosti se nikoli ne spremenijo, so tiskane
pokončno, npr. e = 2,718 281 828.; π = 3,141 592.; i = –1. Dobro definirani operatorji so prav
tako natisnjeni pokončno, npr. div, δ v δx in oba d-ja v df/dx. Nekateri transformi uporabljajo
posebne velike črke (glej točko 19, Transformi).

Števila, izražena s števkami, so vedno natisnjena pokončno, npr. 351 204; 1,32; 7/8.

Pred in za binarnimi operatorji, na primer +, −, /, mora biti majhen presledek. To pravilo ne velja
v primeru unarnih operatorjev, kot pri −17,3.
SIST EN ISO 80000-2 : 2019
Argument funkcije se napiše v oklepaju za simbolom funkcije brez presledka med simbolom za
funkcijo in prvim oklepajem, npr. f(x), cos(ω t + φ). Če je simbol za funkcijo sestavljen iz dveh ali
več črk in argument ne vsebuje nobenega operacijskega znaka, kot so +, –, × ali /, se oklepaj
argumenta lahko izpusti. V teh primerih naj bo med simbolom funkcije in argumentom majhen
presledek, npr. int 2,4; sin nπ; arcosh 2A; Ei x.

Če obstaja kakršnakoli nevarnost zamenjave, naj se obvezno uporabi oklepaj. Na primer, piše se
cos(x) + y, ne cos x + y, kar bi se lahko zamenjalo s cos(x + y).

Kot ločilo med števili ali izrazi se lahko uporabi vejica, podpičje ali drug ustrezen znak. Na splošno
se prednostno uporablja vejica, razen kadar se uporabljajo števila z decimalno vejico.

Če je treba izraz ali enačbo razcepiti v dve ali več vrstic, se uporabi naslednja metoda:

‒ prelom vrstice se vstavi takoj pred enim od znakov =, +, −, ± ali ∓ ali po potrebi takoj pred
enim od znakov ×, · ali /.
Znak se v naslednji vrstici ne sme ponoviti; dva znaka minus bi npr. lahko povzročila napako v
predznaku. Prelom vrstice naj po možnosti ne bo znotraj izraza v oklepaju.

5 Matematična logika
Preglednica 1: Simboli in izrazi v matematični logiki

Simbol, Pomen, besedni
Zap. št. Opombe in primeri
izraz ekvivalent
2-5.1 p ∧ q konjunkcija p in q,
p in q
2-5.2 p ∨ q disjunkcija p in q, Ta "ali" je vključujoč, tj. trditev p ∨ q je
pravilna, če je pravilen p ali q ali oba.
p ali q
2-5.3 ¬ p negacija p,
ni p
q ⇐ p ima isti pomen kot p ⇒ q.
2-5.4 p ⇒ q p implicira q,
⇒ je znak za implikacijo.
če p, potem q
→ se tudi uporablja kot znak za implikacijo.
2-5.5 p ⇔ q p je ekvivalenten q (p ⇒ q) ∧ (q ⇒ p) ima isti pomen kot p ⇔ q.
⇔ je znak za ekvivalenco.
↔ se tudi uporablja kot znak za ekvivalenco.
Če je iz sobesedila razvidno, za katero množico
2-5.6 ∀x ∈ A p(x) za vsak x iz A je trditev p(x)
A gre, se lahko uporablja zapis ∀x p(x).
pravilna
∀ je univerzalni kvalifikator.
Za x ∈ A glej 2-6.1.
Če je iz sobesedila razvidno, za katero množico
2-5.7 ∃x ∈ A p(x) obstaja x iz A, za katerega je
A gre, se lahko uporablja zapis ∃x p(x).
trditev p(x) pravilna
∃ je eksistencialni kvantifikator.
Za x ∈ A glej 2-6.1.
∃ x p(x) se uporablja za označitev, da obstaja
točno en element, za katerega je trditev p(x)
pravilna.
Za ∃ se uporablja tudi zapis ∃!.

