ISO 15686-2:2012
(Main)Buildings and constructed assets — Service life planning — Part 2: Service life prediction procedures
Buildings and constructed assets — Service life planning — Part 2: Service life prediction procedures
ISO 15686-2:2012 describes procedures that facilitate service life predictions of building components, based on technical and functional performance. It provides a general framework, principles and requirements for conducting and reporting such studies. It does not cover limitation of service life due to obsolescence or other non-measurable or unpredictable performance states.
Bâtiments et biens immobiliers construits — Conception prenant en compte la durée de vie — Partie 2: Procédures pour la prévision de la durée de vie
L'ISO 15686-2:2012 décrit des procédures qui facilitent les prévisions de la durée de vie des composants de bâtiments, reposant sur la performance technique et fonctionnelle. Elle fournit un cadre général, des principes et des exigences pour réaliser ces études et établir les rapports correspondants. Elle ne traite pas de la limitation de la durée de vie en raison de l'obsolescence ou d'autres états de performances non mesurables ou imprévisibles.
Vgrajene konstrukcijske lastnosti - Načrtovanje življenjske dobe - 2. del: Postopki napovedovanja življenjske dobe
Ta del standarda ISO 15686 opisuje postopke, ki lajšajo napovedovanje življenjske dobe gradbenih komponent, na podlagi tehničnih in funkcionalnih lastnosti. Zagotavlja splošen okvir, načela in zahteve za izvajanje takih študij ter poročanje o njih. Standard ne zajema omejitve življenjske dobe zaradi zastarelosti ali drugih nemerljivih ali nepredvidljivih stanj delovanja.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-oktober-2014
1DGRPHãþD
SIST ISO 15686-2:2002
9JUDMHQHNRQVWUXNFLMVNHODVWQRVWL1DþUWRYDQMHåLYOMHQMVNHGREHGHO3RVWRSNL
QDSRYHGRYDQMDåLYOMHQMVNHGREH
Buildings and constructed assets -- Service life planning -- Part 2: Service life prediction
procedures
Bâtiments et biens immobiliers construits -- Conception prenant en compte la durée de
vie -- Partie 2: Procédures pour la prévision de la durée de vie
Ta slovenski standard je istoveten z: ISO 15686-2:2012
ICS:
13.020.60 Življenjski ciklusi izdelkov Product life-cycles
91.040.01 Stavbe na splošno Buildings in general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 15686-2
Second edition
2012-06-01
Buildings and constructed assets —
Service life planning —
Part 2:
Service life prediction procedures
Bâtiments et biens immobiliers construits — Conception prenant en
compte la durée de vie —
Partie 2: Procédures pour la prévision de la durée de vie
Reference number
©
ISO 2012
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO’s
member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2012 – All rights reserved
Contents Page
Foreword .iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms, definitions and abbreviated terms . 1
3.1 Terms and definitions . 1
3.2 Abbreviated terms . 3
4 Methodology . 4
4.1 Brief description of service life prediction (SLP) . 4
4.2 Connection to ISO 15686-1 and ISO 15686-8 . 4
5 Methodological framework . 6
5.1 Range of SLP and problem description . 6
5.2 Preparation . 7
5.3 Pre-testing . 9
5.4 Ageing exposure programmes .10
5.5 Analysis and interpretation .12
5.6 A complementary approach: the failure mode and effect analysis (FMEA) .13
6 Critical review .14
6.1 General description of critical review .14
6.2 Needs and requirements for critical review .14
6.3 Process of critical review .14
7 Reporting .14
Annex A (informative) Guidance on process of SLP .17
Bibliography .24
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International
Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 15686-2 was prepared by Technical Committee ISO/TC 59, Buildings and civil engineering works,
Subcommittee SC 14, Design life.
This second edition cancels and replaces the first edition (ISO 15686-2:2001), which has been technically revised.
ISO 15686 consists of the following parts, under the general title Buildings and constructed assets — Service
life planning:
— Part 1: General principles and framework
— Part 2: Service life prediction procedures
— Part 3: Performance audits and reviews
— Part 5: Life-cycle costing
— Part 6: Procedures for considering environmental impacts
— Part 7: Performance evaluation for feedback of service life data from practice
— Part 8: Reference service life and service-life estimation
— Part 9: Guidance on assessment of service-life data [Technical Specifiation]
— Part 10: When to assess functional performance
The following parts are under preparation:
— Part 4: Service Life Planning using IFC based Building Information Modelling [Technical Report]
— Part 11: Terminology
iv © ISO 2012 – All rights reserved
Introduction
The ISO 15686 series on buildings and constructed assets, including service life planning, is an essential
contribution to the development of a policy for design life. A major impetus for the preparation of the ISO 15686
series is the current concern over the industry’s inability to predict costs of ownership and maintenance of
buildings. A secondary objective of service life planning is to reduce the likelihood of obsolescence and/or to
maximize the re-use value of the obsolete building components.
The purpose of this part of ISO 15686 is to describe the principles of service life prediction (SLP) of building
components and their behaviour when incorporated into a building or construction works considering various
service environments. The SLP methodology is developed to be generic, i.e. applicable to all types of building
components, and is meant to serve as a guide to all kinds of prediction processes. The methodology may be
used in the planning of SLP studies regarding new and innovative components, whose performance is little
known, or may be the guiding document in the assessment of already performed investigations in order to
appraise their value as knowledge bases for SLP and reveal where complementary studies are necessary.
This part of ISO 15686 is intended primarily for
— manufacturers who wish to provide data on in-use performance of their products,
— test houses, technical approval organizations, etc.,
— those who develop or draft product standards, and
— users who may not be directly involved in making service life predictions, but who use them as inputs to
reference service lives, within audits or reviews of service life planning, as information in environmental product
declarations (EPDs), as inputs to service life prediction of assets and facilities in life-cycle costing, etc.
NOTE For this part of ISO 15686 to be used for service life evaluation at the scale of complex products or at the scale
of construction works, a guidance document could be necessary.
For an improved understanding of the context of this part of ISO 15686, it is useful to read the other parts, in
particular ISO 15686-1, which is the umbrella document of the ISO 15686 series.
Data obtained in accordance with the methodology described in this part of ISO 15686 can be used in any context
where appropriate, and specifically to obtain reference or estimated service life data as described in ISO 15686-8.
Predictions can be based on evidence from previous use, on comparisons with the known service life of similar
components, on tests of degradation in specific conditions or on a combination of these. Ideally, a prediction
will be given in terms of the service life as a function of the in-use condition. In any case, the dependence of
the service life on the in-use condition will be quantified in a suitable way. The reliability of the predicted service
life of a component (PSLC) will depend on the evidence it is based on.
The methods described in the ISO 15686 series are based on work carried out in many countries. In general
terms, they are a development of the current standards on durability published by the Architectural Institute
of Japan, the British Standards Institution (BSI), the Canadian Standards Association (CSA), and the Italian
Organization for Standardization (UNI). Specifically, this part of ISO 15686 is an extension and modification of
1)
the RILEM recommendation 64, “Systematic Methodology for Service Life Prediction”, developed by RILEM
2)
TC 71-PSL and TC 100-TSL. It also results from the work carried out in the CIB W080.
1) The International Union of Testing and Research Laboratories for Materials and Structures.
2) International Council for Building Research, Studies and Documentation.
INTERNATIONAL STANDARD ISO 15686-2:2012(E)
Buildings and constructed assets — Service life planning —
Part 2:
Service life prediction procedures
1 Scope
This part of ISO 15686 describes procedures that facilitate service life predictions of building components,
based on technical and functional performance. It provides a general framework, principles and requirements
for conducting and reporting such studies.
It does not cover limitation of service life due to obsolescence or other non-measurable or unpredictable
performance states.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.
ISO 6241:1984, Performance standards in building — Principles for their preparation and factors to be considered
ISO 6707-1, Building and civil engineering — Vocabulary — Part 1: General terms
ISO 15686-1, Buildings and constructed assets — Service life planning — Part 1: General principles and framework
ISO 15686-7, Buildings and constructed assets — Service life planning — Part 7: Performance evaluation for
feedback of service life data from practice
ISO 15686-8, Buildings and constructed assets — Service-life planning — Part 8: Reference service life and
service-life estimation
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 6707-1, ISO 15686-1 and the
following apply.
