ISO 10416:2008
(Main)Petroleum and natural gas industries — Drilling fluids — Laboratory testing
Petroleum and natural gas industries — Drilling fluids — Laboratory testing
ISO 10416:2008 provides procedures for the laboratory testing of both drilling-fluid materials and drilling-fluid physical, chemical and performance properties. It is applicable to both water-based and oil-based drilling fluids, as well as the base or “make-up” fluid. ISO 10416:2008 is not applicable as a detailed manual on drilling fluid control procedures. Recommendations regarding agitation and testing temperature are presented because the agitation history and temperature have a profound effect on drilling fluid properties.
Industries du pétrole et du gaz naturel — Fluides de forage — Essais en laboratoire
L'ISO 10416:2008 fournit des modes opératoires pour les essais de laboratoire à la fois en ce qui concerne les matériaux de fluides de forage et les propriétés physiques, chimiques et les performances des fluides de forage. Elle est applicable aux fluides de forage à base d'eau et aux fluides de forage à base d'huile, de même qu'au fluide de base ou au fluide de «constitution». Elle n'est pas applicable en tant que manuel détaillé relatif aux modes opératoires de contrôle des fluides de forage. Des recommandations en ce qui concerne l'agitation et la température d'essais sont présentées du fait que l'historique de l'agitation et la température ont un effet profond sur les propriétés des fluides de forage.
General Information
- Status
- Published
- Publication Date
- 27-May-2008
- Technical Committee
- ISO/TC 67/SC 3 - Drilling and completion fluids, well cements and treatment fluids
- Drafting Committee
- ISO/TC 67/SC 3/WG 1 - Drilling, completion and workover fluids
- Current Stage
- 9093 - International Standard confirmed
Relations
- Effective Date
- 15-Apr-2008
Overview
ISO 10416:2008 - Petroleum and natural gas industries - Drilling fluids - Laboratory testing - defines standard laboratory procedures for testing drilling-fluid materials and the physical, chemical and performance properties of drilling fluids. It applies to water‑based and oil‑based drilling fluids and to base or “make‑up” fluids. The standard provides test principles, required reagents and apparatus, sampling/preparation guidance, and calculation methods. It is not a field manual for drilling-fluid control, but it does give recommendations on agitation history and testing temperature, because these factors strongly affect drilling fluid properties.
Key topics
ISO 10416:2008 organizes laboratory methods across many technical areas, for example:
- Weighting materials (barite): moisture content, sieve and sedimentation analysis, and performance characterization (effects on rheology).
- Abrasiveness and contaminants: abrasion tests for weighting materials and determination of heavy metals (mercury, cadmium, lead, arsenic) in barite.
- Bridging materials: static and dynamic slot tests, marble‑bed and BB‑shot tests for regaining circulation.
- Filtration‑control agents: methods to prepare various base fluids (salt‑saturated, KCl, low‑salinity, lime‑treated, etc.), initial filtration tests and performance after heat ageing.
- Solids characterization: methylene blue tests for drilled solids and bentonite; stereopycnometer methods for solids density.
- Thinner/deflocculation evaluation: procedures to assess thinner efficiency and rheological changes.
- Base oils and fluid chemistry: tests for density/specific gravity, kinematic viscosity, distillation, aniline point, pour/flash points and aromatics content.
- Ion analysis: ion‑selective electrode methods for potassium, calcium and sodium ion content.
Each section details reagents, apparatus, sample handling, test procedure and calculation/reporting requirements.
Applications and users
ISO 10416:2008 is used in laboratory quality control, R&D and vendor qualification across the upstream oil & gas value chain:
- Drilling fluid laboratories and technical service companies
- Drilling operators and rig site support teams (for lab-based QC)
- Drilling fluid and additive manufacturers/suppliers
- Certification bodies and regulators for materials acceptance and environmental/safety compliance
- Research organizations studying drilling fluid behavior
By standardizing laboratory methods, ISO 10416 helps ensure consistent, comparable test results for product specification, troubleshooting and performance assessment.
Related standards
ISO 10416 cross‑references other international test methods used for base oils and fluids, for example:
- ISO 3104 (kinematic viscosity)
- ISO 3405 (distillation)
- ISO 2719 (flash point - Pensky‑Martens)
- ISO 3016 (pour point)
- ISO 3675 (hydrometer density) These referenced methods support integrated laboratory workflows when testing drilling fluid components.
ISO 10416:2008 - Petroleum and natural gas industries -- Drilling fluids -- Laboratory testing
ISO 10416:2008 - Industries du pétrole et du gaz naturel -- Fluides de forage -- Essais en laboratoire
Get Certified
Connect with accredited certification bodies for this standard

ABS Quality Evaluations Inc.
American Bureau of Shipping quality certification.

Element Materials Technology
Materials testing and product certification.
ABS Group Brazil
ABS Group certification services in Brazil.
Sponsored listings
Frequently Asked Questions
ISO 10416:2008 is a standard published by the International Organization for Standardization (ISO). Its full title is "Petroleum and natural gas industries — Drilling fluids — Laboratory testing". This standard covers: ISO 10416:2008 provides procedures for the laboratory testing of both drilling-fluid materials and drilling-fluid physical, chemical and performance properties. It is applicable to both water-based and oil-based drilling fluids, as well as the base or “make-up” fluid. ISO 10416:2008 is not applicable as a detailed manual on drilling fluid control procedures. Recommendations regarding agitation and testing temperature are presented because the agitation history and temperature have a profound effect on drilling fluid properties.
ISO 10416:2008 provides procedures for the laboratory testing of both drilling-fluid materials and drilling-fluid physical, chemical and performance properties. It is applicable to both water-based and oil-based drilling fluids, as well as the base or “make-up” fluid. ISO 10416:2008 is not applicable as a detailed manual on drilling fluid control procedures. Recommendations regarding agitation and testing temperature are presented because the agitation history and temperature have a profound effect on drilling fluid properties.
