ISO 16701:2015
(Main)Corrosion of metals and alloys — Corrosion in artificial atmosphere — Accelerated corrosion test involving exposure under controlled conditions of humidity cycling and intermittent spraying of a salt solution
Corrosion of metals and alloys — Corrosion in artificial atmosphere — Accelerated corrosion test involving exposure under controlled conditions of humidity cycling and intermittent spraying of a salt solution
ISO 16071:2015 specifies the test method, the reagents, and the procedure to be used in an accelerated atmospheric corrosion test constituting a 6 h exposure to a slightly acidified solution of 1 % NaCl twice weekly, followed by a condition of controlled humidity cycling between 95 % RH and 50 % RH at a constant temperature of 35 °C. It does not specify the dimensions of the tests specimens, the exposure period to be used for a particular product, or the interpretation of the results. Such details are provided in the appropriate product specifications. The accelerated laboratory corrosion test applies to metals and their alloys, metallic coatings (anodic or cathodic), chemical conversion coatings, and organic coatings on metallic materials.
Corrosion des métaux et alliages — Corrosion en atmosphère artificielle — Essai de corrosion accélérée comprenant des expositions sous conditions contrôlées à des cycles d'humidité et à des vaporisations intermittentes de solution saline
L'ISO 16701 :2015 spécifie la méthode d'essai, les réactifs et le mode opératoire à utiliser dans un essai de corrosion atmosphérique accélérée consistant en une exposition de 6 h, deux fois par semaine, à une solution légèrement acidifiée de 1 % de NaCl, suivie de cycles d'humidité contrôlés entre 95 % HR et 50 % de HR à une température constante de 35 °C. La présente Norme internationale ne spécifie pas les dimensions des éprouvettes, la durée d'exposition à utiliser pour un produit donné, ni l'interprétation des résultats. De tels détails sont fournis dans les spécifications de produit appropriées. L'essai de corrosion accélérée en laboratoire s'applique aux métaux et à leurs alliages, aux revêtements métalliques (anodiques ou cathodiques), aux revêtements de conversion chimique, et aux revêtements organiques sur des matériaux métalliques.
General Information
- Status
- Published
- Publication Date
- 20-May-2015
- Technical Committee
- ISO/TC 156 - Corrosion of metals and alloys
- Drafting Committee
- ISO/TC 156/WG 7 - Accelerated corrosion tests
- Current Stage
- 9599 - Withdrawal of International Standard
- Start Date
- 16-Jun-2025
- Completion Date
- 14-Feb-2026
Relations
- Effective Date
- 12-Feb-2026
- Consolidates
ISO/IEC Guide 14:2003 - Purchase information on goods and services intended for consumers - Effective Date
- 06-Jun-2022
- Effective Date
- 06-Jun-2022
- Effective Date
- 23-May-2009
Overview
ISO 16701:2015 defines an accelerated atmospheric corrosion test that combines controlled humidity cycling with intermittent spraying of a salt solution. Developed in the automotive context, the method reproduces cyclic salt and humidity conditions (e.g., winter de-icing salts) to assess the corrosion performance of metals, alloys and coatings under moderately forced laboratory conditions. The standard describes the test method, reagents and procedure, but does not prescribe specimen dimensions, total exposure periods or result interpretation - those are supplied in product specifications.
Key topics and technical requirements
- Test cycle and exposure: The procedure includes a 6 h exposure to a slightly acidified 1 % NaCl solution twice weekly, followed by controlled humidity cycling between 95 % RH and 50 % RH at a constant 35 °C. Test cycles are organized into 12 h sequences with periodic spraying cycles.
- Salt solution: Prepare at 10 g/L ± 1 g/L NaCl in deionized/distilled water (conductivity ≤ 2 mS/m). Adjust pH to 4.2 ± 0.1 with dilute sulfuric acid. Maximum impurity levels for NaCl (e.g., Cu, Ni 0.001 %) are specified.
- Climate chamber: Must control and monitor humidity and temperature closely - instantaneous RH deviation ±4 % (50–95 % RH) and mean RH accuracy ±2 % over 7–8 h. RH must be changeable linearly between 95 % and 50 % within 2 h.
- Spraying device: Produce a uniform vertical mist at a linear flow rate of 15 mm/h ± 5 mm/h (≈ collection 120 ml/h ± 40 ml/h using specified collector). Materials in contact with salt must be corrosion-resistant and not alter corrosivity.
- Forced drying and airflow: A system for forced drying after spray (supercool/reheat or pre-heated airflow) is required to avoid prolonged macroscopic wetness.
- Specimen handling: Non-metallic stands, specimen angle preferably 20° ± 5° to vertical. Protect cut edges and record material, pretreatment, coating thickness and any intentional damage.
- Limitations: Noted risk of exaggerated pitting for some low-alloy/austenitic stainless steels; unsuitable for wax/oil rust protection agents due to constant elevated temperature.
Applications and practical value
- Quality assurance and comparative evaluation of:
- metallic substrates and alloys,
- metallic (anodic/cathodic) coatings,
- chemical conversion coatings, and
- organic coatings on metals.
- Widely used by automotive OEMs and suppliers, corrosion and materials engineers, independent testing laboratories, and coating manufacturers to simulate salt-driven cyclic atmospheric corrosion and benchmark protective systems.
Who should use ISO 16701
- Corrosion engineers, materials scientists, product and coatings developers, QA/QC labs, OEM specification writers and standards committees seeking a reproducible accelerated test that better correlates with cyclic salt exposure than continuous salt spray.
