EN 15991:2015
(Main)Testing of ceramic and basic materials - Direct determination of mass fractions of impurities in powders and granules of silicon carbide by inductively coupled plasma optical emission spectrometry (ICP OES) with electrothermal vaporisation (ETV)
Testing of ceramic and basic materials - Direct determination of mass fractions of impurities in powders and granules of silicon carbide by inductively coupled plasma optical emission spectrometry (ICP OES) with electrothermal vaporisation (ETV)
This European Standard defines a method for the determination of the trace element concentrations of Al, Ca, Cr, Cu, Fe, Mg, Ni, Ti, V and Zr in powdered and granular silicon carbide.
Dependent on element, wavelength, plasma conditions and weight, this test method is applicable for mass contents of the above trace contaminations from about 0,1 mg/kg to about 1 000 mg/kg, after evaluation also from 0,001 mg/kg to about 5 000 mg/kg.
NOTE 1 Generally for optical emission spectrometry using inductively coupled plasma (ICP OES) and electrothermal vaporization (ETV) there is a linear working range of up to four orders of magnitude. This range can be expanded for the respective elements by variation of the weight or by choosing lines with different sensitivity.
After adequate verification, the standard is also applicable to further metallic elements (excepting Rb and Cs) and some non-metallic contaminations (like P and S) and other allied non-metallic powdered or granular materials like carbides, nitrides, graphite, soot, coke, coal, and some other oxidic materials (see [1], [4], [5], [6], [7], [8], [9] and [10]).
NOTE 2 There is positive experience with materials like, for example, graphite, B4C, Si3N4, BN and several metal oxides as well as with the determination of P and S in some of these materials.
Prüfung keramischer Roh- und Werkstoffe - Direkte Bestimmung der Massenanteile von Spurenverunreinigungen in pulver- und kornförmigem Siliciumcarbid mittels optischer Emissionsspektroskopie mit induktiv gekoppeltem Plasma (ICP OES) und elektrothermischer Verdampfung (ETV)
Diese Europäische Norm legt ein Verfahren zur Bestimmung der Gehalte der Spurenelemente Al, Ca, Cr, Cu, Fe, Mg, Ni, Ti, V und Zr in pulver- und kornförmigem Siliciumcarbid fest.
Das festgelegte Prüfverfahren gilt in Abhängigkeit von Element, Wellenlänge, Plasmabedingungen und Einwaage für Massenanteile der o. g. Spurenverunreinigungen von etwa 0,1 mg/kg bis etwa 1 000 mg/kg, nach Prüfung auch von 0,001 mg/kg bis etwa 5 000 mg/kg.
ANMERKUNG 1 In der Regel gilt für die optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP OES) und elektrothermischer Verdampfung (ETV) ein linearer Arbeitsbereich von bis zu vier Größenordnungen. Dieser Bereich kann für die einzelnen Elemente durch Änderung der Einwaage oder durch die Auswahl verschieden empfindlicher Linien erweitert werden.
Nach entsprechender Prüfung ist die Norm auch auf weitere metallische Elemente (mit Ausnahme von Rb und Cs) und einige nichtmetallische Verunreinigungen (wie z. B. P und S) und andere artverwandte nichtmetallische pulver und kornförmige Werkstoffe, wie z. B. Carbide, Nitride, Graphit, Ruß, Koks, Kohle, sowie eine Reihe weiterer oxidischer Werkstoffe anwendbar (siehe [1], [4], [5], [6], [7], [8], [9] und [10]).
ANMERKUNG 2 Es liegen positive Erfahrungen zu Werkstoffen, wie z. B. Graphit, B4C, Si3N4, BN und verschiedenen Metalloxiden sowie zur Bestimmung von P und S in einigen dieser Werkstoffe vor.
Essais sur matériaux céramiques et basiques - Détermination directe des fractions massiques d'impuretés dans les poudres et les granulés de carbure de silicium par spectroscopie d'émission optique à plasma induit par haute fréquence (ICP OES) avec vaporisation électrothermique (ETV)
La présente Norme définit une méthode pour la détermination de concentrations d'éléments traces d'Al, Ca, Cr, Cu, Fe, Mg, Ni, Ti, V et Zr dans les poudres et les granulés de carbure de silicium.
Selon l’élément, la longueur d’onde, les conditions de plasma et le poids, cette méthode d’essai s’applique à des teneurs en masse des contaminants à l’état de traces précédemment mentionnés comprises entre 0,1 mg/kg environ et 1 000 mg/kg environ, après évaluation, également comprises entre 0,001 mg/kg et 5 000 mg/kg environ.