ISO 10416:2008 is classified under the following ICS (International Classification for Standards) categories: 75.100 - Lubricants, industrial oils and related products; 75.180.10 - Exploratory, drilling and extraction equipment. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO 10416:2008 has the following relationships with other standards: It is inter standard links to ISO 10416:2002. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
ISO 10416:2008 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 10416
Second edition
2008-06-01
Petroleum and natural gas industries —
Drilling fluids — Laboratory testing
Industries du pétrole et du gaz naturel — Fluides de forage — Essais
en laboratoire
Reference number
©
ISO 2008
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.
© ISO 2008
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2008 – All rights reserved
Contents Page
Foreword. vii
Introduction . viii
1 Scope .1
2 Normative references .1
3 Terms and definitions .2
4 Symbols and abbreviations .3
5 Barite.6
5.1 Principle.6
5.2 Reagents and apparatus .6
5.3 Sampling.7
5.4 Calculation of moisture content.7
5.5 Sieve analysis .7
5.6 Sedimentation analysis.8
6 Barite performance.12
6.1 Principle.12
6.2 Reagents and apparatus .12
6.3 Base drilling fluid preparation.13
6.4 Rheology test .13
6.5 Calculation.14
7 Abrasiveness of weighting materials .14
7.1 Principle.14
7.2 Reagents and apparatus .15
7.3 Determination of abrasion .15
8 Mercury in drilling fluid barite .17
8.1 Principle.17
8.2 Reagents and apparatus .17
8.3 Preparation of standards .19
8.4 Sample digestion .19
8.5 Check for recovery of Hg during digestion.20
8.6 Analysis of standards and samples.20
8.7 Calculation.20
9 Cadmium and lead in drilling fluid barite .21
9.1 Principle.21
9.2 Reagents and apparatus .21
9.3 Preparation of combined cadmium and lead standards .22
9.4 Sample digestion .22
9.5 Analysis of standards and samples.22
9.6 Calculation.23
10 Arsenic in drilling fluid barite .23
10.1 Principle.23
10.2 Reagents and apparatus .24
10.3 Preparation of standards .25
10.4 Sample digestion .25
10.5 Analysis of standards and samples.26
10.6 Calculation.26
11 Bridging materials for regaining circulation.26
11.1 Principle . 26
11.2 Apparatus. 27
11.3 Preparation of test drilling fluid. 27
11.4 Static slot test. 27
11.5 Dynamic slot test . 28
11.6 Static marble bed test. 28
11.7 Dynamic marble bed test. 28
11.8 Static ball bearings (BB shot) bed test . 29
11.9 Dynamic ball bearings (BB shot) bed test.29
12 Filtration-control agents. 29
12.1 Principle . 29
12.2 Reagents and apparatus . 29
12.3 General instructions for preparation of base drilling fluids . 31
12.4 Salt-saturated drilling fluid. 31
12.5 High-hardness, salt-saturated drilling fluid. 32
12.6 10 % potassium chloride (KCl) drilling fluid. 32
12.7 Pre-hydrated bentonite slurry. 33
12.8 Modified seawater drilling fluid . 33
12.9 Low-salinity drilling fluid. 33
12.10 Lime-treated drilling fluid . 34
12.11 Low solids, non-dispersed drilling fluid . 34
12.12 Freshwater lignosulfonate drilling fluid. 35
12.13 Initial performance test. 35
12.14 Performance after heat ageing . 36
13 Methylene blue test for drilled solids and commerical bentonite. 36
13.1 Methylene blue capacity of drill solids . 36
13.2 Methylene blue capacity of commercial bentonite. 39
13.3 Solids content. 40
14 Deflocculation test for thinner evaluation . 41
14.1 Principle . 41
14.2 Reagents and apparatus . 42
14.3 Procedure for moisture content . 43
14.4 Calculation of moisture content . 43
14.5 Preparation of drilling fluid base. 43
14.6 Calculation. 44
14.7 Determination of rheological properties. 44
14.8 Calculation of thinner efficiency. 46
15 Testing base oils used in drilling fluids. 46
15.1 General . 46
15.2 Reagents and apparatus . 46
15.3 Density, relative density (specific gravity), or API gravity-hydrometer method (see
ISO 3675). 46
15.4 Density and relative density of liquids using a digital density meter (see ASTM D 4052) . 47
15.5 Kinematic viscosity of transparent and opaque oils — Calibrated capillary tube method
(see ISO 3104). 47
15.6 Distillation (see ISO 3405) . 47
15.7 Aniline point and mixed aniline point (see ISO 2977:1997). 48
15.8 Pour point (see ISO 3016). 48
15.9 Flash point by Pensky-Martens closed tester (see ISO 2719) . 49
15.10 Aromatics content (see IP 391 or ASTM D 5186). 49
16 Potassium ion content — Ion-selective electrode method. 50
16.1 Principle . 50
16.2 Reagents and apparatus . 50
16.3 Preparation of electrodes. 51
16.4 Operational check of electrode system . 51
16.5 Measurements using a meter with direct concentration readout capability . 52
iv © ISO 2008 – All rights reserved
16.6 Measurements with instruments that provide either a digital or an analogue readout in
millivolts .52
17 Calcium ion content — Ion-selective electrode method.53
17.1 Principle.53
17.2 Reagents and apparatus .53
17.3 Preparation of electrodes .54
17.4 Operational check of electrode system.55
17.5 Measurements using a meter with direct concentration readout capability .55
17.6 Measurements with instruments that provide either a digital or an analogue readout in
millivolts .55
18 Sodium ion content — Ion-selective electrode method .56
18.1 Principle.56
18.2 Reagents and apparatus .57
18.3 Preparation and operational check of the electrode system .57
18.4 Measurements using a meter with a direct concentration-readout capability.58
18.5 Measurements using a meter with readout in millivolts.58
19 Density of solids — Stereopycnometer method.59
19.1 Principle.59
19.2 Apparatus .59
19.3 Procedure — Stereopycnometer method.59
19.4 Calculation — Stereopycnometer method .60
20 Density of solids — Air comparison pycnometer method .61
20.1 Principle.61
20.2 Apparatus .61
20.3 Procedure — Air comparison pycnometer method .61