SIST EN ISO 80000-2 : 2019
6 Množice
Preglednica 2: Simboli in izrazi za množice

Zap. Simbol, Pomen, besedni
Opombe in primeri
št. izraz ekvivalent
2-6.1 x ∈ A x pripada množici A, A ∋ x ima enak pomen kot x ∈ A.
x je element množice A
2-6.2 y ∉ A y ne pripada množici A, A ∌ y ima enak pomen kot y ∉ A.
y ni element množice A Negacija je lahko označena tudi s pokončnico.
2-6.3 {x1, x2, …, xn} množica z elementi Tudi {xi | i ∈ I}, kjer I označuje množico indeksov.
x1, x2, …, xn
2-6.4 {x ∈ A | p(x)} množica tistih PRIMER:
elementov A,
{x ∈ R | x ≥ 5}
za katere velja
Če je iz sobesedila razvidno, za katero množico A
trditev p(x)
gre, se lahko uporablja zapis {x | p(x)} (na primer
{x | x ≥ 5}, če je jasno, da to velja za realna števila).
Namesto navpičnice se kot ločilo lahko uporabi
dvopičje:
{x ∈ A : p(x)}.
2-6.5 card A število elementov v A, Kardinalno število je lahko transfinitno število.
|A| kardinalno število Znak ∣∣ se uporablja tudi za absolutno
množice A vrednost realnega števila (glej 2-10.16),
modul kompleksnega števila (glej 2-15.4) in
velikost vektorja (glej 2-18.4).
2-6.6 ∅ prazna množica
{}
2-6.7 B ⊆ A B je vsebovan v A, Vsak element iz B pripada A.
B je podmnožica A Uporablja se tudi ⊂, toda glej opombo k 2-6.8.
A ⊇ B ima enak pomen kot B ⊆ A.
2-6.8 B ⊂ A B je pravilno Vsak element B pripada A, toda vsaj en element A
vsebovan v A, ne pripada B.
B je prava Če se za 2-6.7 uporablja ⊂, potem se za 2-6.8
podmnožica A uporablja ⊊.
A ⊃ B ima enak pomen kot B ⊂ A.
2-6.9 A ∪ B unija množic A in B Množica elementov, ki pripadajo vsaj eni od
množic A in B.
A ∪ B = {x | x ∈ A ∨ x ∈ B}
2-6.10 A ∩ B presek množic A in B Množica elementov, ki pripadajo obema
množicama A in B.
A ∩ B = {x | x ∈ A ∧ x ∈ B}
SIST EN ISO 80000-2 : 2019
Preglednica 2 (nadaljevanje)
Zap. št. Simbol, Pomen, besedni Opombe in primeri
izraz ekvivalent
2-6.11 unija množic A1, A2, …, An Množica elementov, ki pripadajo vsaj eni od
množic A1, A2, ., An
Uporabljajo se tudi
kjer I označuje množico indeksov.
2-6.12 n presek družine množic Množica elementov, ki pripadajo vsem množicam
A A1, A2…, An A1, A2, ., An


i
i1
Uporabljajo se tudi
kjer I označuje množico indeksov.
2-6.13 A ∖ B razlika množic A in B, Množica elementov, ki pripadajo A, toda ne B.
A brez B A ∖ B = {x | x ∈ A ∧ x ∉ B}
Zapis A − B naj se ne uporablja.
Uporablja se tudi CAB.
CAB se v glavnem uporablja, kadar je B
podmnožica A, znak A pa se lahko izpusti, če je iz
sobesedila razvidno, za katero množico A gre.
2-6.14 (a, b) urejeni par a, b, (a, b) = (c, d), če in samo če je a = c in b = d.
dvojica a, b Če bi se vejica lahko pomotoma razumela kot
decimalni znak, se lahko kot ločilo uporabi
podpičje (;) ali navpičnica (|).
2-6.15 (a1, a2, …, an) urejena n-terica Glej opombo k 2-6.14.
2-6.16 A × B kartezijski produkt Množica urejenih parov (a, b), tako da je a ∈ A in
množic A in B b ∈ B.
A × B = {(x, y) | x ∈ A ∧ y ∈ B}
n
2-6.17 kartezijski produkt Množica urejenih n-teric (x , x , …, x ),
1 2 n
A
množic A , A , …, A tako da je x ∈ A , x ∈ A , …, x ∈ A .
 i 1 2 n 1 1 2 2 n n
i1
n n
A×A×.×A se označi z A , kjer je n število faktorjev

AAA
in1
v produktu.
i1
2-6.18 id enakostno razmerje na id je množica vseh parov (x, x), kjer je x ∈ A.
A A
množici A,
Če je množica A razvidna iz sobesedila, se lahko
diagonala množice indeks A izpusti.
A × A
SIST EN ISO 80000-2 : 2019
7 Standardne številske množice in intervali