NOTE 1 Pour la spectroscopie d’émission optique avec plasma induit par haute fréquence (ICP OES) et la vaporisation électrothermique (ETV), on dispose généralement d’une plage de fonctionnement linéaire allant jusqu'à quatre ordres de grandeur. Cette plage peut être étendue pour les éléments respectifs en changeant le poids ou en choisissant des raies de sensibilité différente.
Après vérification adéquate, la présente Norme est également applicable à d’autres éléments métalliques (excepté Rb et Cs), à certains contaminants non métalliques (tels que P et S) et à d’autres matériaux non métalliques voisins sous forme de poudres ou de granulés, tels que les carbures, les nitrures, le graphite, la suie, le coke, le charbon, et à certains autres matériaux obtenus par oxydation (voir [1], [4], [5], [6], [7], [8], [9] et [10]).
NOTE 2 L’expérience s’avère positive avec des matériaux comme le graphite, B4C, Si3N4, BN, par exemple, et plusieurs oxydes métalliques et en déterminant le P et le S dans certains de ces matériaux.
Preskušanje keramičnih surovin in osnovnih materialov - Neposredno določevanje masnih frakcij nečistoč v prahu in zrnih silicijevega karbida z optično emisijsko spektroskopijo in induktivno sklopljeno plazmo (ICP OES) z elektrotermičnim uparevanjem (ETV)
Ta evropski standard opisuje metodo za določevanje koncentracij elementov v sledovih za Al, Ca, Cr, Cu, Fe, Mg, Ni, Ti, V in Zr v prahu in zrnih silicijevega karbida.
Odvisno od elementa, valovne dolžine, pogojev plazme in teže, se ta preskusna metoda uporablja za masne frakcije nečistoč nad ravnjo sledi od približno 0,1 mg/kg do približno 1 000 mg/kg, po ocenjevanju tudi od 0,001 mg/kg do približno 5 000 mg/kg.
OPOMBA 1: Splošno imata optična emisijska spektrometrija z induktivno sklopljeno plazmo (ICP OES) in elektrotermično uparjevanje (ETV) linearno delovno območje z do štirimi velikostnimi razredi. To območje je mogoče razširiti za zadevne elemente s spreminjanjem teže ali z izbiro linij z različnimi občutljivostmi.
Po zadostnem preverjanju se lahko standard uporablja tudi za druge kovinske elemente (z izjemo Rb in Cs) in nekatere nekovinske nečistoče (kot sta P in S) ter druge povezane nekovinske materiale v prahu in zrnih, kot so karbidi, nitridi, grafit, saje, premog, koks in nekateri drugi oksidni materiali (glejte [1], [4], [5], [6], [7], [8], [9] in [10]).
OPOMBA 2: Pozitivne izkušnje obstajajo za materiale, kot so grafit, B4C, Si3N4, BN in nekateri kovinski oksidi, ter za določevanje P in S v nekaterih od teh materialov.
General Information
- Status
- Withdrawn
- Publication Date
- 24-Nov-2015
- Withdrawal Date
- 20-Jan-2026
- Technical Committee
- CEN/TC 187 - Refractory products and materials
- Drafting Committee
- CEN/TC 187/WG 4 - Chemical analysis
- Current Stage
- 9960 - Withdrawal effective - Withdrawal
- Start Date
- 24-Sep-2025
- Completion Date
- 21-Jan-2026
Relations
- Effective Date
- 08-May-2013
- Effective Date
- 19-Jul-2023
Frequently Asked Questions
EN 15991:2015 is a standard published by the European Committee for Standardization (CEN). Its full title is "Testing of ceramic and basic materials - Direct determination of mass fractions of impurities in powders and granules of silicon carbide by inductively coupled plasma optical emission spectrometry (ICP OES) with electrothermal vaporisation (ETV)". This standard covers: This European Standard defines a method for the determination of the trace element concentrations of Al, Ca, Cr, Cu, Fe, Mg, Ni, Ti, V and Zr in powdered and granular silicon carbide. Dependent on element, wavelength, plasma conditions and weight, this test method is applicable for mass contents of the above trace contaminations from about 0,1 mg/kg to about 1 000 mg/kg, after evaluation also from 0,001 mg/kg to about 5 000 mg/kg. NOTE 1 Generally for optical emission spectrometry using inductively coupled plasma (ICP OES) and electrothermal vaporization (ETV) there is a linear working range of up to four orders of magnitude. This range can be expanded for the respective elements by variation of the weight or by choosing lines with different sensitivity. After adequate verification, the standard is also applicable to further metallic elements (excepting Rb and Cs) and some non-metallic contaminations (like P and S) and other allied non-metallic powdered or granular materials like carbides, nitrides, graphite, soot, coke, coal, and some other oxidic materials (see [1], [4], [5], [6], [7], [8], [9] and [10]). NOTE 2 There is positive experience with materials like, for example, graphite, B4C, Si3N4, BN and several metal oxides as well as with the determination of P and S in some of these materials.