Related standards
- ISO 4628 series (coating degradation evaluation)
- ISO 8407 (removal of corrosion products)
- ISO 10289 (rating of test specimens after corrosion tests)
- Developed under ISO/TC 156 (Corrosion of metals and alloys)
Keywords: ISO 16701, accelerated corrosion test, humidity cycling, salt spray, 1% NaCl, climate chamber, corrosion testing, coating durability, automotive corrosion testing.
Buy Documents
ISO 16701:2015 - Corrosion of metals and alloys -- Corrosion in artificial atmosphere -- Accelerated corrosion test involving exposure under controlled conditions of humidity cycling and intermittent spraying of a salt solution
REDLINE ISO 16701:2015 - Corrosion of metals and alloys -- Corrosion in artificial atmosphere -- Accelerated corrosion test involving exposure under controlled conditions of humidity cycling and intermittent spraying of a salt solution
ISO 16701:2015 - Corrosion des métaux et alliages -- Corrosion en atmosphère artificielle -- Essai de corrosion accélérée comprenant des expositions sous conditions contrôlées à des cycles d'humidité et à des vaporisations intermittentes de solution saline
Get Certified
Connect with accredited certification bodies for this standard

Element Materials Technology
Materials testing and product certification.
Inštitut za kovinske materiale in tehnologije
Institute of Metals and Technology. Materials testing, metallurgical analysis, NDT.
Sponsored listings
Frequently Asked Questions
ISO 16701:2015 is a standard published by the International Organization for Standardization (ISO). Its full title is "Corrosion of metals and alloys — Corrosion in artificial atmosphere — Accelerated corrosion test involving exposure under controlled conditions of humidity cycling and intermittent spraying of a salt solution". This standard covers: ISO 16071:2015 specifies the test method, the reagents, and the procedure to be used in an accelerated atmospheric corrosion test constituting a 6 h exposure to a slightly acidified solution of 1 % NaCl twice weekly, followed by a condition of controlled humidity cycling between 95 % RH and 50 % RH at a constant temperature of 35 °C. It does not specify the dimensions of the tests specimens, the exposure period to be used for a particular product, or the interpretation of the results. Such details are provided in the appropriate product specifications. The accelerated laboratory corrosion test applies to metals and their alloys, metallic coatings (anodic or cathodic), chemical conversion coatings, and organic coatings on metallic materials.
ISO 16071:2015 specifies the test method, the reagents, and the procedure to be used in an accelerated atmospheric corrosion test constituting a 6 h exposure to a slightly acidified solution of 1 % NaCl twice weekly, followed by a condition of controlled humidity cycling between 95 % RH and 50 % RH at a constant temperature of 35 °C. It does not specify the dimensions of the tests specimens, the exposure period to be used for a particular product, or the interpretation of the results. Such details are provided in the appropriate product specifications. The accelerated laboratory corrosion test applies to metals and their alloys, metallic coatings (anodic or cathodic), chemical conversion coatings, and organic coatings on metallic materials.
ISO 16701:2015 is classified under the following ICS (International Classification for Standards) categories: 77.060 - Corrosion of metals. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO 16701:2015 has the following relationships with other standards: It is inter standard links to EN ISO 16701:2015, ISO/IEC Guide 14:2003, ISO 16701:2025, ISO 16701:2003. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
ISO 16701:2015 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 16701
Second edition
2015-05-15
Corrosion of metals and alloys —
Corrosion in artificial atmosphere —
Accelerated corrosion test involving
exposure under controlled conditions
of humidity cycling and intermittent
spraying of a salt solution
Corrosion des métaux et alliages — Corrosion en atmosphère
artificielle — Essai de corrosion accélérée comprenant des
expositions sous conditions contrôlées à des cycles d’humidité et à des
vaporisations intermittentes de solution saline
Reference number
©
ISO 2015
© ISO 2015, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2015 – All rights reserved
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Reagent . 2
4 Apparatus . 2
4.1 Climate chamber . 2
4.2 Spraying device . 3
4.3 System for forced drying . 3
5 Test objects . 3
6 Procedure. 4
6.1 Arrangement of the test objects . 4
6.2 Exposure conditions of test cycle . 4
6.3 Duration of test . 6
6.4 Treatment of test objects after test . 6
7 Evaluation of results . 6
8 Test report . 7
Annex A (informative) Recommended periods of testing. 8
Annex B (informative) Suitable design of test apparatus with spraying device .9
Annex C (informative) Method for evaluation of corrosivity of test .11
Bibliography .13
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers
to Trade (TBT) see the following URL: Foreword - Supplementary information
The committee responsible for this document is ISO/TC 156, Corrosion of metals and alloys.
This second edition cancels and replaces the first edition (ISO 16701:2003), of which it constitutes a
minor revision.
iv © ISO 2015 – All rights reserved
Introduction
Atmospheric corrosion of metallic materials, with or without corrosion protection, is influenced by
many environmental factors, the importance of which might vary with the type of metallic material
and with the type of environment. It is therefore not possible to design a laboratory corrosion test in
such a way that the full complexity of real in-service conditions are taken into account. Acceleration
(forced conditions) as such can also have a negative impact on the correlation to field performance.
Nevertheless, tests with humidity cycling and only intermittent exposure to salt solution will generally
provide a better correlation to field performance than tests using continuous salt spray.
This International Standard was developed in the automotive context, where the major contributor to
corrosion is the use of winter time de-icing road salt in cool/cold temperate areas around the world, here
as sodium chloride compounds acting in cyclic humidity conditions. The test procedure is moderately
forced by humidity and salt and intended to be applicable for quality assurance of the metals and
corrosion protections typically encountered in motor vehicles. The method can have relevance also
in other areas of application, provided representing similar climatic conditions with an influence of
sodium chloride compounds.