3.1.1
accelerated short-term exposure
short-term exposure (3.1.19) in which the agent intensity (3.1.5) is raised above the levels expected in service
3.1.2
ageing
degradation due to long-term influence of agents (3.1.4) related to use
3.1.3
ageing exposure
procedure in which a product is exposed to agents (3.1.4) believed or known to cause ageing for the purpose
of undertaking/initiating a service life prediction (3.1.18) or comparison of relative performance
3.1.4
agent
whatever acts on a building or its parts to adversely affect its performance
EXAMPLE Person, water, load, heat.
3.1.5
agent intensity
measure of the extent to or level at which an agent (3.1.4) is present
NOTE In this part of ISO 15686, the term “agent intensity” refers figuratively to any quantity that conforms to
the requirements for a measure, i.e. not only to UV radiation and rain intensity, etc., but also to relative humidity, SO
concentration, freeze–thaw rate and mechanical pressure, etc.
3.1.6
component
product manufactured as a distinct unit to serve a specific function or functions
[ISO 6707-1:2004, definition 6.1.3]
3.1.7
degradation
process whereby an action on an item causes a deterioration of one or more properties
NOTE Properties affected can be, for example, physical, mechanical or electrical.
[ISO 15686-8:2008, definition 3.4]
3.1.8
degradation indicator
deficiency which shows when a performance characteristic (3.1.14) fails to conform to a requirement
EXAMPLE When gloss is a performance characteristic, gloss loss is the corresponding degradation indicator. When
mass (or thickness) is a performance characteristic, mass loss is the corresponding degradation indicator.
3.1.9
dose-response function
function that relates the dose(s) of a degradation (3.1.7) agent (3.1.4) to a degradation indicator (3.1.8)
3.1.10
inspection of buildings
performance evaluation or assessment of residual service life of building parts in existing buildings
3.1.11
in-use condition
any circumstance that can impact the performance of a building or other constructed asset, or a part thereof
under normal use
3.1.12
long-term exposure
ageing exposure (3.1.3) under in-use conditions (3.1.11) and with a duration of the same order as the service
life anticipated
3.1.13
mechanism
process causing change over time in the composition or microstructure of a component or material that can
cause degradation
2 © ISO 2012 – All rights reserved
3.1.14
performance characteristic
physical quantity that is a measure of a critical property
EXAMPLE A performance characteristic can be the same as the critical property, for instance reflectance. On the
other hand, if the critical property is strength, then thickness or mass can in certain cases be utilized as a performance
characteristic.
3.1.15
performance requirement
performance criterion
minimum acceptable level of a critical property
3.1.16
predicted service life
service life predicted from recorded performance over time
EXAMPLE As found in service life models or ageing tests.
3.1.17
predicted service life distribution
probability distribution function of the predicted service life (3.1.16)
3.1.18
service life prediction
SLP
generic methodology which, for a particular or any appropriate performance requirement, facilitates a prediction
of the service life distribution of a building or its parts for the use in a particular or in any appropriate environment
3.1.19
short-term exposure
ageing exposure (3.1.3) with a duration considerably shorter than the service life anticipated
NOTE A term sometimes used and related to this type of exposure programme is “predictive service life test”. A predictive
service life test is a combination of a specifically designed short-term exposure and a performance evaluation procedure.
3.1.20
terminal critical property
‹in an established set of critical properties for a building or a part› critical property that first fails to maintain
the corresponding performance requirement when subjected to exposure in a particular service environment
3.1.21
time acceleration factor
number or function used to transform the results of ageing of a component(s) derived from accelerated short-
term exposure testing to a predicted service life or predicted service life distribution
3.2 Abbreviated terms
ESLC estimated service life of a component
PSLDC predicted service life distribution of a component
PSLC predicted service life of a component
RSLC reference service life of a component
SLP service life prediction
4 Methodology
4.1 Brief description of service life prediction (SLP)
The methodology described is intended to be generic and aims, for a particular or any appropriate set of
performance requirements, to facilitate a service life prediction (SLP) of any kind of building component for use
in a particular, or range of, in-service environment(s).
NOTE In practice, an SLP is usually restricted to covering a few typical service environments or a single reference
environment complemented by an analysis on the sensitivity of intensity variations of degradation agents.
The term “prediction” of an SLP study refers to one of four ways, or any combination of these, to assess the
service life, as follows:
— speeding-up of the time dimension (at accelerated short-term exposures);
— interpolation/extrapolation using data of similar components;
— interpolation/extrapolation using data from similar service environments;
— extrapolation in the time dimension (at short-term in-use exposures).
The systematic approach or methodology for the SLP of building components described includes the
identification of necessary information, the selection or development of test procedures (exposure programmes
and evaluation methods), testing, interpretation of data, and reporting of results. The essential steps in an
SLP process are outlined in Figure 1. The methodology employs an iterative research or decision-making
process which enables improved predictions to be made as the base of knowledge grows, as illustrated by
the outermost loop in Figure 1. It is often not necessary to perform every step, for instance the pre-testing
procedure can often be excluded or shortened due to already available knowledge of the component under
study. While not illustrated, sub-loops between steps within a cycle may be necessary. Normally, the service
life for a particular set of performance requirements is not predicted as a single value, a predicted service life
of a component (PSLC). Instead, a predicted service life distribution of a component (PSLDC) is determined.
The PSLDC is described by at least two parameters, the expectation value and the standard deviation. For very
costly tests, however, the aim may be limited to finding a PSLC only.
The choice of the single-value reference service life of the component (RSLC) from the distribution established
depends on the safety margin expected for the component. For replaceable, non-structural components, in most
cases, the expectation value (i.e. the mean) PSLC of the distribution could be employed as the RSLC. However,
scheduled maintenance plans, interlocking with other replaceable components or other circumstances, may
suggest a more conservative choice. For non-replaceable and/or structural components, for which a safety
margin is requested, a more, and frequently a significantly more, conservative choice has to be made. In such
cases, though, normally the safety margin is directly or indirectly regulated by standards or codes specifically
applicable to the component.
See also A.1.1.
4.2 Connection to ISO 15686-1 and ISO 15686-8
This part of ISO 15686 refers to ISO 15686-1 and ISO 15686-8 and aims, in this context, to describe a tool
to achieve a reference service life of the component (RSLC) as accurately as possible (or, alternatively, to
achieve a forecast service life directly). An RSLC is necessary when an estimated service life of the component
(ESLC) for a particular design object is to be assessed in accordance with the factor method as described in
ISO 15686-8. Thus, the RSLC can be obtained from the PSLDC as established in accordance with this part of
ISO 15686. The condition at which the PSLDC has been established then becomes the reference condition,
which is compared to the particular condition prevailing at the design object in order to estimate the factors of
the factor method.
4 © ISO 2012 – All rights reserved
Definition
User needs, building context, type and range of agents, performance
requirements, materials characterization
Preparation
Identification of degradation agents, mechanisms and effects, choice of
performance characteristics and evaluation techniques,
feedback from other studies
Pretesting
Checking mechanisms and loads, and verifying choice of
characteristics and techniques by short-term exposure
In-use-condition (not
accelerated) exposure
Exposure and evaluation
Short-term
Long-term
Accelerated exposure Field exposure
Exposure
Exposure
Inspection of
Similar degradation?
buildings
Dose response
Experimental
buildings
In-use
exposure
Analysis/Interpretation
Process performance-over-time or
Dose-environmental classes
dose-response functions
to establish prediction models
Service life prediction
Critical review, reporting
Figure 1 — Systematic methodology for SLP of building components
When the SLP utilized to obtain the RSLC for the particular design object has been carried out under various
conditions, the PSLDC obtained under the condition that deviates the least from the particular condition is used
for that purpose. An SLP carried out under various conditions also implies a means to estimate factors of the
factor method, in most cases particularly the factor taking into account the difference between the specific and
the reference outdoor environment. This can be accomplished by interpolation/extrapolation techniques.
Response classes
(degradation indicator)
5 Methodological framework
5.1 Range of SLP and problem description
5.1.1 General
Initially, the problem to be solved shall be defined and the range of the study established, including identification
or specification of essential data.
NOTE These issues can vary from case to case depending on the aim and ambition of the SLP and on the level of
existing knowledge of the component.