This European Standard defines a method for the determination of the trace element concentrations of Al, Ca, Cr, Cu, Fe, Mg, Ni, Ti, V and Zr in powdered and granular silicon carbide. Dependent on element, wavelength, plasma conditions and weight, this test method is applicable for mass contents of the above trace contaminations from about 0,1 mg/kg to about 1 000 mg/kg, after evaluation also from 0,001 mg/kg to about 5 000 mg/kg. NOTE 1 Generally for optical emission spectrometry using inductively coupled plasma (ICP OES) and electrothermal vaporization (ETV) there is a linear working range of up to four orders of magnitude. This range can be expanded for the respective elements by variation of the weight or by choosing lines with different sensitivity. After adequate verification, the standard is also applicable to further metallic elements (excepting Rb and Cs) and some non-metallic contaminations (like P and S) and other allied non-metallic powdered or granular materials like carbides, nitrides, graphite, soot, coke, coal, and some other oxidic materials (see [1], [4], [5], [6], [7], [8], [9] and [10]). NOTE 2 There is positive experience with materials like, for example, graphite, B4C, Si3N4, BN and several metal oxides as well as with the determination of P and S in some of these materials.
EN 15991:2015 is classified under the following ICS (International Classification for Standards) categories: 81.060.10 - Raw materials. The ICS classification helps identify the subject area and facilitates finding related standards.
EN 15991:2015 has the following relationships with other standards: It is inter standard links to EN 15991:2011, EN 15991:2025. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
EN 15991:2015 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.
Standards Content (Sample)
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.RWHUPLþQLPPrüfung keramischer Roh- und Werkstoffe - Direkte Bestimmung der Massenanteile von Spurenverunreinigungen in pulver- und kornförmigem Siliciumcarbid mittels optischer Emissionsspektroskopie mit induktiv gekoppeltem Plasma (ICP OES) und elektrothermischer Verdampfung (ETV)Essais sur matériaux céramiques et basiques - Détermination directe des fractions massiques d'impuretés dans les poudres et les granulés de carbure de silicium par spectroscopie d'émission optique à plasma induit par haute fréquence (ICP OES) avec vaporisation électrothermique (ETV)Testing of ceramic and basic materials - Direct determination of mass fractions of impurities in powders and granules of silicon carbide by inductively coupled plasma optical emission spectrometry (ICP OES) with electrothermal vaporisation (ETV)81.060.10SurovineRaw materialsICS:Ta slovenski standard je istoveten z:EN 15991:2015SIST EN 15991:2016en,fr,de01-januar-2016SIST EN 15991:2016SLOVENSKI
STANDARDSIST EN 15991:20111DGRPHãþD
EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 15991
November
t r s w ICS
z sä r x rä s r Supersedes EN
s w { { sã t r s sEnglish Version
Testing of ceramic and basic materials æ Direct determination of mass fractions of impurities in powders and granules of silicon carbide by inductively coupled Essais sur matériaux céramiques et basiques æ Détermination directe des fractions massiques d 5impuretés dans les poudres et les granulés de carbure de silicium par spectroscopie d 5émission
Prüfung keramischer Rohæ und Werkstoffe æ Direkte Bestimmung der Massenanteile von Spurenverunreinigungen in pulveræ und kornförmigem Siliciumcarbid mittels optischer Emissionsspektroskopie mit induktiv gekoppeltem This European Standard was approved by CEN on
u October
t r s wä
egulations which stipulate the conditions for giving this European Standard the status of a national standard without any alterationä Upætoædate lists and bibliographical references concerning such national standards may be obtained on application to the CENæCENELEC Management Centre or to any CEN memberä
translation under the responsibility of a CEN member into its own language and notified to the CENæCENELEC Management Centre has the same status as the official versionsä
CEN members are the national standards bodies of Austriaá Belgiumá Bulgariaá Croatiaá Cyprusá Czech Republicá Denmarká Estoniaá Finlandá Former Yugoslav Republic of Macedoniaá Franceá Germanyá Greeceá Hungaryá Icelandá Irelandá Italyá Latviaá Lithuaniaá Luxembourgá Maltaá Netherlandsá Norwayá Polandá Portugalá Romaniaá Slovakiaá Sloveniaá Spainá Swedená Switzerlandá Turkey andUnited Kingdomä
EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre:
Avenue Marnix 17,
B-1000 Brussels
t r s w CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Membersä Refä Noä EN
s w { { sã t r s w ESIST EN 15991:2016
Results of interlaboratory study . 11 Annex B (informative)
Wavelength and working range . 16 Annex C (informative)
Possible interferences and their elimination . 17 Annex D (informative)
Information regarding the evaluation of the uncertainty of the mean value . 20 Annex E (informative)
Commercial certified reference materials . 21 Annex F (informative)
Information regarding the validation of an analytical method based on liquid standards in the example of SiC and graphite. 22 Bibliography . 24