INTERNATIONAL STANDARD ISO 16701:2015(E)
Corrosion of metals and alloys — Corrosion in artificial
atmosphere — Accelerated corrosion test involving
exposure under controlled conditions of humidity cycling
and intermittent spraying of a salt solution
1 Scope
This International Standard specifies the test method, the reagents, and the procedure to be used in an
accelerated atmospheric corrosion test constituting a 6 h exposure to a slightly acidified solution of 1 %
NaCl twice weekly, followed by a condition of controlled humidity cycling between 95 % RH and 50 %
RH at a constant temperature of 35 °C.
This International Standard does not specify the dimensions of the tests specimens, the exposure period
to be used for a particular product, or the interpretation of the results. Such details are provided in the
appropriate product specifications.
The accelerated laboratory corrosion test applies to
— metals and their alloys,
— metallic coatings (anodic or cathodic),
— chemical conversion coatings, and
— organic coatings on metallic materials.
NOTE 1 If testing low-alloy stainless steels, especially austenitic grades, according to this International
Standard, there is a risk of receiving exaggerated pitting, not representative for most service environments.
NOTE 2 This International Standard is not suitable for testing of wax and oil based rust protection agents, due
to the constantly elevated temperature condition of the test.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 4628-1, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity
and size of defects, and of intensity of uniform changes in appearance — Part 1: General introduction and
designation system
ISO 4628-2, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and
size of defects, and of intensity of uniform changes in appearance — Part 2: Assessment of degree of blistering
ISO 4628-4, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and
size of defects, and of intensity of uniform changes in appearance — Part 4: Assessment of degree of cracking
ISO 4628-5, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and
size of defects, and of intensity of uniform changes in appearance — Part 5: Assessment of degree of flaking
ISO 8407, Corrosion of metals and alloys — Removal of corrosion products from corrosion test specimens
ISO 10289, Methods for corrosion testing of metallic and other inorganic coatings on metallic substrates —
Rating of test specimens and manufactured articles subjected to corrosion tests
3 Reagent
A salt solution, prepared by dissolving a sufficient mass of sodium chloride in distilled or deionized water
−1 −1
to a concentration of 10 g l ± 1 g l . The distilled or deionized water used shall have a conductivity not
−1
higher than 2 mS m at 25 °C ± 2 °C.
The maximum permissible amounts of impurities in the sodium chloride are given in Table 1.
Table 1 — Maximum permissible amounts of impurities in the sodium chloride as calculated for
dry salt
Maximum mass
fraction of
Impurity Note
impurity
%
Copper (calculated for dry
0,001
salt)
Determined by atomic absorption spectro-photome-
try or other method with similar accuracy
Nickel (calculated for dry
0,001
salt)
Sodium iodide 0,1
Total 0,5
Check the pH of the salt solution by using potentiometric measurement at 25 °C ± 2 °C. Finely adjust the
pH of the salt solution to a value of 4,2 ± 0,1 by standard addition of a diluted sulphuric acid solution (e.g.
1 ml of 0,05 mol/L H SO is added to 1 l of salt solution).
2 4
4 Apparatus
4.1 Climate chamber
The climate chamber shall be designed so that the following test conditions can be obtained, controlled
and monitored during the test.
An instantaneous maximum deviation from set relative humidity value of ±4 % in the range from 50 % to
95 % at 35 °C, which corresponds to a temperature accuracy requirement of ±0,8 °C at that temperature.
For the mean value in relative humidity during a period of constant climatic conditions 7 h to 8 h an
accuracy of ±2 % shall apply, corresponding to temperature accuracy requirement of in this case ±0,4 °C.
To meet the temperature and humidity accuracy requirements, the climate chamber should be equipped
with means for efficient circulation of air to provide for small temperature and humidity variations in
the chamber. Sufficient insulation of the chamber walls and lids are required in order to avoid excessive
condensation on these surfaces.
The climate chamber shall also be designed so that the relative humidity can be changed linearly with
respect to time from 95 % to 50 % within 2 h and back from 50 % to 95 % also within 2 h. Figure B.1
shows a suitable design of climate chamber.
The humidity and temperature levels of the climate chamber during a test cycle shall be continuously
monitored or regularly checked so that it can be confirmed that the relative humidity versus time for
a complete test cycle is within the specified ranges at 95 % RH and 50 % RH. For measurement of the
relative humidity use a hygrometer designed for measurements at high humidity levels, e.g. a high-
quality combined temperature and capacitance humidity sensor or a gold mirror dewpoint meter. For
measurement of temperature preferably use Pt 100 sensors.
2 © ISO 2015 – All rights reserved
4.2 Spraying device
The spraying device for salt solution installed in the climate chamber shall be capable of producing a
finely distributed uniform vertical downward flow of mist or small droplets falling on the test objects at
−1 −1
a linear flow rate of 15 mm h ± 5 mm h .
If a graduated glass cylinder with a collecting area of 80 cm is used to check whether this flow rate is
−1 −1
within the specified range, the collection rate of salt solution shall be 120 ml h ± 40 ml h .
The device for salt spraying is preferably made of a number of nozzles mounted in series on a rail or tube.
A spray pattern in the form of a fan, partly overlapping, is then obtained. The spraying device shall be
made of, or lined with, materials resistant to corrosion by the salt solution and which do not influence
the corrosivity of the sprayed salt solution. The use of molybdenum-alloyed stainless steel or plastic is
recommended. Figure B.2 shows a suitable design of spraying device.
Salt solution that has already been sprayed shall not be re-used.