Preglednica 3: Simboli in izrazi za standardne številske množice in intervale

Zap.
Simbol, izraz Pomen, besedni ekvivalent Opombe in primeri
št.
2-7.1 množica naravnih števil,
N N = {0, 1, 2, 3, …}
množica pozitivnih celih števil in
N * = {1, 2, 3, …}
ničle
Vidno so lahko označene tudi druge
omejitve, kot je prikazano spodaj.
N = {n ∈ N | n > 5}
> 5
Uporabljata se tudi znaka IN in ℕ.
2-7.2 množica celih števil
Z Z = {…, −2, −1, 0, 1, 2, …}
Z * = {n ∈ Z | n ≠ 0}
Vidno so lahko označene tudi druge
omejitve, kot je prikazano spodaj.
Z = {n ∈ Z | n > −3}
> −3
Uporablja se tudi znak ℤ.
2-7.3 množica racionalnih števil
Q Q * = {r ∈ Q | r ≠ 0}
Vidno so lahko označene tudi druge
omejitve, kot je prikazano spodaj.
Q < 0 = {r ∈ Q | r < 0}
Uporabljata se tudi znaka QI in ℚ.
2-7.4 množica realnih števil
R R * = {x ∈ R | x ≠ 0}
Vidno so lahko označene tudi druge
omejitve, kot je prikazano spodaj.
R > 0 = {x ∈ R | x > 0}
Uporabljata se tudi znaka IR in ℝ.
2-7.5 C množica kompleksnih števil C * = {z ∈ C | z ≠ 0}
Uporablja se tudi znak ℂ.
2-7.6 množica praštevil
P P = {2, 3, 5, 7, 11, 13, 17, …}
Uporablja se tudi znak ℙ.
2-7.7 [a, b] zaprti interval od vključno a do [a, b] = {x ∈ R | a ≤ x ≤ b}
vključno b
2-7.8 (a, b] levo polodprti interval od a (brez (a, b] = {x ∈ R | a < x ≤ b}
a) do vključno b
Uporablja se tudi zapis ]a, b].
2-7.9 [a, b) desno polodprti interval od
[a, b) = {x ∈ R | a ≤ x < b}
vključno a do b (brez b)
Uporablja se tudi zapis [a, b[.
2-7.10 (a, b) odprti interval od a (brez a) do b R
(a, b) = {x ∈ | a < x < b}
(brez b)
Uporablja se tudi zapis ]a, b[.
2-7.11 (−∞, b] zaprti neomejeni interval do
(−∞, b] = {x ∈ R | x ≤ b}
vključno b
Uporablja se tudi zapis ]−∞, b].

SIST EN ISO 80000-2 : 2019
Preglednica 3 (nadaljevanje)
Zap. Simbol, Pomen, besedni ekvivalent Opombe in primeri
št. izraz
2-7.12 (−∞, b) odprti neomejeni interval do b (−∞, b) = {x ∈ R | x < b}
(brez b)
Uporablja se tudi zapis ]−∞, b[.
2-7.13 [a, +∞) zaprti navzgor neomejeni
[a, +∞) = {x ∈ R | a ≤ x}
interval od vključno a
Uporabljajo se tudi zapisi [a, ∞), [a, +∞[ in
[a, ∞[.
2-7.14 (a, +∞) odprti navzgor neomejeni (a, +∞) = {x ∈ R | a < x}
interval od a (brez a)
Uporabljajo se tudi zapisi (a, ∞), ]a, +∞[ in
]a, ∞[.
8 Razni simboli
Preglednica 4: Razni simboli in izrazi

Zap. Simbol,
Pomen, besedni ekvivalent Opombe in primeri
št. izraz
2-8.1 a = b a je enak b Znak ≡ se lahko uporablja za poudarek, da
je določena enakost identitete, tj. velja
a je b
univerzalno.
Toda glej 2-8.18 za drug pomen.
2-8.2 a ≠ b a ni enak b Za negacijo se lahko uporabi tudi
navpičnica.
2-8.3 a ≔ b a je po definiciji enak b PRIMER:
p ≔ mv , kjer je p gibalna količina, m masa
in v hitrost.
Uporabljata se tudi znaka = in ≝.
def
2-8.4 a ≙ b a ustreza b PRIMERA:
Ko je E = kT, je 1 eV ≙ 11 604,5 K.
Če 1 cm na zemljevidu ustreza dolžini
10 km, se lahko zapiše:
1 cm ≙ 10 km.
Ujemanje ni simetrično.
2-8.5 a ≈ b a je približno enak b Od uporabnika je odvisno, ali je približek
dovolj dober. Enakost ni izključena.
2-8.6 a ≃ b a je asimptotično enak b PRIMER:
≃   kjer x → a
sinxa xa
(Za x → a glej 2-8.16.)
2-8.7 a ~ b a je sorazmeren b Znak ~ se uporablja tudi za ekvivalenčne
relacije.
Uporablja se tudi zapis a ∝ b.