Two extreme ranges are as follows.
a) Specific study: this is intended to focus on a rather specific application of the component tested in
terms of service environment and usage with a specified set of performance requirements. The aim is
to establish the PSLDC (or PSLC) and determine the sensitivity of the PSLDC (or PSLC) on moderate
variations from these presumptions.
b) General study: this is intended to cover a broad application of the component tested in terms of service
environment and usage with an unspecified or a loosely specified set of performance requirements. The
aim is to establish performance-over-time functions for the performance characteristics chosen in the
whole range of applications.
5.1.2 Definition of a specific study
5.1.2.1 Specification of the service life environment
When presenting service life predictions for products or components, a specific or generic set of in-use
conditions shall be identified for documenting the specific study. This shall account for the specific use of the
component, covering the design consequences, and shall comprise a description of the environment, including
static and dynamic mechanical stress, at the site where a building is planned. A description of the effects
of occupancy (such as water vapour, heat or abrasion) and the principles on which the building is operated
(e.g. high or low thermal inertia) shall also be included if appropriate.
5.1.2.2 Quantification of the set of performance requirements
The set of performance characteristics shall be identified and the corresponding requirements quantified in
accordance with critical properties specified.
NOTE This can take the form, for example, of a failure mode and effect analysis (FMEA). See 5.6.
The set of performance requirements shall conform to the information obtained in accordance with 5.1.2.1.
5.1.3 Definition of a general study
5.1.3.1 Specification of ranges of service life environments
All types of environments where the component is intended to be used, or being within the range of the study,
shall be described, including static and dynamic mechanical stress.
The various types of environments may be grouped into a discrete number of classes, each class being
representative for certain ranges of agent intensities.
Care shall be taken regarding the effect of various usages and positions of the component, as this can strongly
govern the in-use conditions and possible synergistic effects of the degradation agents. See 5.2.3.
NOTE The actual in-use condition relevant to materials degradation is the micro-environment, i.e. the prevailing
environmental condition in a layer adjacent to or at a component’s surface (e.g. pollutant concentration and driving rain),
and within the component (e.g. mechanical stress).
6 © ISO 2012 – All rights reserved
5.1.3.2 Quantification of the set of performance requirements
First, a set of performance characteristics shall be identified from critical properties specified. Next, in order
to limit the performance range to be covered by the service life analysis, the set of the lowest appropriate
performance requirements for the component shall be expressed.
NOTE The set of performance requirements can include specifications on, for example, strength, optical transmission,
acoustical insulation and aesthetic qualities.
The performance requirements shall be in accordance with 5.1.3.1.
5.1.4 Characterization of the component
The component to be evaluated shall be characterized thoroughly in terms of structure, physical properties and
chemical composition.
5.1.5 Critical review considerations
Critical review is a technique to verify whether or not an SLP study conforms to the requirements for methodology
and reporting given in this part of ISO 15686. Whether, how and by whom the critical review is to be conducted
shall be planned and confirmed when defining the study.
A critical review of an SLP shall be conducted where the results are to be disclosed to the public.
For other applications, for example for company-internal product development, critical review may be omitted.
The process of critical reviewing is described in Clause 6.
5.2 Preparation
5.2.1 General
After the range of the study has been defined, in accordance with 5.1, degradation agents, possible degradation
mechanisms and how degradation can be accelerated or induced within ageing exposure programmes shall
be identified and postulated.
5.2.2 Identification of degradation agents and their intensities
The type and intensity distribution of the expected degradation agents, based on the knowledge as compiled
in accordance with 5.1.2.1 or 5.1.3.1, shall be identified.
NOTE It can be difficult to quantify the in-use intensity of biological agents and agents originating from the occupancy,
but upper limits within the normal range can usually be established by professional judgement.
One or several reference environments shall be considered, the number depending on the range of the study.
A list of relevant degradation agents is presented in Table 1.
The agents are classified in accordance with their nature. In general, external to the building, the origin of
the agents is either the atmosphere or the ground, whereas internal to the building, the origin is related to
occupancy or design and installations. However, although not stated in ISO 6241, an agent acting externally
while originating as a design consequence can also occur, for instance from an incompatible neighbouring
component. Furthermore, the influence of agents originating from the atmosphere on internal degradation
should not be disregarded.
a
Table 1 — Degradation agents affecting the service life of building components
Nature Class
Mechanical agents Gravitation
Forces and imposed or restrained deformations
Kinetic energy
Vibrations and noises
Electromagnetic agents Radiation
Electricity
Magnetism
Thermal agents Extreme levels or fast alterations of temperature
Chemical agents Water and solvents
Oxidizing agents
Reducing agents
Acids
Bases
Salts
Chemically neutral
Biological agents Vegetable and microbial
Animal
a
Condensed from ISO 6241:1984, Table 4.
See also A.2.1.1 to A.2.1.3.
5.2.3 Agents related to occupancy and significance of installation and maintenance practices
Although agents related to occupancy are not often included in ageing exposure programmes, as they can
affect the service life of building components, they should be evaluated if deemed critical. Such a measure shall
be carried out either by means of inspection of buildings or in-use exposure, or both; see 5.4.3.3 and 5.4.3.5,
respectively.
NOTE However, abuse is usually considered beyond the scope of these test methods.
Normally, installation and possible maintenance undertaken for samples of the ageing exposure programme
should follow practices recommended by the manufacturer or good practice if such are not given.
Evaluation of effects imposed by variations in installation and maintenance procedures may be included as
part of the study.
It is of crucial importance not to exaggerate any maintenance procedure, which may lead to erroneous PSLC
compared to real use.
5.2.4 Identification of possible degradation mechanisms
All possible mechanisms by which the identified degradation agents are known, or believed, to induce changes
in the properties of the component shall be identified; this is a necessary step of the preparation.
The mechanisms can be identified at various levels. If, for instance, the chemistry of the component is well
documented, it may be possible to identify mechanisms based upon specific chemical reactions, such as
hydrolysis and photo-oxidation. If less is known about the chemical, mechanical, physical and biological
reactions of the component, mechanisms may be defined in more general terms as, for example, thermal
decomposition, volatilization of constituents, constituent diffusion, corrosion, fatigue, wear, shrinking/swelling
and rotting. See also A.2.1.4.
8 © ISO 2012 – All rights reserved
5.2.5 Identification of possible effects of degradation
Possible effects of degradation on performance characteristics of the component shall be identified on the
basis of data obtained in accordance with 5.2.2 and 5.2.4.
5.2.6 Choice of performance characteristics and performance evaluation techniques
The critical properties corresponding to the set of performance requirements quantified in accordance
with 5.1.2.2 or 5.1.3.2 shall be interpreted in terms of any of the performance characteristics found to be
afflicted with degradation in accordance with 5.2.5.
For each of the performance characteristics selected, appropriate measurement and/or inspection techniques
shall be chosen. To be able to perform an SLP in accordance with this part of ISO 15686, quantitative data
shall be obtained. The initial values of the performance characteristics selected shall be determined before the
ageing exposure programme starts. See also A.2.1.4.
5.2.7 Feedback from other studies
Information from other studies, concluded or running, should always be sought.
NOTE Useful information can come from general knowledge of similar components, measurement techniques and
exposure programme design to detailed data on performance-over-time functions of cases closely related to the case to
be studied. In the latter case, in favourable circumstances, this can reduce the necessary test volume and range required
and/or reduce the test period considerably.
5.2.8 Establishing ageing exposure programmes
The information obtained in accordance with 5.2.2 to 5.2.7 will help in establishing procedures for inducing the
identified mechanisms of degradation using the degradation agents identified.
When accelerated short-term exposure is used, care shall be taken to ensure that extreme intensity levels of
degradation agents do not result in degradation mechanisms that would not be experienced in service.
NOTE The postulations that are made in this step lay the groundwork for selecting or designing preliminary
exposure programmes.
5.3 Pre-testing
5.3.1 General
Pre-testing shall be as a consequence of 5.2.8. A pre-test shall provide for the selected performance
characteristics to be evaluated before and after exposure to the degradation agents to which the component
will be exposed in service, or at least to all degradation agents suspected to be of any significance. This shall,
when properly performed,
— establish the primary degradation agents and their order of importance,
— support or rule out the previously identified mechanisms by which property changes occur,
— establish the agent intensity levels necessary to induce property changes and demonstrate how rapid
changes in the selected performance characteristics can be induced by exposure to extreme intensities,
— contribute to a better understanding of the nature of the primary degradation agents leading to property
changes and indicate additional or substitutional property changes that are likely to be relevant and useful
as performance characteristics, and
— verify the adaptability of the measurement and inspection techniques chosen for the performance evaluation.