4.3 System for forced drying
The climate chamber shall be equipped with a system for forced airflow drying, as after spraying/wet
stand-by all test objects should be dried from excessive macro wetness and climate control shall be
made possible to regain within a reasonable time.
Forced drying is preferably arranged by supercooling and reheating an internal circulating flow.
Alternatively, drying can be arranged by letting a forced flow of pre-heated ambient air ventilate the
3 3 −1 −1
chamber. For a climate chamber of the volume 1 m to 2 m an airflow rate of 50 ls to 100 ls is
recommended. The forced airflow shall not be pre-heated to such temperature levels that the maximum
chamber temperature of 35 °C is exceeded.
NOTE Pre-heating of the forced airflow to a temperature of 40 °C has been found suitable from practical
experience.
5 Test objects
5.1 The number and type of test objects, their shape and their dimensions shall be selected according
to the specification for the material or product being tested. When not specified accordingly, these details
shall be mutually agreed between the interested parties.
5.2 For each series of test objects,
...
INTERNATIONAL ISO
STANDARD 16701
Redline version
compares Second edition to
First edition
Corrosion of metals and alloys —
Corrosion in artificial atmosphere —
Accelerated corrosion test involving
exposure under controlled conditions
of humidity cycling and intermittent
spraying of a salt solution
Corrosion des métaux et alliages — Corrosion en atmosphère
artificielle — Essai de corrosion accélérée comprenant des
expositions sous conditions contrôlées à des cycles d’humidité et à des
vaporisations intermittentes de solution saline
Reference number
ISO 16701:redline:2015(E)
©
ISO 2015
ISO 16701:redline:2015(E)
IMPORTANT — PLEASE NOTE
This is a mark-up copy and uses the following colour coding:
Text example 1 — indicates added text (in green)
Text example 2 — indicates removed text (in red)
— indicates added graphic figure
— indicates removed graphic figure
1.x . — Heading numbers containg modifications are highlighted in yellow in
the Table of Contents
All changes in this document have yet to reach concensus by vote and as such should only
be used internally for review purposes.
DISCLAIMER
This Redline version provides you with a quick and easy way to compare the main changes
between this edition of the standard and its previous edition. It doesn’t capture all single
changes such as punctuation but highlights the modifications providing customers with
the most valuable information. Therefore it is important to note that this Redline version is
not the official ISO standard and that the users must consult with the clean version of the
standard, which is the official standard, for implementation purposes.
© ISO 2015, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2015 – All rights reserved
ISO 16701:redline:2015(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Reagent . 2
4 Apparatus . 3
4.1 Climate chamber . 3
4.2 Spraying device . 3
4.3 System for forced drying . 3
5 Test objects . 4
6 Procedure. 4
6.1 Arrangement of the test objects . 4
6.2 Exposure conditions of test cycle . 5
6.3 Duration of test . 8
6.4 Treatment of test objects after test . 8
7 Evaluation of results . 8
8 Test report . 9
Annex A (informative) Recommended periods of testing.10
Annex B (informative) Suitable design of test apparatus with spraying device .12
Annex C (informative) Method for evaluation of corrosivity of test .15
Bibliography .17
ISO 16701:redline:2015(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
International Standards areThe procedures used to develop this document and those intended for its
further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval
criteria needed for the different types of ISO documents should be noted. This document was drafted
in accordance with the rules given ineditorial rules of the ISO/IEC Directives, Part 2 (see www.iso.
org/directives).
The main task of technical committees is to prepare International Standards. Draft International
Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies
casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers
to Trade (TBT) see the following URL: Foreword - Supplementary information
ISO 16701 was prepared by Technical CommitteeThe committee responsible for this document is
ISO/TC 156, Corrosion of metals and alloys.
This second edition cancels and replaces the first edition (ISO 16701:2003), of which it constitutes a
minor revision.
iv © ISO 2015 – All rights reserved
ISO 16701:redline:2015(E)
Introduction
As an alternative to the continuous salt spray test methods of Atmospheric corrosion of metallic
[3]
materials, with or without corrosion protectionISO 9227 , intermittent salt spray test methods may be
used. The results of such tests provide a better correlation with the effects of exposure in environments
where there is a significant influence of chloride ions, such as from a marine source or road de-icing
saltis influenced by many environmental factors, the importance of which might vary with the type of
metallic material and with the type of environment. It is therefore not possible to design a laboratory
corrosion test in such a way that the full complexity of real in-service conditions are taken into account.
Acceleration (forced conditions) as such can also have a negative impact on the correlation to field
performance. Nevertheless, tests with humidity cycling and only intermittent exposure to salt solution
will generally provide a better correlation to field performance than tests using continuous salt spray.
Accelerated corrosion tests to simulate atmospheric corrosion in such environments should include
cyclic exposure to the following conditions.
a) A wet phase, during which the test object is repeatedly subjected first to a spray of aqueous salt-
containing solution then to a wet stand-by period during which residual wetness remains on the test
object. This sequence provides a prolonged period of continuous exposure to wetness, extending
over several hours.
b) A phase of controlled cyclic humidity conditions, where the test object is subjected to an environment
which alternates between high humidity and comparative dryness.
These two phases should be cycled for an appropriate number of times.
The test method described in this International Standard conforms with these requirements, as follows.
In the first (wet) phase of exposure, the test objects are sprayed for 15 min with a 1 % (mass fraction)
aqueous solution of sodium chloride acidified to pH 4,2, to simulate the rather acidic precipitation present
in industrialized areas, followed by a 1 h 45 min period of wet stand-by. This sequence is repeated three
times to give a total of 6 h exposure to wetness. The whole of this first phase of the test cycle is repeated
twice a week. If spraying is carried out more frequently or a more concentrated solution of sodium
chloride is used during this phase, phenomena may appear that are seldom experienced in the field, e.g.
severe diffusion blocking by red rust or excessive dissolution of zinc.