SIST EN ISO 80000-2 : 2019
Preglednica 4 (nadaljevanje)
Zap. Simbol,
Pomen, besedni ekvivalent Opombe in primeri
št. izraz
2-8.8 M ≅ N M je kongruenten N, M in N sta točkovni množici (geometrični
številki).
M je izomorfen N
Ta znak se uporablja tudi za izomorfizme
matematičnih struktur.
2-8.9 a < b a je manjši od b
2-8.10 b > a b je večji od a
2-8.11 a ≤ b a je manjši ali enak b
2-8.12 b ≥ a b je večji ali enak a
2-8.13 a ≪ b a je mnogo manjši od b Od situacije je odvisno, ali je a dovolj
majhen v primerjavi z b.
2-8.14 b ≫ a b je mnogo večji od a Od situacije je odvisno, ali je b dovolj velik
v primerjavi z a.
2-8.15 ∞ neskončno Ta znak ne označuje števila, temveč je
pogosto del različnih izrazov, ki se
nanašajo na meje.
Uporabljata se tudi zapisa +∞, −∞.
2-8.16 x → a x teži proti a Ta znak se pojavlja kot del različnih
izrazov, ki se nanašajo na meje.
a je lahko tudi ∞, +∞ ali −∞.
2-8.17 m ∣ n m deli n Za celi števili m in n:
∃ k ∈ Z m ⋅ k = n
2-8.18 n ≡ k mod m n je kongruenten k modulu m Za cela števila n, k in m:
m ∣ (n − k)
Tega pojma teorije števil se ne sme
zamenjati z identiteto enačbe, omenjeno v
2-8.1, 4. stolpec.
2-8.19 (a + b) okrogli oklepaj Pri združevanju se priporoča samo
uporaba okroglega oklepaja, saj imajo
[a + b] oglati oklepaj
oglati, zaviti in lomljeni oklepaji na
{a + b} zaviti oklepaj
določenih področjih poseben pomen.
〈a + b〉 lomljeni oklepaj
Okrogli oklepaj se lahko nedvoumno
ugnezdi.
SIST EN ISO 80000-2 : 2019
9 Elementarna geometrija
Preglednica 5: Simboli in izrazi v elementarni geometriji

Zap. Simbol,
Pomen, besedni ekvivalent Opombe in primeri
št. izraz
2-9.1 AB∥CD daljica AB je vzporedna z daljico CD Če sta g in h daljici, ki ju določata točki
A in B oziroma C in D, se zapiše g ∥ h.
2-9.2 AB⊥CD daljica AB je pravokotna na daljico Če sta g in h daljici, ki ju določata točki
CD A in B oziroma C in D, se zapiše g ⊥ h.
V ravnini se daljici sekata.
2-9.3 ∢ABC kot na višinski točki B pri Kot ni usmerjen, velja, da je
trikotniku ABC
∢ABC = ∢CBA in
0 ≤ ∢ABC ≤ π rad.
Za splošnejšo definicijo, vključno z
rotacijskimi koti, glej ISO 80000-3.
����
2-9.4 linijski segment od A do B Linijski segment je množica točk med
AB
A in B na daljici AB, vključno s
končnima točkama A in B.


2-9.5 vektor od A do B
Če je AB=CD , potem je B, gledan od A,
AB
v isti smeri in razdalji kot je D, gledan
od C. Iz tega ne sledi, da je A = C in
B = D.
2-9.6 d(A, B) razdalja med točkama A in B Razdalja je dolžina linijskega
����
segmenta AB ter tudi velikost

vektorja AB .
10 Operacije
Preglednica 6: Simboli in izrazi za matematične operacije

Simbol,
Zap. št. Pomen, besedni ekvivalent Opombe in primeri
izraz
2-10.1 a + b a plus b Ta operacija se imenuje seštevanje.
Znak + je znak seštevanja.
2-10.2 a − b a minus b Ta operacija se imenuje odštevanje.
Znak – je znak odštevanja.
SIST EN ISO 80000-2 : 2019
Preglednica 6 (nadaljevanje)
Simbol,
Zap. št. Pomen, besedni ekvivalent Opombe in primeri
izraz
2-10.3 a ± b a plus ali minus b To je kombinacija dveh vrednosti v
enem izrazu.
2-10.4 a ∓ b a minus ali plus b −(a ± b) = −a ∓ b
2-10.5 a ⋅ b a pomnožen z b, Ta operacija se imenuje množenje.
Znak za množenje je poldvignjena pika
a × b a krat b
(⋅) ali krat ( ).
a b
Oba znaka se lahko izpustita, če ni
ab
mogoče, da bi prišlo do nesporazuma.
Glej tudi 2-6.16, 2-6.17, 2-18.11,
2-18.12, 2-18.23 in 2-18.24 za
uporabo pike in križca v
različnih produktih.
2-10.6 a deljeno z b
a a
1
ab
b b
a/b Znak : se pogosto uporablja za
razmerja količinskih vrednosti
a : b
enake dimenzije.
Znak ÷ naj se ne uporablja.
n
n
2-10.7 a1 + a2 + … + an,
Uporabljajo se tudi zapisi ,
a
 i
i1
a
 i
vsota a , a , …, a
1 2 n
, in .
a a
a
i1  i  i
 i
i
i
n
n
2-10.8 a ⋅ a ⋅ … ⋅ a ,
1 2 n Uporabljajo se tudi zapisi ,
a