See also A.2.2
5.3.2 Intensities of degradation agents employed in pre-tests
Intensities shall be levelled in relation to the quantitative in-use distributions or ranges identified in
accordance with 5.2.2.
EXAMPLE Weather and climatological data for the most extreme climates in which the component will be used can
form the basis for the choice of intensities of these agents in the pre-tests.
5.4 Ageing exposure programmes
5.4.1 General
The full exposure programme shall be carefully designed so as to provide necessary data in accordance with the
range and aim of the study, considering the information and data obtained by the procedures described above.
Although evident from the definitions of agent (see 3.1.4) and ageing exposure (see 3.1.3), it should be
emphasized that ageing exposure in this context should be regarded in a broad sense, i.e. ageing exposure
refers to any kind of set-up in which samples are subjected to degradation agents in accordance with Table 1.
For instance, when applying mechanical loads, samples are exposed to mechanical agents.
5.4.2 Design and performance of exposure programmes
As component properties and environmental characteristics are stochastic variables, i.e. they are represented
by statistical distributions, the exposure programme, irrespective of the type, shall be designed, if possible, to
comprise a multiplicity of specimens or test objects, enabling a statistical treatment of test data.
This may be difficult to follow in some cases when dealing with experimental building and in-use-exposure,
see 5.4.3.4 and 5.4.3.5, respectively, or when tests are very costly. In such cases distribution widths or ranges
should, if possible, be estimated from other sources of information.
For all exposure programmes, the conditions shall be recorded continuously or at sufficiently short intervals,
for the following reasons (partially depending on the type of exposure programme):
— to enable establishment of performance-over-time or dose-response functions, see A.2.4.2 and A.2.4.3;
— to provide a relationship between different exposure periods and sites, and especially to compare results
with data from the field, and exposure programmes with uncontrolled conditions; see 5.4.3.2;
— to check that the actual environmental conditions are representative of the environmental reference
conditions (for exposure programmes with uncontrolled conditions);
— to verify that the intended degradation agent intensities are achieved (for exposure programmes with
controlled conditions).
NOTE 1 The sources of recording can vary from official environmental databases to detailed measurements of
degradation agent intensities at or in the vicinity of the test samples.
NOTE 2 In the field of environmental characterization a strong development occurs, e.g. towards standardized
measurement techniques and improved dispersion models, hosted in GIS (Geographical Information Systems) software
environments, facilitating mapping of environmental data from meso/local levels to micro levels.
5.4.3 Long-term exposures
5.4.3.1 Range and type
The exposure programme shall either consist of an actual in-use exposure of a complete system, in which
feedback information on the performance of the components included is obtained over time, or involve exposure
of selected components. An exposure programme shall be designed so that all agents of importance are taken
into account.
Even for a specific study, the exposure should preferably take place in more than one type of service environment.
10 © ISO 2012 – All rights reserved
The different ways of generating data from long-term exposures are described in the following four categories:
— field exposure, see 5.4.3.2;
— inspection of buildings, see 5.4.3.3;
— exposure in experimental buildings, see 5.4.3.4;
— in-use exposure, see 5.4.3.5.
5.4.3.2 Field exposure
Standardized ways of performing atmospheric field exposures have been in operation for some time,
see A.2.3.1.1.
It is essential to note that
— the results of a field exposure relate to the specific exposure site and that the transformation of data to
relate to another geographic location necessitates knowledge of performance-over-time or dose-response
and environmental characteristics,
— care should be taken when drawing conclusions from one exposure period to another, especially if the time
of exposure is short,
— exposing component samples to the environment may be regarded as an accelerated exposure (for
instance at exposure racks with inclination 45° and directed towards the sun) with the degree of acceleration
varying with the type of component under exposure, and
— environmental condition during field exposure should be monitored on site to compare degradations and
losses in performance achieved in the field and in laboratory (for obtaining the re-scaling); weather station
data next to the field exposure site may also be used.
5.4.3.3 Inspection of buildings
The service life of building components may be evaluated through inspection of buildings. As many buildings
as necessary should be included in the study by means of statistical sampling methods.
See also A.2.3.1.2, and ISO 15686-7.
5.4.3.4 Exposure in experimental buildings
Durability evaluations of building components may be carried out by exposing the component in dedicated
experimental test buildings.
Similar difficulties may apply as outlined under field exposure, see 5.4.3.2.
See also A.2.3.1.3.
5.4.3.5 In-use exposure
In-use exposure is an intentional use of a component in a full-scale building or structure under normal use, in
order to evaluate the service life of the component.
See also A.2.3.1.4.
5.4.4 Short-term exposures
5.4.4.1 Accelerated short-term exposures
Accelerated short-term exposures should normally be designed from information obtained in pre-tests
and/or from long-term exposure of the same or similar components. In general, the intensity of agents in these
exposure programmes should be less than in pre-tests to reduce the likelihood of causing degradation by
mechanisms that are not encountered in service. Those properties that have been identified as most useful
or most important for indicating degradation should be measured before and after ageing. The possibility of
synergistic effects between degradation agents should be taken into account.
It should be confirmed that degradation mechanisms and the relative reaction rates induced by accelerated
short-term exposures are the same or at least similar to those observed in service.
See also A.2.3.2.
5.4.4.2 Short-term in-use exposures
Short-term exposures are usually, but not always, based upon accelerated ageing. In cases when property
changes leading to degradation can be detected at early stages (typically by means of highly-sensitive surface
analysis instruments), an exposure set-up employing in-use conditions, i.e. designs similar to those for long-
term exposures, can be utilized.
5.4.5 Performance evaluation
5.4.5.1 Evaluation scheme
During exposure, the performance shall be evaluated in terms of the selected performance characteristics by
means of the measurement and inspection techniques chosen, see 5.2.6. The evaluation shall take place at
sufficiently narrow intervals, in accordance with the range and aim of the study. To verify that the degradation
mechanisms do not change with time of exposure, the exposure programme shall enable the most important
degradation mechanisms to be identified in a relatively short period of time.
The exposure shall, except for a short-term in-use exposure, be run such that at least one of the performance
characteristics, i.e. the one corresponding to the terminal critical property, retained at the end of exposure has
declined to a level equal to or below the corresponding performance requirement for a statistically satisfactory
number of samples.
See also A.2.3.3.
5.4.5.2 Comparison of types of degradation
The types and range of degradation obtained from accelerat
...
INTERNATIONAL ISO
STANDARD 15686-2
Second edition
2012-06-01
Buildings and constructed assets —
Service life planning —
Part 2:
Service life prediction procedures
Bâtiments et biens immobiliers construits — Conception prenant en
compte la durée de vie —
Partie 2: Procédures pour la prévision de la durée de vie
Reference number
©
ISO 2012
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO’s
member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2012 – All rights reserved
Contents Page
Foreword .iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms, definitions and abbreviated terms . 1
3.1 Terms and definitions . 1
3.2 Abbreviated terms . 3
4 Methodology . 4
4.1 Brief description of service life prediction (SLP) . 4
4.2 Connection to ISO 15686-1 and ISO 15686-8 . 4
5 Methodological framework . 6
5.1 Range of SLP and problem description . 6
5.2 Preparation . 7
5.3 Pre-testing . 9
5.4 Ageing exposure programmes .10
5.5 Analysis and interpretation .12
5.6 A complementary approach: the failure mode and effect analysis (FMEA) .13
6 Critical review .14
6.1 General description of critical review .14
6.2 Needs and requirements for critical review .14
6.3 Process of critical review .14
7 Reporting .14
Annex A (informative) Guidance on process of SLP .17
Bibliography .24
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International
Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 15686-2 was prepared by Technical Committee ISO/TC 59, Buildings and civil engineering works,
Subcommittee SC 14, Design life.
This second edition cancels and replaces the first edition (ISO 15686-2:2001), which has been technically revised.