The major part of the test cycle, however, consists of humidity cycling between the two levels of 95 % RH
and 50 % RH at a constant temperature of 35 °C. To simulate the wet phase of humidity cycling, the
humidity level has been set close to the condensation limit, but at a level at which test conditions can be
satisfactorily controlled. Introducing 100 % humidity conditions, inevitably results in loss of control of
the amount of salt deposited on a test object.
The test method described in this International Standard is mainly intended for comparative testing
and the results obtained do not permit far-reaching conclusions on the corrosion resistance of the
tested metallic material under the whole range of environmental conditions within which it may be
used. Nevertheless, the method provides valuable information on the relative performance of materials
exposed to salt-contaminated environments similar to those used in the test. SeeThis International
Standard was developed in the automotive context, where the major contributor to corrosion is the
use of winter time de-icing road salt in cool/cold temperate areas around the world, here as sodium
chloride compounds acting in cyclic humidity conditions. The test procedure is moderately forced
by humidity and salt and intended to be applicable for quality assurance of the metals and corrosion
protections typically encountered in motor vehicles. The method can have relevance also in other
areas of application, provided representing similar climatic conditions with an influence of sodium
Annex Achloride compounds.
INTERNATIONAL STANDARD ISO 16701:redline:2015(E)
Corrosion of metals and alloys — Corrosion in artificial
atmosphere — Accelerated corrosion test involving
exposure under controlled conditions of humidity cycling
and intermittent spraying of a salt solution
1 Scope
This International Standard defines an accelerated corrosion test methodspecifies the test method, the
reagents, and the procedure to be used in assessing the corrosion resistance of metals in environments
where there is a significant influence of chloride ions, mainly as sodium chloride from a marine source
or road de-icing saltan accelerated atmospheric corrosion test constituting a 6 h exposure to a slightly
acidified solution of 1 % NaCl twice weekly, followed by a condition of controlled humidity cycling
between 95 % RH and 50 % RH at a constant temperature of 35 °C.
This International Standard specifies the test apparatus and test proceduredoes not specify the
dimensions of the tests specimens, the exposure period to be used in conducting the accelerated corrosion
test to simulate, in a very controlled way, atmospheric corrosion conditionsfor a particular product, or
the interpretation of the results. Such details are provided in the appropriate product specifications.
In this International Standard, the term “metal” includes metallic materials with or without
corrosion protection.
The accelerated laboratory corrosion test applies to
— metals and their alloys;,
— metallic coatings (anodic andor cathodic);,
— chemical conversion coatings;, and
— organic coatings on metalsmetallic materials.
The method is especially suitable for comparative testing in the optimization of surface treatment systems.
NOTE 1 If testing low-alloy stainless steels, especially austenitic grades, according to this International
Standard, there is a risk of receiving exaggerated pitting, not representative for most service environments.
NOTE 2 This International Standard is not suitable for testing of wax and oil based rust protection agents, due
to the constantly elevated temperature condition of the test.
2 Normative references
The following referenced documentsdocuments, in whole or in part, are normatively referenced in this
document and are indispensable for the application of this documentits application. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.
ISO 4628-1, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity
and size of defects, and of intensity of uniform changes in appearance — Part 1: General introduction and
designation system
ISO 4628-2, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and
size of defects, and of intensity of uniform changes in appearance — Part 2: Assessment of degree of blistering
ISO 16701:redline:2015(E)
ISO 4628-4, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and
size of defects, and of intensity of uniform changes in appearance — Part 4: Assessment of degree of cracking
ISO 4628-5, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and
size of defects, and of intensity of uniform changes in appearance — Part 5: Assessment of degree of flaking
ISO 8407, Corrosion of metals and alloys — Removal of corrosion products from corrosion test specimens
ISO 10289, Methods for corrosion testing of metallic and other inorganic coatings on metallic substrates —
Rating of test specimens and manufactured articles subjected to corrosion tests
3 Reagent
A salt solution, prepared by dissolving a sufficient mass of sodium chloride in distilled or deionized water
−1 −1
to a concentration of 10 g l ± 1 g l . The distilled or deionized water used shall have a conductivity not
−1
higher than 2 mS m at 25 °C ± 2 °C.
The maximum permissible amounts of impurities in the sodium chloride are given in Table 1.
Table 1 — Maximum permissible amounts of impurities in the sodium chloride as calculated for
dry salt
Impurity Maximum mass- Note
fraction ofimpu-
rity
%
Copper (calculated for dry 0,001 Determined by atomic absorption spectro-photome-
salt) try or other method with similar accuracy
Nickel (calculated for dry 0,001
salt)
Sodium iodide 0,1
Total 0,5
Table 1 — Maximum permissible amounts of impurities in the sodium chloride as calculated for
dry salt
Maximum mass
fraction of
Impurity Note
impurity
%
Copper (calculated for dry
0,001
salt)
Determined by atomic absorption spectro-photome-
try or other method with similar accuracy
Nickel (calculated for dry
0,001
salt)
Sodium iodide 0,1
Total 0,5
Check the pH of the salt solution by using potentiometric measurement at 25 °C ± 2 °C. Finely adjust the
pH of the salt solution to a value of 4,2 ± 0,1 by standard addition of a diluted sulphuric acid solution (e.g.
1 ml of 0,05 N mol/L H SO is added to 1 l of salt solution).