i
i1
a
 i
produkt a1, a2, …, an
, in .
a a
a
i1   i  i
i
i
i
p 2
2-10.9 a a na potenco p Besedni ekvivalent a je a na kvadrat;
besedni ekvivalent a je a na kub.
1/2
2-10.10 a a na potenco 1/2,
Če je a ≥ 0, potem je 𝑎 ≥ 0.

kvadratni koren iz a
𝑎 Znaku √a se je treba izogibati.

Glej opombo k točki 2-10.11.

1/n
2-10.11 a a na potenco 1/n,
Če je a ≥ 0, potem je 𝑎 ≥ 0.


n
n-ti koren iz a
√𝑎 Znaku √a brez zgornje črtice se je
treba izogibati.
n
Če pa stoji znak √ ali √ pred
sestavljenim izrazom, je treba
uporabiti oklepaj, da bi se izognili
dvoumnosti.
SIST EN ISO 80000-2 : 2019
Preglednica 6 (nadaljevanje)
Simbol,
Zap. št. Pomen, besedni ekvivalent Opombe in primeri
izraz
2-10.12 𝑥̅ srednja vrednost x, Z drugimi metodami dobljene srednje
vrednosti so:
〈x〉 aritmetična sredina x
‒ harmonična sredina, označena z
𝑥̅a
indeksom h,
‒ geometrična sredina, označena z
indeksom g,
‒ kvadratična sredina, pogosto
imenovana "koren srednjega
kvadrata", označena z indeksom
q ali rms.
Indeks se lahko izpusti le za
aritmetično sredino.
V matematiki se 𝑥̅ uporablja tudi za
kompleksno konjugiran x; glej 2-15.6.
2-10.13 sgn a predznak a; Za realni a:
signum a
Glej tudi točko 2-15.7. Včasih ostane
sgn 0 nedefiniran.
2-10.14 inf M natančna spodnja meja M; Največja spodnja meja neprazne
navzdol omejene množice realnih
infimum M
števil.
2-10.15 sup M natančna zgornja meja M; Najmanjša zgornja meja neprazne
navzgor omejene množice realnih
supremum M
števil.
2-10.16 |𝑎| absolutna vrednost a, Uporablja se tudi zapis abs a.
modul a, Znak ∣∣ se uporablja tudi za kardinalno
število množice (glej 2-6.5), modul
velikost a
kompleksnega števila (2-15.4) in
velikost vektorja (glej 2-18.4).
2-10.17 ⌊𝑎⌋ spodnji celi del a (angl. floor a), Uporablja se tudi zapis ent a.
največje celo število, ki je manjše PRIMERA:
ali enako realnemu številu a
⌊ ⌋
2,4 = 2
⌊�2,4⌋ = –3
⌈ ⌉
2-10.18 𝑎 zgornji celi del a (angl. ceil a) "ceil" je okrajšava angleške besede
"ceiling".
najmanjše celo število, ki je večje
ali enako realnemu številu a PRIMERA:
⌈ ⌉
2,4 = 3
⌈�2,4⌉ = –2
SIST EN ISO 80000-2 : 2019
Preglednica 6 (nadaljevanje)
Zap. št. Simbol, izraz Pomen, besedni ekvivalent Opombe in primeri
2-10.19 int a celi del realnega števila a int a = sgn a ⋅ ⌊|𝑎|⌋
PRIMERA:
int(2,4) = 2
int(−2,4) = −2
2-10.20 frac a decimalni del realnega števila a frac a = a − int a
PRIMERA:
frac(2,4) = 0,4
frac(−2,4) = −0,4
2-10.21 min(a, b) najmanjši del a in b Operacija je splošna za več števil in za
množice števil. Ni pa nujno, da ima
neskončna množica števil najmanjši
element; v tem primeru se uporablja
inf (glej 2-10.14).
2-10.22 max(a, b) največji del a in b Operacija je splošna za več števil in za
množice števil. Ni pa nujno, da ima
neskončna množica števil največji
element; v tem primeru se uporablja
sup (glej 2-10.15).
11 Kombinatorika
V tej točki sta n in k naravni števili, s tem da je k ≤ n.