ISO 15686 consists of the following parts, under the general title Buildings and constructed assets — Service
life planning:
— Part 1: General principles and framework
— Part 2: Service life prediction procedures
— Part 3: Performance audits and reviews
— Part 5: Life-cycle costing
— Part 6: Procedures for considering environmental impacts
— Part 7: Performance evaluation for feedback of service life data from practice
— Part 8: Reference service life and service-life estimation
— Part 9: Guidance on assessment of service-life data [Technical Specifiation]
— Part 10: When to assess functional performance
The following parts are under preparation:
— Part 4: Service Life Planning using IFC based Building Information Modelling [Technical Report]
— Part 11: Terminology
iv © ISO 2012 – All rights reserved
Introduction
The ISO 15686 series on buildings and constructed assets, including service life planning, is an essential
contribution to the development of a policy for design life. A major impetus for the preparation of the ISO 15686
series is the current concern over the industry’s inability to predict costs of ownership and maintenance of
buildings. A secondary objective of service life planning is to reduce the likelihood of obsolescence and/or to
maximize the re-use value of the obsolete building components.
The purpose of this part of ISO 15686 is to describe the principles of service life prediction (SLP) of building
components and their behaviour when incorporated into a building or construction works considering various
service environments. The SLP methodology is developed to be generic, i.e. applicable to all types of building
components, and is meant to serve as a guide to all kinds of prediction processes. The methodology may be
used in the planning of SLP studies regarding new and innovative components, whose performance is little
known, or may be the guiding document in the assessment of already performed investigations in order to
appraise their value as knowledge bases for SLP and reveal where complementary studies are necessary.
This part of ISO 15686 is intended primarily for
— manufacturers who wish to provide data on in-use performance of their products,
— test houses, technical approval organizations, etc.,
— those who develop or draft product standards, and
— users who may not be directly involved in making service life predictions, but who use them as inputs to
reference service lives, within audits or reviews of service life planning, as information in environmental product
declarations (EPDs), as inputs to service life prediction of assets and facilities in life-cycle costing, etc.
NOTE For this part of ISO 15686 to be used for service life evaluation at the scale of complex products or at the scale
of construction works, a guidance document could be necessary.
For an improved understanding of the context of this part of ISO 15686, it is useful to read the other parts, in
particular ISO 15686-1, which is the umbrella document of the ISO 15686 series.
Data obtained in accordance with the methodology described in this part of ISO 15686 can be used in any context
where appropriate, and specifically to obtain reference or estimated service life data as described in ISO 15686-8.
Predictions can be based on evidence from previous use, on comparisons with the known service life of similar
components, on tests of degradation in specific conditions or on a combination of these. Ideally, a prediction
will be given in terms of the service life as a function of the in-use condition. In any case, the dependence of
the service life on the in-use condition will be quantified in a suitable way. The reliability of the predicted service
life of a component (PSLC) will depend on the evidence it is based on.
The methods described in the ISO 15686 series are based on work carried out in many countries. In general
terms, they are a development of the current standards on durability published by the Architectural Institute
of Japan, the British Standards Institution (BSI), the Canadian Standards Association (CSA), and the Italian
Organization for Standardization (UNI). Specifically, this part of ISO 15686 is an extension and modification of
1)
the RILEM recommendation 64, “Systematic Methodology for Service Life Prediction”, developed by RILEM
2)
TC 71-PSL and TC 100-TSL. It also results from the work carried out in the CIB W080.
1) The International Union of Testing and Research Laboratories for Materials and Structures.
2) International Council for Building Research, Studies and Documentation.
INTERNATIONAL STANDARD ISO 15686-2:2012(E)
Buildings and constructed assets — Service life planning —
Part 2:
Service life prediction procedures
1 Scope
This part of ISO 15686 describes procedures that facilitate service life predictions of building components,
based on technical and functional performance. It provides a general framework, principles and requirements
for conducting and reporting such studies.
It does not cover limitation of service life due to obsolescence or other non-measurable or unpredictable
performance states.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.
ISO 6241:1984, Performance standards in building — Principles for their preparation and factors to be considered
ISO 6707-1, Building and civil engineering — Vocabulary — Part 1: General terms
ISO 15686-1, Buildings and constructed assets — Service life planning — Part 1: General principles and framework
ISO 15686-7, Buildings and constructed assets — Service life planning — Part 7: Performance evaluation for
feedback of service life data from practice
ISO 15686-8, Buildings and constructed assets — Service-life planning — Part 8: Reference service life and
service-life estimation
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 6707-1, ISO 15686-1 and the
following apply.
3.1.1
accelerated short-term exposure
short-term exposure (3.1.19) in which the agent intensity (3.1.5) is raised above the levels expected in service
3.1.2
ageing
degradation due to long-term influence of agents (3.1.4) related to use
3.1.3
ageing exposure
procedure in which a product is exposed to agents (3.1.4) believed or known to cause ageing for the purpose
of undertaking/initiating a service life prediction (3.1.18) or comparison of relative performance
3.1.4
agent
whatever acts on a building or its parts to adversely affect its performance
EXAMPLE Person, water, load, heat.
3.1.5
agent intensity
measure of the extent to or level at which an agent (3.1.4) is present
NOTE In this part of ISO 15686, the term “agent intensity” refers figuratively to any quantity that conforms to
the requirements for a measure, i.e. not only to UV radiation and rain intensity, etc., but also to relative humidity, SO
concentration, freeze–thaw rate and mechanical pressure, etc.
3.1.6
component
product manufactured as a distinct unit to serve a specific function or functions
[ISO 6707-1:2004, definition 6.1.3]
3.1.7
degradation
process whereby an action on an item causes a deterioration of one or more properties
NOTE Properties affected can be, for example, physical, mechanical or electrical.
[ISO 15686-8:2008, definition 3.4]
3.1.8
degradation indicator
deficiency which shows when a performance characteristic (3.1.14) fails to conform to a requirement
EXAMPLE When gloss is a performance characteristic, gloss loss is the corresponding degradation indicator. When
mass (or thickness) is a performance characteristic, mass loss is the corresponding degradation indicator.
3.1.9
dose-response function
function that relates the dose(s) of a degradation (3.1.7) agent (3.1.4) to a degradation indicator (3.1.8)
3.1.10
inspection of buildings
performance evaluation or assessment of residual service life of building parts in existing buildings
3.1.11
in-use condition
any circumstance that can impact the performance of a building or other constructed asset, or a part thereof
under normal use
3.1.12
long-term exposure
ageing exposure (3.1.3) under in-use conditions (3.1.11) and with a duration of the same order as the service
life anticipated
3.1.13
mechanism
process causing change over time in the composition or microstructure of a component or material that can
cause degradation
2 © ISO 2012 – All rights reserved
3.1.14
performance characteristic
physical quantity that is a measure of a critical property
EXAMPLE A performance characteristic can be the same as the critical property, for instance reflectance. On the
other hand, if the critical property is strength, then thickness or mass can in certain cases be utilized as a performance
characteristic.
3.1.15
performance requirement
performance criterion
minimum acceptable level of a critical property
3.1.16
predicted service life
service life predicted from recorded performance over time
EXAMPLE As found in service life models or ageing tests.
3.1.17
predicted service life distribution
probability distribution function of the predicted service life (3.1.16)
3.1.18
service life prediction
SLP
generic methodology which, for a particular or any appropriate performance requirement, facilitates a prediction
of the service life distribution of a building or its parts for the use in a particular or in any appropriate environment
3.1.19
short-term exposure
ageing exposure (3.1.3) with a duration considerably shorter than the service life anticipated
NOTE A term sometimes used and related to this type of exposure programme is “predictive service life test”. A predictive
service life test is a combination of a specifically designed short-term exposure and a performance evaluation procedure.
3.1.20
terminal critical property
‹in an established set of critical properties for a building or a part› critical property that first fails to maintain
the corresponding performance requirement when subjected to exposure in a particular service environment
3.1.21
time acceleration factor
number or function used to transform the results of ageing of a component(s) derived from accelerated short-
term exposure testing to a predicted service life or predicted service life distribution
3.2 Abbreviated terms
ESLC estimated service life of a component
PSLDC predicted service life distribution of a component
PSLC predicted service life of a component
RSLC reference service life of a component
SLP service life prediction
4 Methodology
4.1 Brief description of service life prediction (SLP)
The methodology described is intended to be generic and aims, for a particular or any appropriate set of
performance requirements, to facilitate a service life prediction (SLP) of any kind of building component for use
in a particular, or range of, in-service environment(s).
NOTE In practice, an SLP is usually restricted to covering a few typical service environments or a single reference
environment complemented by an analysis on the sensitivity of intensity variations of degradation agents.