20.4 Calculation — Air comparison pycnometer method.61
21 Ageing of water-based drilling fluids.62
21.1 Principle.62
21.2 Practices common to preparation, handling and testing over all temperature ranges.62
21.3 Drilling fluid sample preparation and ageing at ambient temperature .63
21.4 Drilling fluid ageing at moderate temperatures [ambient to 65 °C (150 °F)].64
21.5 Drilling fluid ageing at substantially elevated temperatures [over 65 °C (150 °F)] .66
21.6 Inertness and chemical compatibility in high-temperature ageing cells.68
21.7 Obtaining supplies and services for the ageing of drilling fluid samples.69
22 Ageing of oil-based drilling fluids.69
22.1 Principle.69
22.2 Apparatus .70
22.3 Practices common to preparation, handling and testing over all temperature ranges.71
22.4 Drilling fluid ageing at ambient temperatures .72
22.5 Drilling fluid ageing at moderate temperatures [ambient to 65 °C (150 °F)].73
22.6 Drilling fluid ageing at substantially elevated temperatures [over 65 °C (150 °F)] .74
22.7 Inertness and chemical compatibility in high-temperature ageing cells.75
22.8 Obtaining supplies and services for the ageing of drilling fluid samples.76
23 Shale-particle disintegration test by hot rolling .76
23.1 Principle.76
23.2 Reagents and apparatus .77
23.3 Procedure .77
23.4 Calculation.78
24 Drilling fluid materials — High-viscosity polyanionic cellulose (PAC-HV) (regular).79
24.1 Principle.79
24.2 Determination of moisture content.79
24.3 Procedures with test fluid containing PAC-HV.80
25 Drilling fluid materials — Low-viscosity polyanionic cellulose (PAC-LV).82
25.1 Principle.82
25.2 Determination of moisture content.83
25.3 Procedures with test fluid containing PAC-LV . 83
26 Preparation and evaluation of invert-emulsion drilling fluids. 86
26.1 Principle . 86
26.2 Reagents and apparatus . 86
26.3 Mixing of the initial drilling fluid. 87
26.4 Testing the properties of the initial drilling fluid . 88
26.5 Preparation of the sample contaminated by seawater. 88
26.6 Preparation of the sample contaminated by base evaluation clay. 89
26.7 Preparation of the sample contaminated by mixed-salt brine . 89
26.8 Procedure for hot-rolling. 89
26.9 Procedure for static ageing. 89
26.10 Procedure for testing after heat ageing. 90
27 High-temperature/high-pressure filtration testing of drilling fluids using the permeability
plugging apparatus and cells with set-screw-secured end caps. 90
27.1 Principle . 90
27.2 Safety considerations. 90
27.3 Apparatus — Permeability-plugging apparatus (PPA) with set-screw-secured end caps. 92
27.4 Procedure for high-temperature/high-pressure (HTHP) filtration. 94
27.5 Test conclusion and disassembly. 97
27.6 Data reporting. 99
28 High-temperature/high-pressure filtration testing of drilling fluids using the permeability-
plugging apparatus and cells with threaded end caps . 100
28.1 Principle . 100
28.2 Safety considerations. 100
28.3 Apparatus — Permeability-plugging apparatus (PPA) with threaded end caps . 102
28.4 Procedure for high-temperature/high-pressure (HTHP) filtration. 104
28.5 Test conclusion and disassembly. 106
28.6 Data reporting. 108
Bibliography . 109
vi © ISO 2008 – All rights reserved
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 10416 was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures
for petroleum, petrochemical and natural gas industries, Subcommittee SC 3, Drilling and completion fluids,
and well cements.
This second edition cancels and replaces the first edition (ISO 10416:2002), which has been technically
revised.
Introduction
This International Standard, which establishes testing methodologies for drilling fluid materials, is based on
[2]
API RP 13I, seventh edition/ISO 10416:2002 . This International Standard was developed in response to a
demand for more exacting testing methodologies. The tests contained herein were developed over several
years by a group of industry experts and were identified as being those which can yield reproducible and
accurate results. The tests are anticipated to be performed in a laboratory setting, but can be applicable in a
field situation with more rigorous apparatus and conditions than normally found in a drilling fluid field-test kit.
These tests are designed to assist in the evaluation of certain parameters for drilling fluids, with these
properties not necessarily used for the maintenance of a drilling fluid in field use. The tests provide either
more precision or different properties than those given in the field-testing standards ISO 10414-1 and
ISO 10414-2.
It is necessary that users of this International Standard be aware that further or differing requirements can be
needed for individual applications. This International Standard is not intended to inhibit a vendor from offering,
or the purchaser from accepting, alternative equipment or engineering solutions for the individual application.
This may be particularly appropriate where there is innovative or developing technology. Where an alternative
is offered, the vendor should identify any variations from this International Standard and provide details.
As with any laboratory procedure requiring the use of potentially hazardous chemicals, the user is expected to
have received proper knowledge and training in the use and disposal of these chemicals. The user is
responsible for compliance with all applicable local, regional, and national regulations for worker and local
health, safety and environmental liability.
This International Standard contains footnotes giving examples of apparatus, reagents and sometimes the
supplier(s) of those materials that are available commercially. This information is given for the convenience of
users of this International Standard and does not constitute an endorsement by ISO of the products named.