Key 1 graphite tube with boat and sample 5 bypass gas (Ar) 2 carrier gas (Ar) 6 aerosol 3 reaction gas (CCl2F2) 7 to the ICP torch 4 shield gas (Ar)
Figure 1 — Schematic configuration of the ETV-gas regime with the gas flows carrier-gas, bypass-gas, reaction-gas and shield-gas
Key 1 graphite tube furnace 6 bypass-gas (Ar) 2 pyrometer 7 aerosol 3 carrier gas (Ar) + reaction gas (CCl2F2) 8 transport tube 4 solid sample 9 ICP-torch 5 vapour 10 power supply 0 A to 400 A Figure 2 — Schematic design of the ETV-ICP-combination with an axial plasma (example) SIST EN 15991:2016
Key 1 Al2O3-transport tube 5 carrier gas evaporated sample 2 Al2O3-transition ring 6 bypass gas 3 nozzle 7 gas mixture in laminar flow 4 graphite tube
Figure 3 — Schematic configuration of the transition area between graphite- and transport-tube NOTE Figure 1, Figure 2 and Figure 3 show a well-established commercial instrument. 4 Apparatus 4.1 Common laboratory instruments and laboratory instruments according to 4.2 to 4.7. 4.2 ICP-emission spectrometer, simultaneous, preferably with the possibility to register transient emission signals and suited for the synchronised start of ETV vaporization cycle and signal registration. NOTE Especially for changing matrices the measurement of the spectral background near the analysis lines is beneficial, because by this the systematic and stochastic contributions of the analysis uncertainty can be decreased, the latter only by simultaneous measurement of the background. The use of spectrometers equipped with area- or array-detectors is an advantage in such cases as they allow a simultaneous background measurement, in addition to their possibility to save a lot of time in the analysis cycle. 4.3 Electrothermal vaporization system with graphite furnace with suited transition zone graphite tube / transport tube for optimised aerosol formation, to be connected to the injector tube of the ICP torch by a transport tube for example made of corundum, PTFE, PFA, PVC (cross-linked), with controlled gas flows (preferably with mass-flow-control) and furnace control (preferably with continuous online-temperature control of the graphite boat) for a reproducible control of the temperature development. 4.4 Tweezers, self-closing, made of a material preventing contamination. 4.5 Micro spatula, made of a material preventing contamination. 4.6 Microbalance, capable of reading to the nearest 0,01 mg. NOTE A microbalance with a direct reading of 0,001 mg is advantageous. 4.7 Mill or crusher, free of contamination, for example mortar made of a material that does not contaminate the sample with any of the analytes to be determined. 5 Reagents and auxiliary material Only analytical grade reagents shall be used unless stated otherwise. SIST EN 15991:2016
99,99 % (volume fraction). 6 Sampling and sample preparation Sampling shall be performed in a way that the sample to be analysed is representative for the total amount of material, using for example ISO 5022 [13], ISO 8656-1 [14], EN ISO 21068-1 [15], but this list is not exhaustive. If the sample is not received in a dry state, it shall be dried at (110 ± 10) °C until constant mass is achieved (<0,5 % variation). The sample is then cooled down to room temperature and stored in a desiccator. NOTE Drying for 2 h is normally sufficient. It is critical that the sample material is on hand at a particle size of
50 µm; eventually it shall be broken up and homogenized, if necessary. For this a crushing device suited for the analysis goal shall be applied. For porous materials, it shall be checked out if it is necessary to break them up. Breaking up is necessary if the transient analysis signals show an unusual long decay (tailing). 7 Calibration The calibration shall be performed for each measuring cycle with calibration samples with defined analyte concentrations. The procedure shall be carried out in accordance with Clause 8. The calibration shall be carried out over a range adapted to the analytical task. NOTE 1 This can be achieved by different masses of the same calibration sample or same masses of different calibration samples with different analyte concentration or by a combination of both possibilities. Because of the low weights used and therefore the resulting spread, the number of (calibration) measurements should take account of the desired accuracy. Practically about 10 to 15 standards have been found to be ideal; e.g. for 10, five weights of two different calibration samples with different analyte concentrations are required. Preferably calibration samples of the same or similar material should be used, if possible certified reference materials (CRM) or matrix-adapted synthetic calibration samples. SIST EN 15991:2016