Preglednica 7: Simboli in izrazi v kombinatoriki

Zap. št. Simbol, Pomen, besedni ekvivalent Opombe in primeri
izraz
n
2-11.1 n! fakulteta
(za n > 0)
nk!123n

k1
0! = 1
SIST EN ISO 80000-2 : 2019
Preglednica 7 (nadaljevanje)
Zap. št. Simbol, Pomen, besedni ekvivalent Opombe in primeri
izraz
k k
2-11.2 padajoča fakulteta
a a
= a⋅(a − 1)⋅…⋅(a − k + 1) (za k > 0)
a = 1
a je lahko kompleksno število.
Za naravno število n je:
n!
k
n 
nk !
V kombinatoriki in statistiki se za
padajočo fakulteto pogosto uporablja
simbol (a) .
k
V teoriji posebnih funkcij pa se isti
simbol pogosto uporablja za
rastočo fakulteto in se imenuje
Pochhammerjev simbol.
2-11.3 k rastoča fakulteta k
a a = a⋅(a + 1)⋅…⋅(a + k − 1) (za k > 0)
a = 1
a je lahko kompleksno število.
Za naravno število n je:
nk1!
 
k
n 
n1!
V teoriji posebnih funkcij se
simbol (a)k pogosto uporablja za
rastočo fakulteto in se imenuje
Pochhammerjev simbol.
V kombinatoriki in statistiki pa se
isti simbol pogosto uporablja za
padajočo fakulteto.
2-11.4 n binomski koeficient n
  n!
   (za 0 ≤k ≤n)
 
kn!!k
k k 
 
2-11.5 B Bernoullijeva števila n1
n
n1
1 
BB

nk
n1
k

k0
(za n > 0)
B0 = 1
B1 = −1/2, B0
23n
2-11.6 k število kombinacij brez n
 n!
C
k
n
C

ponavljanja n
kn!!k
k 

2-11.7 R k
število kombinacij s nk1

C
n R k
C 

ponavljanjem
n
k

SIST EN ISO 80000-2 : 2019
Preglednica 7 (nadaljevanje)
Zap. št. Simbol, Pomen, besedni ekvivalent Opombe in primeri
izraz
k
2-11.8 število variacij brez ponavljanja
n!
V
kk
n Vn
n
nk !

Kadar je n = k, se uporablja izraz
"permutacija".
R k Rkk
2-11.9 število variacij s ponavljanjem
V V n
n n
12 Funkcije
Točke 2-12.1 do 2-12.13 se nanašajo na funkcije na splošno, točke 2-12.14 do 2-12.27 pa se
nanašajo na funkcije s števili kot vrednostmi, kot se uporabljajo v infinitezimalnem računu
(kalkulusu).
Preglednica 8: Simboli in izrazi za funkcije

Simbol,
Zap. Št. Pomen, besedni ekvivalent Opombe in primeri
izraz
2-12.1 f, g, h, … funkcije Funkcija vsakemu argumentu v
njegovi domeni dodeli enotno
vrednost v svojem območju.
Funkcija naj bi argumente preslikala
v vrednosti, ki se imenujejo slike
argumentov pod funkcijo.
2-12.2 f(x) vrednost funkcije f za argument x Funkcija, ki ima za svojo domeno
oziroma za argument (x1, …, xn) množico n-teric, je n-mestna funkcija.
f(x1, …, xn)
2-12.3 dom f domena f Množica objektov, ki jim f dodeli
vrednost.
Uporablja se tudi D(f ).
2-12.4 ran f območje f Množica vrednosti f.
Uporablja se tudi R(f ).
2-12.5 f: A → B f preslika A v B dom f = A in ran f ⊆ B

Ni nujno, da so vsi elementi B
vrednosti funkcije f.
dom f = A in ran f = B
2-12.6 f: A ↠ B f surjektivno preslika A na B

f: A → B in za vse x, y ∈ A,
2-12.7 f: A ↣ B f injektivno preslika A v B

če je x ≠ y, potem je f(x) ≠ f(y).
Funkcija f naj bi bila potem injektivna
ali ena na ena.
f: A ↠ B in f: A ↣ B
2-12.8 f: A ⤖ B f bijektivno preslika A na B