Equivalent products may be used if they can be shown to lead to the same results.
viii © ISO 2008 – All rights reserved
INTERNATIONAL STANDARD ISO 10416:2008(E)
Petroleum and natural gas industries — Drilling fluids —
Laboratory testing
1 Scope
This International Standard provides procedures for the laboratory testing of both drilling fluid materials and
drilling fluid physical, chemical and performance properties. It is applicable to both water-based and oil-based
drilling fluids, as well as the base or “make-up” fluid.
It is not applicable as a detailed manual on drilling fluid control procedures. Recommendations regarding
agitation and testing temperature are presented because the agitation history and temperature have a
profound effect on drilling fluid properties.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 91-1:1992, Petroleum measurement tables — Part 1: Tables based on reference temperatures of 15 °C
and 60 °F
ISO 2719, Determination of flash point — Pensky-Martens closed cup method
ISO 2977:1997, Petroleum products and hydrocarbon solvents — Determination of aniline point and mixed
aniline point
ISO 3007, Petroleum products and crude petroleum — Determination of vapour pressure — Reid method
ISO 3016, Petroleum products — Determination of pour point
ISO 3104, Petroleum products — Transparent and opaque liquids — Determination of kinematic viscosity and
calculation of dynamic viscosity
ISO 3405:2000, Petroleum products — Determination of distillation characteristics at atmospheric pressure
ISO 3675, Crude petroleum and liquid petroleum products — Laboratory determination of density —
Hydrometer method
ISO 3696:1987, Water for analytical laboratory use — Specification and test methods
ISO 3839, Petroleum products — Determination of bromine number of distillates and aliphatic olefins —
Electrometric method
ISO 10414-1:2008, Petroleum and natural gas industries — Field testing of drilling fluids — Part 1: Water-
based fluids
1)
ISO 10414-2:— , Petroleum and natural gas industries — Field testing of drilling fluids — Part 2: Oil-based
fluids
1) To be published. (Revision of ISO 10414-2:2002)
2)
ISO 13500:— , Petroleum and natural gas industries — Drilling fluid materials — Specifications and tests
ASTM D 1141, Standard Practice for the Preparation of Substitute Ocean Water
ASTM D 4052, Standard Test Method for Density and Relative Density of Liquids by Digital Density Meter
ASTM D 5186, Standard Test Method for Determination of Aromatic Content and Polynuclear Aromatic
Content of Diesel Fuels and Aviation Turbine Fuels by Supercritical Fluid Chromatography
ASTM E 100, Standard Specification for ASTM Hydrometers
IP 391, Petroleum products — Determination of aromatic hydrocarbon types in middle distillates — High
performance liquid chromatography method with refractive index detection
3 Terms and definitions
3.1
ACS reagent grade
chemical which meets purity standards as specified by the American Chemical Society (ACS)
3.2
base oil
solids- and water-free hydrocarbon oil, commonly used in the drilling fluid industry for preparation and/or
dilution of an oil-based drilling or completion fluid
NOTE 1 Commonly used base oils are often termed “mineral oils”, “solvent oils” or “absorber oils” and also include the
“diesel oils”.
NOTE 2 See Clause 15.
3.3
darcy
k
permeability of a porous medium, where one darcy is the flow of a single-phase fluid of 1 cP viscosity that
completely fills the voids of the porous medium, flowing through the medium under conditions of viscous flow
3 −1 −2
at a rate of 1 cm⋅s •cm cross-sectional area, and under a pressure or equivalent hydraulic gradient of
−1
1 atm•cm
NOTE 1 cP = 1 mPa⋅s.
3.4
flash side
side containing residue (“flash”) from stamping and with concave indentations
3.5
quarter, verb
mix and divide into four specimens to assure homogeneity of specimens
3.6
spurt loss
volume of fluid that passes through the filtration medium before a filter cake is formed
3.7
tube sampling
sampling method comprising withdrawal of powdered sample from bag or bulk via a cylindrical device pushed
into the sample, locked shut and withdrawn
2) To be published. (Revision of ISO 13500:2006)
2 © ISO 2008 – All rights reserved
4 Symbols and abbreviations
AA atomic absorption spectroscopy
ACS American Chemical Society
API American Petroleum Institute
ASTM American Society for Testing and Materials
BB ball bearings
C concentration
C concentration of bentonite, in kilograms per cubic metre;
B,A
C concentration of bentonite, in pounds per barrel;
B,B
C is the concentration of drilled solids, in kilograms per cubic metre
DS,A
C is the concentration of drilled solids, in pounds per barrel
DS,B
C concentration of low gravity solids, in kilograms per cubic metre;
LG,A
C concentration of low gravity solids, in pounds per barrel;
LG,B
C average methylene blue capacity for all low-gravity solids, in milliequivalents per hundred grams
MBT-AVE
(meq/100 g)
C methylene blue capacity of commercial bentonite, in milliequivalents per hundred grams
MBT-B
(meq/100 g)
C methylene blue capacity of drill solids, in milliequivalents per hundred grams (meq/100 g)
MBT-DS
CAS Chemical Abstracts Service, a division of ACS
d inner diameter
D outer diameter
DCP direct current plasma
DS drill solids
E bentonite equivalent, expressed in kilograms per cubic metre
BE,A
E bentonite equivalent, expressed in pounds per barrel;
BE,B
e thinner efficiency, in percent
EDTA ethylenediaminetetraacetic acid