2 4
2 © ISO 2015 – All rights reserved
ISO 16701:redline:2015(E)
4 Apparatus
4.1 Climate chamber
The climate chamber shall be designed so that the following test conditions can be obtained, controlled
and monitored during the test.
An instantaneous maximum deviation from set relative humidity value of ±4 % in the range from 50 % to
95 % at 35 °C, which corresponds to a temperature accuracy requirement of ±0,8 °C at that temperature.
For the mean value in relative humidity during a period of constant climatic conditions 7 h to 8 h an
accuracy of ±2 % shall apply, corresponding to temperature accuracy requirement of in this case ±0,4 °C.
NOTE To meet the temperature and humidity accuracy requirements, the climate chamber should be
equipped with means for efficient circulation of air to provide for small temperature and humidity variations
in the chamber. Sufficient insulation of the chamber walls and lids are required in order to avoid excessive
condensation on these surfaces.
To meet the temperature and humidity accuracy requirements, the climate chamber should be equipped
with means for efficient circulation of air to provide for small temperature and humidity variations in
the chamber. Sufficient insulation of the chamber walls and lids are required in order to avoid excessive
condensation on these surfaces.
The climate chamber shall also be designed so that the relative humidity maycan be changed linearly
with respect to time from 95 % to 50 % within 2 h and back from 50 % to 95 % also within 2 h. Figure B.1
shows a suitable design of climate chamber.
The humidity and temperature levels of the climate chamber during a test cycle shall be continuously
monitored or regularly checked so that it can be confirmed that the relative humidity versus time for
a complete test cycle is within the specified ranges at 95 % RH and 50 % RH. For measurement of the
relative humidity use a hygrometer designed for measurements at high humidity levels, e.g. a high-
quality combined temperature and capacitance humidity sensor or a gold mirror dewpoint meter. For
measurement of temperature preferably use Pt 100 sensors.
4.2 Spraying device
The spraying device for salt solution installed in the climate chamber shall be capable of producing a
finely distributed uniform vertical downward flow of mist or small droplets falling on the test objects at
−1 −1
a linear flow rate of 15 mm h ± 5 mm h .
If a graduated glass cylinder with a collecting area of 80 cm is used to check whether this flow rate is
−1 −1
within the specified range, the collection rate of salt solution shall be 120 ml h ± 40 ml h .
The device for salt spraying is preferably made of a number of nozzles mounted in series on a rail or tube.
A spray pattern in the form of a fan, partly overlapping, is then obtained. The spraying device shall be
made of, or lined with, materials resistant to corrosion by the salt solution and which do not influence
the corrosivity of the sprayed salt solution. The use of molybdenum-alloyed stainless steel or plastic is
recommended. Figure B.2 shows a suitable design of spraying device.
Salt solution that has already been sprayed shall not be re-used.
4.3 System for forced drying
The climate chamber shall be equipped with a system for forced air flowairflow drying, as after
spraying/wet stand-by all test objects should be dried from excessive macro wetness and climate
control shall be made possible to regain within a reasonable time.
Forced drying is preferably arranged by supercooling and reheating an internal circulating flow.
Alternatively, drying maycan be arranged by letting a forced flow of pre-heated ambient air ventilate the
3 3 −1 −1
chamber. For a climate chamber of the volume 1 m to 2 m an air flowairflow rate of 50 ls to 100 ls
ISO 16701:redline:2015(E)
is recommended. The forced air flowairflow shall not be pre-heated to such temperature levels that the
maximum c
...
NORME ISO
INTERNATIONALE 16701
Deuxième édition
2015-05-15
Version corrigée
2018-10
Corrosion des métaux et alliages —
Corrosion en atmosphère artificielle
— Essai de corrosion accélérée
comprenant des expositions sous
conditions contrôlées à des cycles
d'humidité et à des vaporisations
intermittentes de solution saline
Corrosion of metals and alloys — Corrosion in artificial atmosphere
— Accelerated corrosion test involving exposure under controlled
conditions of humidity cycling and intermittent spraying of a salt
solution
Numéro de référence
©
ISO 2015
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2015
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
Fax: +41 22 749 09 47
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2015 – Tous droits réservés
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d'application . 1
2 Références normatives . 1
3 Réactif . 2
4 Appareillage . 2
4.1 Armoire climatique . 2
4.2 Dispositif de vaporisation. 3
4.3 Système de séchage forcé. 3
5 Objets soumis à essai . 3
6 Mode opératoire. 4
6.1 Disposition des objets soumis à essai . 4
6.2 Conditions d'exposition des cycles d'essai . 4
6.3 Durée de l'essai . 7
6.4 Traitement des objets soumis à essai après l'essai. 7
7 Évaluation des résultats . 7
8 Rapport d'essai . 7
Annexe A (informative) Durées d'essai recommandées. 9
Annexe B (informative) Conception appropriée d'un appareillage d'essai avec dispositif de
vaporisation .10
Annexe C (informative) Méthode d'évaluation de la corrosivité de l'essai .13
Bibliographie .15
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes
nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/directives).
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voire www .iso .org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la signification des termes et expressions spécifiques de l'ISO liés à l'évaluation
de la conformité, ou pour toute information au sujet de l'adhésion de l'ISO aux principes de l'OMC
concernant les obstacles techniques au commerce (OTC), voir le lien suivant: Avant-propos —
Informations supplémentaires.
Le comité chargé de l'élaboration du présent document est l'ISO/TC 156, Corrosion des métaux et alliages.
Cette deuxième édition annule et remplace la première édition (ISO 16701:2003), dont elle constitue
une révision mineure.