The term “prediction” of an SLP study refers to one of four ways, or any combination of these, to assess the
service life, as follows:
— speeding-up of the time dimension (at accelerated short-term exposures);
— interpolation/extrapolation using data of similar components;
— interpolation/extrapolation using data from similar service environments;
— extrapolation in the time dimension (at short-term in-use exposures).
The systematic approach or methodology for the SLP of building components described includes the
identification of necessary information, the selection or development of test procedures (exposure programmes
and evaluation methods), testing, interpretation of data, and reporting of results. The essential steps in an
SLP process are outlined in Figure 1. The methodology employs an iterative research or decision-making
process which enables improved predictions to be made as the base of knowledge grows, as illustrated by
the outermost loop in Figure 1. It is often not necessary to perform every step, for instance the pre-testing
procedure can often be excluded or shortened due to already available knowledge of the component under
study. While not illustrated, sub-loops between steps within a cycle may be necessary. Normally, the service
life for a particular set of performance requirements is not predicted as a single value, a predicted service life
of a component (PSLC). Instead, a predicted service life distribution of a component (PSLDC) is determined.
The PSLDC is described by at least two parameters, the expectation value and the standard deviation. For very
costly tests, however, the aim may be limited to finding a PSLC only.
The choice of the single-value reference service life of the component (RSLC) from the distribution established
depends on the safety margin expected for the component. For replaceable, non-structural components, in most
cases, the expectation value (i.e. the mean) PSLC of the distribution could be employed as the RSLC. However,
scheduled maintenance plans, interlocking with other replaceable components or other circumstances, may
suggest a more conservative choice. For non-replaceable and/or structural components, for which a safety
margin is requested, a more, and frequently a significantly more, conservative choice has to be made. In such
cases, though, normally the safety margin is directly or indirectly regulated by standards or codes specifically
applicable to the component.
See also A.1.1.
4.2 Connection to ISO 15686-1 and ISO 15686-8
This part of ISO 15686 refers to ISO 15686-1 and ISO 15686-8 and aims, in this context, to describe a tool
to achieve a reference service life of the component (RSLC) as accurately as possible (or, alternatively, to
achieve a forecast service life directly). An RSLC is necessary when an estimated service life of the component
(ESLC) for a particular design object is to be assessed in accordance with the factor method as described in
ISO 15686-8. Thus, the RSLC can be obtained from the PSLDC as established in accordance with this part of
ISO 15686. The condition at which the PSLDC has been established then becomes the reference condition,
which is compared to the particular condition prevailing at the design object in order to estimate the factors of
the factor method.
4 © ISO 2012 – All rights reserved
Definition
User needs, building context, type and range of agents, performance
requirements, materials characterization
Preparation
Identification of degradation agents, mechanisms and effects, choice of
performance characteristics and evaluation techniques,
feedback from other studies
Pretesting
Checking mechanisms and loads, and verifying choice of
characteristics and techniques by short-term exposure
In-use-condition (not
accelerated) exposure
Exposure and evaluation
Short-term
Long-term
Accelerated exposure Field exposure
Exposure
Exposure
Inspection of
Similar degradation?
buildings
Dose response
Experimental
buildings
In-use
exposure
Analysis/Interpretation
Process performance-over-time or
Dose-environmental classes
dose-response functions
to establish prediction models
Service life prediction
Critical review, reporting
Figure 1 — Systematic methodology for SLP of building components
When the SLP utilized to obtain the RSLC for the particular design object has been carried out under various
conditions, the PSLDC obtained under the condition that deviates the least from the particular condition is used
for that purpose. An SLP carried out under various conditions also implies a means to estimate factors of the
factor method, in most cases particularly the factor taking into account the difference between the specific and
the reference outdoor environment. This can be accomplished by interpolation/extrapolation techniques.
Response classes
(degradation indicator)
5 Methodological framework
5.1 Range of SLP and problem description
5.1.1 General
Initially, the problem to be solved shall be defined and the range of the study established, including identification
or specification of essential data.
NOTE These issues can vary from case to case depending on the aim and ambition of the SLP and on the level of
existing knowledge of the component.
Two extreme ranges are as follows.
a) Specific study: this is intended to focus on a rather specific application of the component tested in
terms of service environment and usage with a specified set of performance requirements. The aim is
to establish the PSLDC (or PSLC) and determine the sensitivity of the PSLDC (or PSLC) on moderate
variations from these presumptions.
b) General study: this is intended to cover a broad application of the component tested in terms of service
environment and usage with an unspecified or a loosely specified set of performance requirements. The
aim is to establish performance-over-time functions for the performance characteristics chosen in the
whole range of applications.
5.1.2 Definition of a specific study
5.1.2.1 Specification of the service life environment
When presenting service life predictions for products or components, a specific or generic set of in-use
conditions shall be identified for documenting the specific study. This shall account for the specific use of the
component, covering the design consequences, and shall comprise a description of the environment, including
static and dynamic mechanical stress, at the site where a building is planned. A description of the effects
of occupancy (such as water vapour, heat or abrasion) and the principles on which the building is operated
(e.g. high or low thermal inertia) shall also be included if appropriate.
5.1.2.2 Quantification of the set of performance requirements
The set of performance characteristics shall be identified and the corresponding requirements quantified in
accordance with critical properties specified.
NOTE This can take the form, for example, of a failure mode and effect analysis (FMEA). See 5.6.
The set of performance requirements shall conform to the information obtained in accordance with 5.1.2.1.
5.1.3 Definition of a general study
5.1.3.1 Specification of ranges of service life environments
All types of environments where the component is intended to be used, or being within the range of the study,
shall be described, including static and dynamic mechanical stress.
The various types of environments may be grouped into a discrete number of classes, each class being
representative for certain ranges of agent intensities.
Care shall be taken regarding the effect of various usages and positions of the component, as this can strongly
govern the in-use conditions and possible synergistic effects of the degradation agents. See 5.2.3.
NOTE The actual in-use condition relevant to materials degradation is the micro-environment, i.e. the prevailing
environmental condition in a layer adjacent to or at a component’s surface (e.g. pollutant concentration and driving rain),
and within the component (e.g. mechanical stress).
6 © ISO 2012 – All rights reserved
5.1.3.2 Quantification of the set of performance requirements
First, a set of performance characteristics shall be identified from critical properties specified. Next, in order
to limit the performance range to be covered by the service life analysis, the set of the lowest appropriate
performance requirements for the component shall be expressed.
NOTE The set of performance requirements can include specifications on, for example, strength, optical transmission,
acoustical insulation and aesthetic qualities.
The performance requirements shall be in accordance with 5.1.3.1.
5.1.4 Characterization of the component
The component to be evaluated shall be characterized thoroughly in terms of structure, physical properties and
chemical composition.
5.1.5 Critical review considerations
Critical review is a technique to verify whether or not an SLP study conforms to the requirements for methodology
and reporting given in this part of ISO 15686. Whether, how and by whom the critical review is to be conducted
shall be planned and confirmed when defining the study.
A critical review of an SLP shall be conducted where the results are to be disclosed to the public.
For other applications, for example for company-internal product development, critical review may be omitted.
The process of critical reviewing is described in Clause 6.
5.2 Preparation
5.2.1 General
After the range of the study has been defined, in accordance with 5.1, degradation agents, possible degradation
mechanisms and how degradation can be accelerated or induced within ageing exposure programmes shall
be identified and postulated.
5.2.2 Identification of degradation agents and their intensities
The type and intensity distribution of the expected degradation agents, based on the knowledge as compiled
in accordance with 5.1.2.1 or 5.1.3.1, shall be identified.
NOTE It can be difficult to quantify the in-use intensity of biological agents and agents originating from the occupancy,
but upper limits within the normal range can usually be established by professional judgement.
One or several reference environments shall be considered, the number depending on the range of the study.
A list of relevant degradation agents is presented in Table 1.
The agents are classified in accordance with their nature. In general, external to the building, the origin of
the agents is either the atmosphere or the ground, whereas internal to the building, the origin is related to
occupancy or design and installations. However, although not stated in ISO 6241, an agent acting externally
while originating as a design consequence can also occur, for instance from an incompatible neighbouring
component. Furthermore, the influence of agents originating from the atmosphere on internal degradation
should not be disregarded.
a
Table 1 — Degradation agents affecting the service life of building components
Nature Class
Mechanical agents Gravitation
Forces and imposed or restrained deformations
Kinetic energy
Vibrations and noises
Electromagnetic agents Radiation
Electricity
Magnetism
Thermal agents Extreme levels or fast alterations of temperature
Chemical agents Water and solvents
Oxidizing agents
Reducing agents
Acids
Bases
Salts
Chemically neutral
Biological agents Vegetable and microbial
Animal
a
Condensed from ISO 6241:1984, Table 4.