F the performance index (mathematical symbol)
PI
H corrected hydrometer reading (the hydrometer reading minus composite correction)
c
HTHP high-temperature, high-pressure
ICP inductively coupled plasma
IP standards issued by Energy Institute (formerly, Institute of Petroleum)
ISA ionic strength adjuster
ISE ion-selective electrode
LGS low-gravity solids
MBT methylene blue test
a abrasion, in milligrams per minute
G 10 s gel reading
10 s
G 10 min gel reading
10 min
l effective depth of hydrometer, in centimetres (see Table 2)
m mass of arsenic in the digested sample, in micrograms
As
m initial blade mass, in milligrams
b
m mass of a commercial bentonite sample, in grams
B
m mass of water required for solids adjustment, in grams
h
m specified mass of suspension, in grams
l
m mass of a dry sample, in grams
d
m mass of drill solids sample, in grams
DS
m final blade mass, in milligrams
f
m mass of mercury in the digested sample, in micrograms
Hg
m mass of original sample, in grams
o
m mass of residue, in grams
r
m mass of sample, in grams
s
PAC-HV high-viscosity polyanionic cellulose
PAC-LV low-viscosity polyanionic cellulose
PI performance index
P phenolphthalein alkalinity of the drilling fluid
df
PPA permeability plugging apparatus
PPT permeability plugging test
p performance of reference thinner, for example yield point or gel strength as determined in
r
accordance with ISO 10414-1
p performance of test sample, for example yield point or gel strength as determined in accordance
s
with ISO 10414-1
4 © ISO 2008 – All rights reserved
PTFE polytetrafluoroethylene
t time at initial reading, in minutes
t time at final reading, in minutes
w mass fraction of arsenic in the sample, in micrograms per gram
As
w mass fraction of cadmium in the sample, in micrograms per gram
Cd
w mass fraction of sample in suspension, in percent
d
w moisture content, as percent mass fraction
h
w mass fraction of solids, in percent
s
w mass fraction of mercury in the sample, in micrograms per gram
Hg
w part of material finer than the sieve, in percent (mass fraction)
f
w mass fraction of lead in the sample, in micrograms per gram
Pb
w mass recovery (mass residue), expressed as a mass fraction in percent
r
t time, in minutes
V volume of methylene blue solution used in titration, in millilitres
V volume of filtrate collected between 7,5 min and 30 min, in millilitres
c
V corrected volume of filtrate, in millilitres
f
V volume of solution, in millilitres
o
V volume of sample, in millilitres
s
V PPT volume, in millilitres
PPT
V spurt loss, in millilitres
V filtrate volume after 7,5 min, in millilitres
7,5
V filtrate volume after 30 min, in millilitres
v static filtration rate (velocity of flow), in millilitres per minute
f
Y yield point, in pascals
P
ρ density, in grams per millilitre
ρ density of cadmium in the digested sample, in micrograms per millilitre
Cd
ρ density of lead in the digested sample, in micrograms per millilitre
Pb
η viscosity of water at test temperature, in centipoise (cP) (see Table 1)
η apparent viscosity
A
η plastic viscosity, in centipoise
P
η viscosity reading at 600 r/min, in millipascal seconds
5 Barite
5.1 Principle
Fines are the particles of 2 µm to 10 µm equivalent spherical diameter and are considered detrimental to
drilling fluids at high concentrations. Both sieve analysis and sedimentation methods for determining fines
concentration are described in 5.2 to 5.6.
5.2 Reagents and apparatus
5.2.1 Dispersant solution.
Prepare a solution of 40 g sodium hexametaphosphate and approximately 3,6 g sodium carbonate diluted to
1 l with deionized or distilled water. Sodium carbonate is used to adjust the pH of the solution to 9,0 or slightly
less. After the initial pH adjustment, check the pH each day the solution is used. When the pH falls below 8,0,
discard the solution.
5.2.2 Oven, capable of maintaining a temperature of 105 °C ± 3 °C (220 °F ± 5 °F).
5.2.3 Mixer, capable of operation at 11 500 r/min ± 300 r/min under load, with single corrugated impeller
3)
approximately 25,4 mm (1 in) in diameter .
5.2.4 Container, for mixing, 180 mm (7-1/8 in) deep, d = 97 mm (3-3/4 in) at top and 70 mm (2-3/4 in) at
4)
bottom .
5.2.5 Sieves, of mesh sizes 75 µm, 45 µm and 30 µm, having a diameter of 76 mm (3,0 in) and a depth of
64 mm (2,5 in) from the top of the frame to the wire cloth.
5.2.6 Stopwatch, with direct-reading counter and an accuracy of 0 min to 25 min over the test interval.
5.2.7 Stopper, rubber, size 13 [diameters 68 mm (2-2/3 in) top and 58 mm (2-1/4 in) bottom].
5.2.8 Wash bottles, one containing 125 ml dispersant solution diluted to 1 l with deionized water, and one
with deionized water.
5.2.9 Balance, accuracy ± 0,01 g.
5.2.10 Thermometer, with a scale reading 16 °C to 32 °C (60 °F to 90 °F), accurate to 0,5 °C (1 °F).
5.2.11 Beaker, 250 ml.
5.2.12 Water bath or constant-temperature room, capable of maintaining a convenient constant
temperature at or near 20 °C (68 °F).
5.2.13 Cylinder, glass sedimentation, 457 mm (18,0 in) high and 63,5 mm (2,5 in) in diameter, and marked
for a volume of 1 l (see ASTM D 422).
5.2.14 Hydrometer, ASTM No. 151H, conforming to ASTM E 100, graduated to read the specific gravity of
the suspension.
3) Multimixer Model 9B with B29 impeller is an example of a suitable product available commercially. This information is
given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of this
product.
4) Hamilton Beach Mixer Cup No. M110-D is an example of
...