La présente version corrigée de l'ISO 16701:2018 inclut les corrections suivantes:
−1 −1
— en 4.2, «1120 ml h » a été corrigée à «120 ml h ».
iv © ISO 2015 – Tous droits réservés
Introduction
La corrosion atmosphérique de matériaux métalliques, avec ou sans protection contre la corrosion, est
influencée par de nombreux facteurs environnementaux, dont l'importance peut varier selon le type
de matériau métallique et le type d'environnement. Il est, par conséquent, impossible de concevoir
un essai de corrosion en laboratoire permettant de prendre en compte la complexité des conditions
réelles de service. L'accélération (conditions forcées), en tant que telle, peut également avoir une
incidence négative sur la corrélation avec les performances sur le terrain. Néanmoins, les essais avec
cycles d'humidité et exposition seulement intermittente à une solution saline assureront en général
une meilleure corrélation avec les performances sur le terrain que les essais utilisant une vaporisation
continue de solution saline.
La présente Norme internationale a été élaborée dans le domaine de l’industrie automobile, où l’élément
majeur contribuant à la corrosion est l'utilisation de sels hivernaux de déverglaçage des routes dans
des zones tempérées chaudes/froides partout dans le monde, en l’occurrence les composés contenant
du chlorure de sodium agissant dans des cycles d'humidité contrôlée. Le mode opératoire est quelque
peu influencé par l'humidité et le sel et est destiné à être appliqué à l'assurance de la qualité des métaux
et aux protections contre la corrosion habituellement rencontrés dans les véhicules à moteur. Cette
méthode peut être également applicable dans d'autres champs d'application, à condition de reproduire
des conditions climatiques similaires avec une influence de composés contenant du chlorure de sodium.
NORME INTERNATIONALE ISO 16701:2015(F)
Corrosion des métaux et alliages — Corrosion en
atmosphère artificielle — Essai de corrosion accélérée
comprenant des expositions sous conditions contrôlées à
des cycles d'humidité et à des vaporisations intermittentes
de solution saline
1 Domaine d'application
La présente Norme internationale spécifie la méthode d'essai, les réactifs et le mode opératoire à utiliser
dans un essai de corrosion atmosphérique accélérée consistant en une exposition de 6 h, deux fois par
semaine, à une solution légèrement acidifiée de 1 % de NaCl, suivie de cycles d'humidité contrôlés entre
95 % HR et 50 % de HR à une température constante de 35 °C.
La présente Norme internationale ne spécifie pas les dimensions des éprouvettes, la durée d'exposition
à utiliser pour un produit donné, ni l'interprétation des résultats. De tels détails sont fournis dans les
spécifications de produit appropriées.
L'essai de corrosion accélérée en laboratoire s'applique:
— aux métaux et à leurs alliages;
— aux revêtements métalliques (anodiques ou cathodiques);
— aux revêtements de conversion chimique; et
— aux revêtements organiques sur des matériaux métalliques.
NOTE 1 Si les essais portent sur des aciers inoxydables faiblement alliés, notamment des aciers austénitiques,
conformément à la présente Norme internationale, on risque d'observer une quantité excessive de piqûres, ce qui
n’est pas représentatif de la plupart des environnements prévus.
NOTE 2 La présente Norme internationale ne convient pas aux essais relatifs aux agents de protection
anticorrosion à base de cire et d'huile, en raison de la condition de température constamment élevée de l'essai.
2 Références normatives
Les documents ci-après, dans leur intégralité ou non, sont des références normatives indispensables à
l’application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les
références non datées, la dernière édition du document de référence s'applique (y compris les éventuels
amendements).
ISO 4628-1, Peintures et vernis — Évaluation de la dégradation des revêtements — Désignation de la
quantité et de la dimension des défauts, et de l'intensité des changements uniformes d'aspect — Partie 1:
Introduction générale et système de désignation
ISO 4628-2, Peintures et vernis — Évaluation de la dégradation des revêtements — Désignation de la
quantité et de la dimension des défauts, et de l'intensité des changements uniformes d'aspect — Partie 2:
Évaluation du degré de cloquage
ISO 4628-4, Peintures et vernis — Évaluation de la dégradation des revêtements — Désignation de la
quantité et de la dimension des défauts, et de l'intensité des changements uniformes d'aspect — Partie 4:
Évaluation du degré de craquelage
ISO 4628-5, Peintures et vernis — Évaluation de la dégradation des revêtements — Désignation de la
quantité et de la dimension des défauts, et de l'intensité des changements uniformes d'aspect — Partie 5:
Évaluation du degré d'écaillage
ISO 8407, Corrosion des métaux et alliages — Élimination des produits de corrosion sur les éprouvettes
d'essai de corrosion
ISO 10289, Méthodes d'essai de corrosion des revêtements métalliques et inorganiques sur substrats
métalliques — Cotation des éprouvettes et des articles manufacturés soumis aux essais de corrosion
3 Réactif
Solution saline, préparée en dissolvant du chlorure de sodium, dans de l'eau distillée ou déionisée
−1 −1
(déminéralisée) pour obtenir une concentration de 10 g l ± 1 g l . L'eau distillée ou déionisée
−1
(déminéralisée) utilisée doit avoir une conductivité inférieure ou égale à 2 mS m à 25 °C ± 2 °C.
Les teneurs maximales admissibles en impuretés dans le chlorure de sodium sont données dans le
Tableau 1.