SIST EN ISO 80000-2 : 2019
Preglednica 8 (nadaljevanje)
Simbol,
Zap. Št.
Pomen, besedni ekvivalent Opombe in primeri
izraz
T(x) je opredeljujoč izraz, ki označuje
2-12.9 x↦T(x), funkcija, ki vsako x ∈ A preslika
vrednosti neke funkcije za argumente
x ∈ A na T(x)
x ∈ A.
Če se ta funkcija imenuje f, potem velja,
da je f(x) = T(x) za vsak x ∈ A. Za
označevanje funkcije f se zato pogosto
uporablja opredeljujoči izraz T(x).
PRIMER:
x↦3x y, x ∈ [0, 2]
To je kvadratna funkcija (x je odvisen
od parametra y), ki je na navedenem
intervalu opredeljena z izrazom 3x y.
Če ni vnesen noben funkcijski simbol,
se za označevanje te funkcije uporablja
izraz 3x y.
-1 -1
2-12.10 f inverzna funkcija f Inverzna funkcija f funkcije f je
opredeljena le, če je f injektivna.

Če je f injektivna, potem je
-1 -1
dom(f ) = ran(f), ran(f ) = dom(f) in
-1
f (f(x)) = x za x ∈ dom f.
-1
Inverzna funkcija f se ne sme
zamenjati s točkovno recipročno
-1
funkcijo x ↦ f(x) .
gf
2-12.11 kompozitum funkcij f in g, gf x g f x
  
g krožec f
Pri kompozitumu gf se funkcija g
uporabi po tem, ko je bila uporabljena
funkcija f.
PRIMER:
2-12.12 f f(x) = y,
x y
cos
f preslika x na y
1
f : x ↦ y
Ta zapis se v glavnem uporablja pri
2-12.13 b
fb()f(a)
f
a vrednotenju določenih integralov.
fb., , .f .,a, .
   
ub
fu(., , .)
ua
2-12.14 limita f(x), ko x teži proti a lim fx( )b se lahko zapiše tudi
limfx( )
xa
xa
f(x) → b, ko x → a.
lim fx( )
xa
"Desne" limite (x > a) in "leve" limite
(x < a) so označene z lim fx( )
xa
oziroma lim fx( ) .
xa
SIST EN ISO 80000-2 : 2019
Preglednica 8 (nadaljevanje)
Zap. št. Simbol, izraz Pomen, besedni ekvivalent Opombe in primeri
2-12.15 f(x) = O(g(x)) f(x) je veliki O od g(x), Znak "=" se v tem dokumentu
uporablja iz zgodovinskih razlogov
∣f(x)/g(x)∣ je navzgor omejen
in ne pomeni enakosti, saj ne gre za
v limiti, kot zahteva
tranzitivnost.
sobesedilo,
f(x) je velikostnega reda, PRIMER:
primerljivega ali nižjega kot
sinxO(x)
, če x → 0
g(x)
2-12.16 f(x) = o(g(x)) f(x) je mali o od g(x), Znak "=" se v tem dokumentu
uporablja iz zgodovinskih
f(x)/g(x) → 0 v limiti, kot
razlogov in ne pomeni
zahteva sobesedilo,
enakosti, saj ne gre za
f(x) je nižjega velikostnega
tranzitivnost.
reda kot g(x)
PRIMER:
cosx1 o(x ) , če x → 0
2-12.17 Δf delta f, Razlika med vrednostma dveh funkcij,
kot zahteva sobesedilo.
končni prirastek funkcije f
PRIMERA:
xxx
fxfxfx
    
Uporablja se samo za funkcije z eno
2-12.18 odvod funkcije f glede na x
df
spremenljivko.
dx
Navede se lahko tudi neodvisna
d/fxd
spremenljivka, na primer
f dfx
, d/fxdx , fx in Dfx .
    
dx
Df
Če je neodvisna spremenljivka čas t,

potem se za f uporablja tudi f .
2-12.19 vrednost odvoda funkcije f Glej tudi 2-12.18.
df


za x = a
dx
xa
d/fxd
 
xa
fa 
Dfa
Uporablja se samo za funkcije z eno
n
2-12.20 n-ti odvod funkcije f
d f
spremenljivko.
glede na x
n
dx
n
d fx
nn
Uporabljajo se tudi ,
d/f dx
n
dx
n
nn n
n
f
d/fxxd f x
 ,  in D f.
n
(2) (3)
D f Za f in f se uporablja tudi f
oziroma f .
Če je neodvisna spremenljivka čas t,

potem se za f uporablja tudi f .
SIST EN ISO 80000-2 : 2019
Preglednica 8 (nadaljevanje)
Simbol,
Zap. št. Pomen, besedni ekvivalent Opombe in primeri
izraz
2-12.21 parcialni odvod funkcije f glede Uporablja se samo za funkcije z več
f
na x spremenljivkami.
x
fx( ,y,.)
∂f/∂x
Uporabljajo se tudi ,
x
∂ f
x
∂f (x, y, …)∕∂x, ∂ f (x, y, …) in
x
D,fxy, .