NORME ISO
INTERNATIONALE 10416
Deuxième édition
2008-06-01
Version corrigée
2012-12-15
Industries du pétrole et du gaz naturel —
Fluides de forage — Essais en laboratoire
Petroleum and natural gas industries — Drilling fluids — Laboratory
testing
Numéro de référence
©
ISO 2008
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2008
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse
ii © ISO 2008 – Tous droits réservés
Sommaire Page
Avant-propos .ix
Introduction.x
1 Domaine d'application .1
2 Références normatives.1
3 Termes et définitions .2
4 Symboles et abréviations .3
5 Baryte.6
5.1 Principe.6
5.2 Réactifs et appareillage.6
5.2.1 Solution de dispersion.6
5.3 Échantillonnage.7
5.4 Calcul de la teneur en humidité .7
5.5 Analyse par tamisage.8
5.6 Analyse par sédimentation.9
6 Performances de la baryte.13
6.1 Principe.13
6.2 Réactifs et appareillage.13
6.2.1 Réactifs.13
6.2.2 Appareillage.13
6.3 Préparation du fluide de forage de base.14
6.4 Essai de rhéologie.15
6.5 Calcul.15
7 Abrasivité des alourdissants .16
7.1 Principe.16
7.2 Réactifs et appareillage.16
7.2.1 Bentonite de référence API.16
7.2.2 Détergent.16
7.3 Détermination de l'abrasion .17
8 Mercure dans la baryte pour fluides de forage .19
8.1 Principe.19
8.2 Réactifs et appareillage.19
8.3 Préparation des étalons.21
8.4 Digestion de l'échantillon .21
8.5 Contrôle de la récupération du Hg au cours de la digestion.22
8.6 Analyses des étalons et des échantillons .22
8.7 Calcul.22
9 Cadmium et plomb dans la baryte pour fluides de forage.23
9.1 Principe.23
9.2 Réactifs et appareillage.23
9.3 Préparation d'étalons combinés de cadmium et de plomb.24
9.4 Digestion de l'échantillon .25
9.5 Analyse des étalons et des échantillons .25
9.6 Calcul.25
10 Arsenic dans la baryte pour fluides de forage .26
10.1 Principe.26
10.2 Réactifs et appareillage.26
10.3 Préparation des étalons .28
10.4 Digestion de l'échantillon .28
10.5 Analyses des étalons et des échantillons.28
10.6 Calcul.29
11 Colmatants pour restauration de la circulation.29
11.1 Principe.29
11.2 Appareillage.30
11.3 Préparation du fluide de forage d'essai .30
11.4 Essai statique sur fente .30
11.5 Essai dynamique sur fente .31
11.6 Essai statique sur lit de billes .31
11.7 Essai dynamique sur lit de billes .31
11.8 Essai statique sur lit de billes de roulement (grenaille type « BB »).32
11.9 Essai dynamique de lit de billes de roulement (grenaille type « BB »).32
12 Agents de contrôle de filtration.32
12.1 Principe.32
12.2 Réactifs et appareillage.33
12.3 Instructions générales pour la préparation des fluides de forage de base.34
12.4 Fluide de forage saturé en sel .34
12.5 Fluide de forage saturé en sel, de dureté élevée.35
12.6 Fluide de forage à 10 % de chlorure de potassium (KCl) .35
12.7 Bentonite pré-hydratée .36
12.8 Fluide de forage modifié à l'eau de mer .36
12.9 Fluide de forage de faible salinité.37
12.10 Fluide de forage traité à la chaux.37
12.11 Fluide de forage non dispersé avec solides légers .38
12.12 Fluide de forage au lignosulfonate et à l'eau douce .38
12.13 Essai de performance initiale .39
12.14 Performances après vieillissement thermique .39
13 Essai au bleu de méthylène pour les solides forés et la bentonite du commerce .40
13.1 Capacité au bleu de méthylène des solides de forage .40
13.1.1 Principe.40
13.1.2 Réactifs et appareillage.40
13.1.3 Mode opératoire.41
13.2 Capacité au bleu de méthylène de la bentonite du commerce .43
13.2.1 Principe.43
13.2.2 Réactifs et appareillages.43
13.2.3 Mode opératoire.43
13.3 Teneur en solides .44
13.3.1 Principe.44
13.3.2 Calcul.44
14 Essai de défloculation pour l'évaluation d’un fluidifiant .45
14.1 Principe.45
14.2 Réactif et appareillage.46
14.3 Mode opératoire pour la teneur en humidité .47
14.4 Calcul de la teneur en humidité.47
14.5 Préparation du fluide de forage de base .48
14.6 Calcul.48
14.7 Détermination des propriétés rhéologiques .49
14.8 Calcul de l'efficacité du fluidifiant.50
iv © ISO 2008 – Tous droits réservés
15 Essai des huiles de base utilisées dans les fluides de forage .50
15.1 Généralités.50
15.2 Réactifs et appareillages.51
15.3 Masse spécifique, densité relative (densité) ou densité API avec un aréomètre (voir
l'ISO 3675).51
15.3.1 Principe.51
15.3.2 Résumé de la méthode .51
15.4 Masse spécifique et densité relative des liquides utilisant un instrument de mesure de
densité numérique (voir l'ASTM D 4052) .51
15.4.1 Principe.51
15.4.2 Résumé de la méthode .51
15.5 Viscosité cinématique des huiles transparentes et opaques — Méthodes avec un tube
capillaire étalonné (voir l'ISO 3104) .52
15.5.1 Principe.52
15.5.2 Résumé de la méthode .52
15.6 Distillation (voir l'ISO 3405) .52
15.6.1 Principe.52
15.6.2 Résumé de la méthode .52
15.7 Point d'aniline et point d'aniline composé (voir l'ISO 2977:1997) .52
15.7.1 Principe.52
15.7.2 Résumé des méthodes .53
15.8 Point d'écoulement (voir l'ISO 3016) .53
15.8.1 Principe.53
15.8.2 Résumé de la méthode .53
15.9 Point d’inflammation par l'appareil de test en vase clos Pensky-Martens (voir l'ISO 2719).53
15.9.1 Principe.53
15.9.2 Résumé de la méthode .53
15.10 Teneur en aromatiques (voir l'IP 391 ou l'ASTM D 5186) .54
15.10.1 Principe.54