Dependent on the grain size distribution of the sample, the material properties of the material to be analysed and the analytical performance of the used ETV-system for certain analytes and matrices also dried aqueous calibration standards with or without matrix adaptation may be used (see [1], [6] to [9] and Annex F). In the concrete case this shall be documented by calibration substances or certified reference materials. If such materials are not available the results of alternative analysis methods can be used for comparison. NOTE 2 For aqueous calibration with matrix adaptation so-called blank samples are suitable, i.e. materials with the same matrix as the sample and with concentrations negligible compared to the expected analyte concentration in the sample. The blank sample is weighed with a mass comparable to the sample to be analysed, then the aqueous calibration solution is added. NOTE 3 The calculation of the calibration function is usually carried out as linear regression. The calculated data are displayed graphically as calibration function. Eventually also a quadratic regression is applicable. The continuous slope of the calibration function with a sufficient gradient is important. 8 Procedure Use the sample prepared according to Clause 6 and weigh, preferably between 1 mg and 5 mg with a precision of 0,01 mg into the sample boats; baked out in advance. The baking-out temperature for cleaning the boats shall be approximately 100 °C above the highest temperature of the analysis run. Dependent on the material, the analyte, the analyte concentration, the chosen lines and the ETV-system higher weights may be used. The applied part sample weight shall be documented. The ICP-emission-spectrometer (4.2) shall be set up in accordance with its operations manual. After an adequate waiting time (20 min is normal) the first boat is applied into the furnace of the ETV-system by tweezers (4.4) or by an auto sampler device. The analysis programme is started, while the control of the temperature run of the furnace of the ETV-system and the registration of the emission signals in the spectrometer shall be triggered simultaneously. After the end of the analysis programme the sample boat is removed from the furnace of the ETV by tweezers or by an automatic auto sampler device and the next one is brought in. Before the actual analysis run the blank value of the system shall be determined with an empty, cleaned boat. With another empty, clean boat and a certain amount of calibration sample or dried calibration solution the integration intervals of the chosen emission lines and the background positions shall be checked for their optimum position and eventually are corrected. For each material a special temperature programme shall be created depending on the analyses. The programme creation preferably should be done using available calibration standards. They also should be used to choose the suitable emission lines. Before configuring the integration – respectively the analysis – interval the release of the analyses shall be observed by recording the transient emission signals. SIST EN 15991:2016
21 s. Each sample shall be measured several times, but at least 3 times. If the single values of the multiple analysis of the analyte concentrations deviate by more than a given degree, depending on the repeatability of the method, then the analysis shall be repeated according to Clause 8. If poor reproducibility of the spectral intensities of one or more analytes of the sample persists, it is necessary to homogenize the sample further, e.g. in a mortar. For low concentrations, near the limit of determination (see [16]) this additional step is not necessary. 9 Wavelength and working range When selecting the wavelength of analytes, it should be borne in mind that these shall be inference free with respect to sample matrix and further impurities. Only spectral lines shall be selected where under the chosen working conditions neither self-absorption nor self-reversal can occur. NOTE 1 Proposal for choosing of wavelength and information about working ranges, see Annex B. NOTE 2 A summary description of interferences and possibilities to reduce these is in Annex C. When setting up the analytical programme for a specific material, ensure via suitable pre-tests that the analytical ranges lie above the limit of determination of the analytes. The upper working range is restricted by decrease of sensitivity (slope of calibration graph) to about 80 % of its initial value. Where appropriate the line used can be changed to a less sensitive spectral line. 10 Calculation of the results and evaluation The intensities of spectral lines measured by the emission spectrometer are to be corrected to net-intensities via background intensities measured at the background measuring points. Using the analytical functions the corrected net-intensities are to be converted into the corresponding masses of the respective analyte (see Clause 8). Using the sample weight of sub-sample the mass fractions of analytes in the sample shall be calculated. NOTE To improve precision and trueness the method of internal standard (reference element) can be applied. For this purpose, the ratio of intensities of spectral lines of analyte elements to the intensity of the spectral line of a reference element (e.g. Si in analysis of SiC) is used. The wavelengths of used spectral lines and background measuring points for calibration and for measurement of the sample itself shall always be the same. SIST EN 15991:2016
...




Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...