x
Druge neodvisne spremenljivke se
lahko prikažejo z indeksom, npr.
f

.

x

y .
Tak zapis parcialnih odvodov se
razširi na odvode višjega reda, npr.
 f
 f 
=

xx
x
ff



xyx y

Uporabljajo se tudi drugi zapisi, npr.
 f

f 
xy 
x y

2-12.22 df totalni diferencial funkcije f
ff
d,fxy, dx dy
xy
2-12.23 δf (infinitezimalna) variacija Ta znak se uporablja pri variacijskem
funkcije f računu.
2-12.24 nedoločeni integral funkcije f
fxdx

b
2-12.25 določeni integral funkcije f To je enostaven primer funkcije na
fx dx od a do b intervalu. Določi se lahko tudi


integracija funkcij na bolj splošnih
a
domenah.
Posebni zapisi, kot so npr.
se uporabljajo za integriranje po
krivulji C, po ploskvi S, po
trirazsežnem območju V oziroma po
sklenjeni krivulji ali ploskvi.
Večkratni integrali se označujejo tudi
itd.
SIST EN ISO 80000-2 : 2019
Preglednica 8 (nadaljevanje)
Simbol,
Zap. št. Pomen, besedni ekvivalent Opombe in primeri
izraz
b cb
2-12.26 Cauchyjeva glavna vrednost


fx dx integrala funkcije f s singularno lim fxdx fx dx
 

0
točko c, kjer je a a ac
 a
2-12.27 Cauchyjeva glavna vrednost
integrala funkcije f
 fxxd lim fx dx



a
_
 a
Glej 2-12.26.
13 Eksponentne in logaritemske funkcije

Uporabljajo se lahko kompleksni argumenti, zlasti za osnovo e.

Preglednica 9: Simboli in izrazi za eksponentne in logaritemske funkcije

Simbol,
Zap. št. Pomen, besedni ekvivalent Opombe in primeri
izraz
n
2-13.1 e osnova naravnega logaritma

e≔ lim 1 2,718 281 828 .

nn
To število se imenuje Eulerjevo
število.
x
2-13.2 a a na potenco x, Glej tudi 2-10.9.
eksponentna funkcija
argumenta x z osnovo a
x
2-13.3 e e na potenco x, Glej 2-15.5.
exp x eksponentna funkcija
argumenta x z osnovo e
2-13.4 logaritem argumenta x log x se uporablja, kadar ni treba
loga x
z osnovo a navajati osnove.
2-13.5 ln x naravni logaritem x
ln x = log x
e
log x se ne sme uporabljati namesto
ln x, lg x, lb x ali log x, log x, log x.
e 10 2
2-13.6 lg x desetiški logaritem x, lg x = log10 x
navadni logaritem x Glej opombo k točki 2-13.5.
2-13.7 lb x dvojiški (binarni) logaritem x lb x = log2 x
Glej opombo k točki 2-13.5.
SIST EN ISO 80000-2 : 2019
14 Krožne in hiperbolične funkcije

Preglednica 10: Simboli in izrazi za krožne in hiperbolične funkcije

Simbol,
Zap. št. Pomen, besedni ekvivalent Opombe in primeri
izraz
2-14.1 π razmerje med obsegom kroga in π = 3,141 592 6…
njegovim premerom
2-14.2 sin x sinus x iixx
ee
sinx
2i
3 5
sin x = x − x /3! + x /5! − …
n n
(sin x) , (cos x) itd
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

Frequently Asked Questions

EN ISO 80000-2:2019 is a standard published by the European Committee for Standardization (CEN). Its full title is "Quantities and units - Part 2: Mathematics (ISO 80000-2:2019, Corrected version 2021-11)". This standard covers: This document specifies mathematical symbols, explains their meanings, and gives verbal equivalents and applications. This document is intended mainly for use in the natural sciences and technology, but also applies to other areas where mathematics is used.

This document specifies mathematical symbols, explains their meanings, and gives verbal equivalents and applications. This document is intended mainly for use in the natural sciences and technology, but also applies to other areas where mathematics is used.

EN ISO 80000-2:2019 is classified under the following ICS (International Classification for Standards) categories: 01.060 - Quantities and units; 01.075 - Character symbols. The ICS classification helps identify the subject area and facilitates finding related standards.

EN ISO 80000-2:2019 has the following relationships with other standards: It is inter standard links to EN ISO 80000-2:2013. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase EN ISO 80000-2:2019 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.