15.10.2 Résumé de la méthode IP 391.54
15.10.3 Résumé de la méthode ASTM D 5598 .54
16 Teneur en ion potassium — Méthode avec électrode sélective d'ions .55
16.1 Principe.55
16.2 Réactifs et appareillage.55
16.3 Préparation des électrodes .56
16.4 Vérification opérationnelle du système d'électrodes .57
16.5 Mesurages à l’aide d’un appareil de mesure avec lecture directe de la concentration.57
16.6 Mesurage utilisant des instruments avec lecture en millivolts numérique ou analogique .58
17 Teneur en ion calcium — Méthode avec électrode sélective d’ions.58
17.1 Principe.58
17.2 Réactifs et appareillage.59
17.3 Préparation des électrodes .60
17.4 Vérification opérationnelle du système d’électrodes .60
17.5 Mesurage à l’aide d’un appareil de mesure avec lecture directe de la concentration.60
17.6 Mesurages utilisant des instruments avec lecture en millivolts numérique ou analogique .61
18 Teneur en ion sodium — Méthode avec électrode sélective d’ions .62
18.1 Principe.62
18.2 Réactifs et appareillage.62
18.3 Préparation et vérification opérationnelle du système d'électrodes .63
18.4 Mesurages utilisant un instrument avec lecture directe de la concentration.64
18.5 Mesurages au moyen d’un instrument avec lecture en millivolts.64
19 Masse spécifique des solides — Méthode au pycnomètre à gaz.65
19.1 Principe.65
19.2 Appareillage.65
19.3 Mode opératoire — Méthode au pycnomètre à gaz .65
19.4 Calcul — Méthode au pycnomètre à gaz.66
20 Masse spécifique des solides — Méthode du pycnomètre de comparaison à air.67
20.1 Principe.67
20.2 Appareillage.67
20.3 Mode opératoire — Méthode au pycnomètre de comparaison à air .67
20.4 Calcul — Méthode au pycnomètre de comparaison à air.68
21 Vieillissement de fluides de forage aqueux .68
21.1 Principe.68
21.2 Pratiques communes à la préparation, à la manipulation et aux essais pour toutes les
plages de température .69
21.2.1 Fluides de forages aqueux et composants.69
21.2.2 Appareils de mélange, de mixage et/ou de cisaillement .69
21.2.3 Domaine de propriétés des fluides de forage ou des fluides de base, importance du pH.69
21.2.4 Méthodes de stockage, de mise au rebut et d'essai d'un échantillon de fluide de forage .70
21.3 Préparation de l'échantillon de fluides de forage et vieillissement à température ambiante.70
21.3.1 Préparation de l'échantillon.70
21.3.2 Appareillage.70
21.3.3 Mode opératoire de vieillissement à température ambiante .71
21.4 Vieillissement de fluides de forage à températures modérées [ambiante à 65 °C (150 °F)] .71
21.4.1 Préparation de l'échantillon.71
21.4.2 Appareillage.71
21.4.3 Mode opératoire de vieillissement à des températures modérées.71
21.4.4 Maintien des propriétés du fluide à températures modérées .72
21.4.5 Conservation et essai d'échantillons vieillis à température modérée .72
21.5 Vieillissement de fluides de forage à températures substantiellement élevées [au-dessus
de 65 °C (150 °F)] .73
21.5.1 Préparation de l'échantillon.73
21.5.2 Appareillage.73
21.5.3 Caractéristiques de cellules métalliques de vieillissement .73
21.5.4 Considérations supplémentaires de sécurité pour les cellules métalliques de
vieillissement .74
21.5.5 Entretien des cellules métalliques de vieillissement.74
21.5.6 Mode opératoire de vieillissement à températures élevées.75
21.6 Inertie et compatibilité chimique dans les cellules de vieillissement haute température .75
21.6.1 Compatibilité chimique des matériaux avec les cellules métalliques de vieillissement.75
21.6.2 Inertie des cellules métalliques de vieillissement aux produits chimiques .75
21.6.3 Utilisation de matériaux de revêtement dans les cellules métalliques de vieillissement.76
21.6.4 Considérations concernant le plaquage métallique pour améliorer la résistance à la
contamination des cellules de vieillissement.76
21.6.5 Différence de performances des matériaux pour fluides de forage dans des
environnements inertes et réels de travail.76
21.7 Obtention de fournitures et de services pour le vieillissement d'échantillons de fluides de
forage .77
21.7.1 Fournisseurs d‘appareillages.77
21.7.2 Ingénieur conseil en métallurgie.77
21.7.3 Ingénieur conseil en appareil à pression .77
22 Vieillissement de fluides de forage à base d'huile.77
22.1 Principe.77
22.2 Appareillage.77
22.3 Pratiques communes à la préparation, la manipulation et les essais pour toutes plages de
températures .79
22.3.1 Fluides de forage à base d'huile et leurs composants .79
22.3.2 Appareils de mélange/mixage/cisaillement .80
22.3.3 Étendues des propriétés des fluides de forage à base d’huile ou de leurs fluides de base .80
22.3.4 Conservation et rejet des échantillons.80
22.4 Vieillissement de fluides de forage à température ambiante.80
22.4.1 Récipients pour la préparation et le stockage.80
22.4.2 Mode opératoire de vieillissement à température ambiante .81
22.4.3 Stockage.81
vi © ISO 2008 – Tous droits réservés
22.5 Vieillissement de fluides de forage à températures modérées [ambiante à 65 °C (150 °F)].81
22.5.1 Préparation de l'échantillon .81
22.5.2 Mode opératoire de vieillissement à températures modérées.81
22.5.3 Maintien des propriétés du fluide à températures modérées.82
22.5.4 Stockage et essai d'échantillons vieillis à températures modérées .82