Tableau 1 — Teneurs en impuretés maximales admissibles dans le chlorure de sodium,
calculées sur le sel sec
Fraction mas-
sique
Impuretés maximale des Note
impuretés
%
Cuivre (calculé sur le sel sec) 0,001
Déterminée par spectrophotométrie d'absorption ato-
mique ou par toute autre méthode de précision comparable
Nickel (calculé sur le sel sec) 0,001
Iodure de sodium 0,1
Total 0,5
Vérifier le pH de la solution saline par mesure potentiométrique à 25 °C ± 2 °C. Ajuster précisément le
pH de la solution saline à une valeur de 4,2 ± 0,1 en ajoutant une solution d'acide sulfurique dilué (par
exemple 1 ml de H SO 0,05 mol/L est ajouté à 1 l de solution saline).
2 4
4 Appareillage
4.1 Armoire climatique
L'armoire climatique doit être conçue de sorte que les conditions d'essai suivantes puissent être
obtenues, contrôlées et enregistrées pendant l'essai.
Un écart maximal instantané d'une valeur fixée d'humidité relative de ± 4 % dans la plage située entre
50 % et 95 % à 35 °C, correspondant à une température d’une précision requise de ± 0,8 °C à ladite
température. La valeur moyenne d’humidité relative doit être maintenue pendant une durée de 7 h à 8 h
dans des conditions climatiques constantes avec une précision de ± 2 % correspondant, dans ce cas, à
une température d’une précision requise de ± 0,4 °C.
Pour remplir les exigences de précision relatives à la température et à l'humidité, il convient d'équiper
l'armoire climatique de dispositifs permettant une circulation d'air efficace pour assurer des variations
de température et d'humidité infimes. Une isolation suffisante des parois de l'armoire et des couvercles
est requise afin d'éviter une condensation excessive sur ces surfaces.
L'armoire climatique doit également être conçue de sorte que l'humidité relative puisse être modifiée
de façon linéaire de 95 % à 50 % et inversement en l'espace de 2 heures. La Figure B.1 présente un
exemple d'armoire climatique conçue de façon appropriée.
2 © ISO 2015 – Tous droits réservés
Les niveaux de température et d'humidité de l'armoire climatique pendant un cycle d'essai doivent être
surveillés en permanence ou vérifiés régulièrement afin qu'il soit possible de confirmer que, pour un
cycle d’essai complet, la variation de l'humidité relative en fonction du temps est comprise dans les
plages spécifiées à 95 % HR et 50 % HR. Pour mesurer l'humidité relative, utiliser un hygromètre
conçu pour effectuer des mesures à de hauts niveaux d'humidité, par exemple un capteur combiné de
température et d'humidité capacitif de haute qualité, ou un appareil de mesure du point de rosée à
miroir doré. Pour mesurer la température, utiliser de préférence des capteurs Pt 100.
4.2 Dispositif de vaporisation
Le dispositif de vaporisation de la solution saline installé dans l'armoire climatique doit permettre
de produire un flux de vaporisation de brouillard ou de fines gouttelettes, distribué(es) finement
et de manière homogène vers le bas sur les objets soumis à essai, à un débit linéaire cible de
−1 −1
15 mm h ± 5 mm h .
Si un cylindre en verre gradué, d'une surface collectrice de 80 cm , est utilisé pour vérifier si ce débit
est compris dans la fourchette spécifiée, le débit de collecte de la solution saline doit avoir une valeur
−1 −1
cible de 120 ml h ± 40 ml h .
Le dispositif de vaporisation de solution saline comprend, de préférence, un certain nombre de
diffuseurs montés en série sur un rail ou un tube. La répartition de la vaporisation prend alors la
forme d'un éventail, avec un recouvrement partiel. Le dispositif de vaporisation doit être constitué
ou revêtu de matériaux résistants à la corrosion par la solution saline et qui n'ont pas d’incidence sur
la corrosivité de la solution saline vaporisée. Il est recommandé d'utiliser un acier inoxydable allié au
molybdène ou du plastique. La Figure B.2 présente un exemple de dispositif de vaporisation conçu de
façon appropriée.
Une fois vaporisée, la solution saline ne doit pas être réutilisée.
4.3 Système de séchage forcé
L'armoire climatique doit être équipée d’un système de séchage à flux d’air forcé dans la mesure où,
après vaporisation et repos, il convient que tous les objets soumis à essai soient séchés et ainsi déchargés
de toute macrohumidité excessive. Le contrôle climatique doit également pouvoir être repris dans un
temps raisonnable.
Le séchage forcé est, de préférence, obtenu en refroidissant fortement, puis en réchauffant un flux
circulant en interne. Sinon, il est possible d'effectuer le séchage en laissant un flux forcé d'air ambiant
3 3
préchauffé ventiler l'armoire. Pour une armoire climatique d'un volume de 1 m à 2 m , un débit d'air
−1 −1
de 50 ls à 100 ls est recommandé. Le flux d’air forcé ne doit pas être préchauffé à des niveaux de
température tels que la température maximale de l'armoire de 35 °C soit dépassée.
NOTE La pratique a montré qu'un préchauffage du flux d’air forcé à une température de 40 °C est adapté.
5 Objets soumis à essai
5.1 Le nombre et le type des objets soumis à essai, ainsi que leur forme et leurs dimensions doivent être
sélectionnés en fonction de la spécification du matériau ou du produit soumis à essai. Lorsque ce dernier
n’est pas spécifié, ces détails doivent faire l'objet d'un accord entre les différentes parties intéressées.
5.2 Pour chacune des séries d'objets soumis à essai, les données doivent être enregistrées et
conservées. Elles doivent comprendre les informations suivantes:
a) la spécification du matériau à soumettre à essai; par exemple, pour les matériaux comportant un
traitement de surface: le type du matériau de base, son prétraitement, le
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...