See also A.2.1.1 to A.2.1.3.
5.2.3 Agents related to occupancy and significance of installation and maintenance practices
Although agents related to occupancy are not often included in ageing exposure programmes, as they can
affect the service life of building components, they should be evaluated if deemed critical. Such a measure shall
be carried out either by means of inspection of buildings or in-use exposure, or both; see 5.4.3.3 and 5.4.3.5,
respectively.
NOTE However, abuse is usually considered beyond the scope of these test methods.
Normally, installation and possible maintenance undertaken for samples of the ageing exposure programme
should follow practices recommended by the manufacturer or good practice if such are not given.
Evaluation of effects imposed by variations in installation and maintenance procedures may be included as
part of the study.
It is of crucial importance not to exaggerate any maintenance procedure, which may lead to erroneous PSLC
compared to real use.
5.2.4 Identification of possible degradation mechanisms
All possible mechanisms by which the identified degradation agents are known, or believed, to induce changes
in the properties of the component shall be identified; this is a necessary step of the preparation.
The mechanisms can be identified at various levels. If, for instance, the chemistry of the component is well
documented, it may be possible to identify mechanisms based upon specific chemical reactions, such as
hydrolysis and photo-oxidation. If less is known about the chemical, mechanical, physical and biological
reactions of the component, mechanisms may be defined in more general terms as, for example, thermal
decomposition, volatilization of constituents, constituent diffusion, corrosion, fatigue, wear, shrinking/swelling
and rotting. See also A.2.1.4.
8 © ISO 2012 – All rights reserved
5.2.5 Identification of possible effects of degradation
Possible effects of degradation on performance characteristics of the component shall be identified on the
basis of data obtained in accordance with 5.2.2 and 5.2.4.
5.2.6 Choice of performance characteristics and performance evaluation techniques
The critical properties corresponding to the set of performance requirements quantified in accordance
with 5.1.2.2 or 5.1.3.2 shall be interpreted in terms of any of the performance characteristics found to be
afflicted with degradation in accordance with 5.2.5.
For each of the performance characteristics selected, appropriate measurement and/or inspection techniques
shall be chosen. To be able to perform an SLP in accordance with this part of ISO 15686, quantitative data
shall be obtained. The initial values of the performance characteristics selected shall be determined before the
ageing exposure programme starts. See also A.2.1.4.
5.2.7 Feedback from other studies
Information from other studies, concluded or running, should always be sought.
NOTE Useful information can come from general knowledge of similar components, measurement techniques and
exposure programme design to detailed data on performance-over-time functions of cases closely related to the case to
be studied. In the latter case, in favourable circumstances, this can reduce the necessary test volume and range required
and/or reduce the test period considerably.
5.2.8 Establishing ageing exposure programmes
The information obtained in accordance with 5.2.2 to 5.2.7 will help in establishing procedures for inducing the
identified mechanisms of degradation using the degradation agents identified.
When accelerated short-term exposure is used, care shall be taken to ensure that extreme intensity levels of
degradation agents do not result in degradation mechanisms that would not be experienced in service.
NOTE The postulations that are made in this step lay the groundwork for selecting or designing preliminary
exposure programmes.
5.3 Pre-testing
5.3.1 General
Pre-testing shall be as a consequence of 5.2.8. A pre-test shall provide for the selected performance
characteristics to be evaluated before and after exposure to the degradation agents to which the component
will be exposed in service, or at least to all degradation agents suspected to be of any significance. This shall,
when properly performed,
— establish the primary degradation agents and their order of importance,
— support or rule out the previously identified mechanisms by which property changes occur,
— establish the agent intensity levels necessary to induce property changes and demonstrate how rapid
changes in the selected performance characteristics can be induced by exposure to extreme intensities,
— contribute to a better understanding of the nature of the primary degradation agents leading to property
changes and indicate additional or substitutional property changes that are likely to be relevant and useful
as performance characteristics, and
— verify the adaptability of the measurement and inspection techniques chosen for the performance evaluation.
See also A.2.2
5.3.2 Intensities of degradation agents employed in pre-tests
Intensities shall be levelled in relation to the quantitative in-use distributions or ranges identified in
accordance with 5.2.2.
EXAMPLE Weather and climatological data for the most extreme climates in which the component will be used can
form the basis for the choice of intensities of these agents in the pre-tests.
5.4 Ageing exposure programmes
5.4.1 General
The full exposure programme shall be carefully designed so as to provide necessary data in accordance with the
range and aim of the study, considering the information and data obtained by the procedures described above.
Although evident from the definitions of agent (see 3.1.4) and ageing exposure (see 3.1.3), it should be
emphasized that ageing exposure in this context should be regarded in a broad sense, i.e. ageing exposure
refers to any kind of set-up in which samples are subjected to degradation agents in accordance with Table 1.
For instance, when applying mechanical loads, samples are exposed to mechanical agents.
5.4.2 Design and performance of exposure programmes
As component properties and environmental characteristics are stochastic variables, i.e. they are represented
by statistical distributions, the exposure programme, irrespective of the type, shall be designed, if possible, to
comprise a multiplicity of specimens or test objects, enabling a statistical treatment of test data.
This may be difficult to follow in some cases when dealing with experimental building and in-use-exposure,
see 5.4.3.4 and 5.4.3.5, respectively, or when tests are very costly. In such cases distribution widths or ranges
should, if possible, be estimated from other sources of information.
For all exposure programmes, the conditions shall be recorded continuously or at sufficiently short intervals,
for the following reasons (partially depending on the type of exposure programme):
— to enable establishment of performance-over-time or dose-response functions, see A.2.4.2 and A.2.4.3;
— to provide a relationship between different exposure periods and sites, and especially to compare results
with data from the field, and exposure programmes with uncontrolled conditions; see 5.4.3.2;
— to check that the actual environmental conditions are representative of the environmental reference
conditions (for exposure programmes with uncontrolled conditions);
— to verify that the intended degradation agent intensities are achieved (for exposure programmes with
controlled conditions).
NOTE 1 The sources of recording can vary from official environmental databases to detailed measurements of
degradation agent intensities at or in the vicinity of the test samples.
NOTE 2 In the field of environmental characterization a strong development occurs, e.g. towards standardized
measurement techniques and improved dispersion models, hosted in GIS (Geographical Information Systems) software
environments, facilitating mapping of environmental data from meso/local levels to micro levels.
5.4.3 Long-term exposures
5.4.3.1 Range and type
The exposure programme shall either consist of an actual in-use exposure of a complete system, in which
feedback information on the performance of the components included is obtained over time, or involve exposure
of selected components. An exposure programme shall be designed so that all agents of importance are taken
into account.
Even for a specific study, the exposure should preferably take place in more than one type of service environment.
10 © ISO 2012 – All rights reserved
The different ways of generating data from long-term exposures are described in the following four categories:
— field exposure, see 5.4.3.2;
— inspection of buildings, see 5.4.3.3;
— exposure in experimental buildings, see 5.4.3.4;
— in-use exposure, see 5.4.3.5.
5.4.3.2 Field exposure
Standardized ways of performing atmospheric field exposures have been in operation for some time,
see A.2.3.1.1.
It is essential to note that
— the results of a field exposure relate to the specific exposure site and that the transformation of data to
relate to another geographic location necessitates knowledge of performance-over-time or dose-response
and environmental characteristics,
— care should be taken when drawing conclusions from one exposure period to another, especially if the time
of exposure is short,
— exposing component samples to the environment may be regarded as an accelerated exposure (for
instance at exposure racks with inclination 45° and directed towards the sun) with the degree of acceleration
varying with the type of component under exposure, and
— environmental condition during field exposure should be monitored on site to compare degradations and
losses in performance achieved in the field and in laboratory (for obtaining the re-scaling); weather station
data next to the field exposure site may also be used.
5.4.3.3 Inspection of buildings
The service life of building components may be evaluated through inspection of buildings. As many buildings
as necessary should be included in the study by means of statistical sampling methods.
See also A.2.3.1.2, and ISO 15686-7.
5.4.3.4 Exposure in experimental buildings
Durability evaluations of building components may be carried out by exposing the component in dedicated
experimental test buildings.