22.6 Vieillissement de fluides de forage à températures substantiellement élevées
[supérieures à 65 °C (150 °F)].82
22.6.1 Préparation de l'échantillon .82
22.6.2 Choix de la cellule et de la température de vieillissement.82
22.6.3 Mode opératoire pour le vieillissement à températures élevées.83
22.6.4 Considérations relatives à la sécurité pour les cellules métalliques de vieillissement .83
22.7 Inertie et compatibilité chimique des cellules de vieillissement haute température .84
22.7.1 Compatibilité chimique des matériaux avec les cellules métalliques de vieillissement .84
22.7.2 Inertie des cellules métalliques de vieillissement vis-à-vis des produits chimiques .84
22.7.3 Considérations concernant le plaquage métallique pour améliorer la résistance à la
contamination des cellules de vieillissement .84
22.7.4 Différence de performances des matériaux pour fluides de forage dans des
environnements inertes et réels de travail .84
22.8 Obtention de fournitures et de services pour le vieillissement d'échantillons de fluides de
forage.85
22.8.1 Fournisseurs d'appareillages.85
22.8.2 Ingénieur conseil en métallurgie .85
22.8.3 Ingénieur conseil en appareil à pression.85
23 Essai de désintégration de particules d'argile par roulage à chaud.85
23.1 Principe.85
23.2 Réactifs et appareillage.86
23.3 Mode opératoire.87
23.4 Calcul.88
24 Matériaux pour fluide de forage — Cellulose polyanionique à haute viscosité (PAC-HV)
(normal) .88
24.1 Principe.88
24.2 Détermination de la teneur en humidité.88
24.2.1 Appareillage.88
24.2.2 Mode opératoire.89
24.3 Modes opératoires avec le fluide d'essai contenant la PAC-HV .89
24.3.1 Réactifs et appareillage.89
24.3.2 Mesurage du volume de filtrat du fluide d'essai .90
24.3.3 Calcul du volume corrigé du filtrat du fluide d'essai.91
24.3.4 Mesurage de la viscosité du fluide d'essai.91
24.3.5 Calcul de la viscosité apparente du fluide d'essai.92
25 Matériaux pour fluides de forage — Cellulose polyanionique à faible viscosité (PAC LV).92
25.1 Principe.92
25.2 Détermination de la teneur en humidité.92
25.2.1 Appareillage.92
25.2.2 Mode opératoire.92
25.2.3 Calcul de la teneur en humidité .93
25.3 Modes opératoires avec le fluide d'essai contenant la PAC-LV.93
25.3.1 Réactifs et appareillage.93
25.3.2 Mesurage du volume de filtrat du fluide d'essai .94
25.3.3 Calcul du volume corrigé du filtrat du fluide d'essai.95
25.3.4 Mesurage de la viscosité du fluide d'essai.95
25.3.5 Calcul de la viscosité apparente du fluide d'essai.95
26 Préparation et évaluation de fluides de forage à émulsion inverse.96
26.1 Principe.96
26.2 Réactifs et appareillage.96
26.3 Mélange du fluide de forage initial .97
26.4 Essais des propriétés du fluide de forage initial .98
26.5 Préparation de l'échantillon contaminé par de l'eau de mer .98
26.6 Préparation de l'échantillon contaminé par de l'argile de référence.98
26.7 Préparation de l'échantillon contaminé par une saumure de sels mélangés .99
26.8 Mode opératoire de roulage à chaud.99
26.9 Mode opératoire de vieillissement statique .99
26.10 Mode opératoire d'essais après vieillissement thermique.100
27 Essais de filtration à haute température/haute pression de fluides de forage au moyen
d’un appareillage de mesure de l’obturation de perméabilité (PPA) et de cellules
comportant des bouchons sécurisés à vis.100
27.1 Principe.100
27.2 Considérations relatives à la sécurité .101
27.3 Appareillage — Appareils de mesure de l’obturation de perméabilité (PPA) comportant
des bouchons sécurisés à vis.103
)
27.3.1 Cellule PPA .103
27.4 Mode opératoire de filtration haute température/haute pression (HTHP).105
27.4.1 Préchauffage de la chemise chauffante .105
27.4.2 Chargement de la cellule de filtration.105
27.4.3 Mise sous pression de la cellule.107
27.4.4 Réalisation de l'essai de filtration.108
27.5 Conclusion de l'essai et démontage.108
27.6 Rapport des données .110
27.6.1 Rapport relatif au filtrat .110
27.6.2 Perte d’écoulement immédiat (« spurt ») .110
27.6.3 Calcul.110
27.6.4 Rapport relatif au gâteau (« cake ») de filtration .111
28 Essai de filtration haute température/haute pression des fluides de forage au moyen d’un
appareillage de mesure de l’obturation de perméabilité (PPA) et de cellules comportant
des bouchons filetés .111
28.1 Principe.111
28.2 Considérations relatives à la sécurité .111
28.3 Appareillage — Appareils de mesure de l’obturation de perméabilité (PPA) comportant
des bouchons filetés .113
28.4 Mode opératoire pour la filtration haute température/haute pression (HTHP).116
28.4.1 Préchauffage de l’enveloppe chauffante.116
28.4.2 Chargement de la cellule de filtration.116
28.4.3 Mise sous pression de la cellule.117
28.4.4 Réalisation de l'essai de filtration.118
28.5 Fin de l'essai et démontage.119
28.6 Rapport des données .121
28.6.1 Rapport relatif au filtrat .121
28.6.2 Perte d’écoulement immédiat (« Spurt »).121
28.6.3 Calcul.121
28.6.4 Rapport relatif au gâteau (« cake ») de filtration .121
Bibliographie .122
viii © ISO 2008 – Tous droits réservés
Avant-propos
L'ISO (Organisation internationale de normalisation) est u
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...