Similar difficulties may apply as outlined under field exposure, see 5.4.3.2.
See also A.2.3.1.3.
5.4.3.5 In-use exposure
In-use exposure is an intentional use of a component in a full-scale building or structure under normal use, in
order to evaluate the service life of the component.
See also A.2.3.1.4.
5.4.4 Short-term exposures
5.4.4.1 Accelerated short-term exposures
Accelerated short-term exposures should normally be designed from information obtained in pre-tests
and/or from long-term exposure of the same or similar components. In general, the intensity of agents in these
exposure programmes should be less than in pre-tests to reduce the likelihood of causing degradation by
mechanisms that are not encountered in service. Those properties that have been identified as most useful
or most important for indicating degradation should be measured before and after ageing. The possibility of
synergistic effects between degradation agents should be taken into account.
It should be confirmed that degradation mechanisms and the relative reaction rates induced by accelerated
short-term exposures are the same or at least similar to those observed in service.
See also A.2.3.2.
5.4.4.2 Short-term in-use exposures
Short-term exposures are usually, but not always, based upon accelerated ageing. In cases when property
changes leading to degradation can be detected at early stages (typically by means of highly-sensitive surface
analysis instruments), an exposure set-up employing in-use conditions, i.e. designs similar to those for long-
term exposures, can be utilized.
5.4.5 Performance evaluation
5.4.5.1 Evaluation scheme
During exposure, the performance shall be evaluated in terms of the selected performance characteristics by
means of the measurement and inspection techniques chosen, see 5.2.6. The evaluation shall take place at
sufficiently narrow intervals, in accordance with the range and aim of the study. To verify that the degradation
mechanisms do not change with time of exposure, the exposure programme shall enable the most important
degradation mechanisms to be identified in a relatively short period of time.
The exposure shall, except for a short-term in-use exposure, be run such that at least one of the performance
characteristics, i.e. the one corresponding to the terminal critical property, retained at the end of exposure has
declined to a level equal to or below the corresponding performance requirement for a statistically satisfactory
number of samples.
See also A.2.3.3.
5.4.5.2 Comparison of types of degradation
The types and range of degradation obtained from accelerated short-term exposures shall be checked against
those from in-use conditions.
If the categorization of these degradations demonstrates a good agreement, a time acceleration factor shall be
evaluated to calculate the service life using the results of short-term exposure tests.
If mechanisms are induced, not being representative of those obtained under the in-use conditions, the ageing
exposure programmes shall be altered after reassessing the information obtained in accordance with 5.1 to 5.3.
5.5 Analysis and interpretation
Degradation models in terms of the PSLDC (or PSLC) shall be established by processing the results of the
performance evaluations carried out at various ageing exposure programmes (long-term exposures, short-
term exposures or combinations thereof) in two or three steps.
a) From performance evaluation data, performance-over-time functions or dose-response functions for the
exposure conditions employed are established.
b) If the exposure conditions employed do not cover all exposure conditions in which the component is to
be assessed, by synthesizing, modelling and/or interpolating/extrapolating the performance-over-time or
dose-response functions established in step a), a performance-over-time or dose-response function for a
hypothetical condition may be established.
12 © ISO 2012 – All rights reserved
...
NORME ISO
INTERNATIONALE 15686-2
Deuxième édition
2012-06-01
Bâtiments et biens immobiliers
construits — Conception prenant en
compte la durée de vie —
Partie 2:
Procédures pour la prévision de la durée
de vie
Buildings and constructed assets — Service life planning —
Part 2: Service life prediction procedures
Numéro de référence
©
ISO 2012
DOCUMENT PROTÉGÉ PAR COPYRIGHT
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l’accord écrit
de l’ISO à l’adresse ci-après ou du comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse
ii © ISO 2012 – Tous droits réservés
Sommaire Page
Avant-propos .iv
Introduction . v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes, définitions et termes abrégés . 1
3.1 Termes et définitions . 1
3.2 Termes abrégés . 4
4 Méthodologie . 4
4.1 Brève description de la prévision de la durée de vie . 4
4.2 Relation avec l’ISO 15686-1 et l’ISO 15686-8 . 5
5 Cadre méthodologique . 6
5.1 Portée de la SLP et description du problème . 6
5.2 Préparation . 7
5.3 Essais préliminaires .10
5.4 Programmes d’exposition au vieillissement .10
5.5 Analyse et interprétation .13
5.6 Une approche complémentaire: l’analyse des modes de défaillance et de leurs effets (AMDE) 14
6 Analyse critique .14
6.1 Description générale de l’analyse critique .14
6.2 Besoins et exigences en matière d’analyse critique .15
6.3 Processus d’analyse critique .15
7 Rapport .15
Annexe A (informative) Lignes directrices pour le processus de SLP .17
Bibliographie .25
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes nationaux de
normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est en général confiée aux
comités techniques de l’ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité
technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales,
en liaison avec l’ISO participent également aux travaux. L’ISO collabore étroitement avec la Commission
électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI, Partie 2.
La tâche principale des comités techniques est d’élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur publication
comme Normes internationales requiert l’approbation de 75 % au moins des comités membres votants.
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de droits
de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable de ne pas avoir
identifié de tels droits de propriété et averti de leur existence.
L’ISO 15686-2 a été élaborée par le comité technique ISO/TC 59, Bâtiments et ouvrages de génie civil,
sous-comité SC 14, Durée de vie prévue lors de la conception.
Cette deuxième édition annule et remplace la première édition (ISO 15686-2:2001), qui a fait l’objet d’une
révision technique.
L’ISO 15686 comprend les parties suivantes, présentées sous le titre général Bâtiments et biens immobiliers
construits — Conception prenant en compte la durée de vie:
— Partie 1: Principes généraux et cadre
— Partie 2: Procédures pour la prévision de la durée de vie
— Partie 3: Audits et revues des performances
— Partie 5: Approche en coût global
— Partie 6: Procédés pour la considération d’effets sur l’environnement
— Partie 7: Évaluation de la performance de l’information en retour relative à la durée de vie, issue de la pratique
— Partie 8: Durée de vie documentée et estimation de la durée de vie
— Partie 9: Lignes directrices pour l’évaluation des données relatives à la durée de vie [Spécification technique]
— Partie 10: Quand évaluer la performance fonctionnelle
Les parties suivantes sont en préparation:
— Partie 4: Conception prenant en compte la durée de vie utilisant le modèle d’information du bâtiment
fondée sur l’IFC [Rapport technique]
— Partie 11: Terminologie
iv © ISO 2012 – Tous droits réservés
Introduction
La série ISO 15686, portant sur la conception des bâtiments et biens immobiliers construits prenant en compte
la durée de vie, est une contribution essentielle à la mise en place d’une stratégie en matière de durée de vie
au stade de la conception. Elle a été élaborée avec le souci majeur de corriger l’inaptitude des industriels à
prédire les coûts de possession et de maintenance des bâtiments. La conception prenant en compte la durée
de vie vise également à réduire la probabilité d’obsolescence et/ou à maximiser la valeur de réutilisation des
composants obsolètes d’un bâtiment.
La présente partie de l’ISO 15686 a pour but de décrire les principes de prévision de la durée de vie (SLP,
service life prediction) des composants des bâtiments et leur comportement lorsqu’ils sont intégrés à un
bâtiment ou à un ouvrage de construction, en prenant en considération différents environnements de service.
La méthodologie de SLP est conçue pour être générique, c’est-à-dire applicable à tous types de composants de
bâtiments, et elle est destinée à servir de guide pour tous types de processus de prévision. Cette méthodologie
peut être utilisée pour la planification des études de SLP portant sur des composants nouveaux et innovants
dont les performances sont peu connues, ou comme document-guide pour l’évaluation des études déjà
effectuées dans le but d’estimer leur valeur en tant que bases de connaissances pour la SLP et d’indiquer si
des études complémentaires sont nécessaires.
La présente partie de l’ISO 15686 est principalement destinée:
— aux fabricants désireux de fournir des données sur les performances de leurs produits en service;
— aux laboratoires d’essai, aux organismes d’homologation technique, etc.;
— aux personnes qui élaborent ou rédigent des normes de produits;
— aux utilisateurs qui ne prennent pas directement part aux prévisions de la durée de vie, mais qui les
utilisent comme données d’entrée pour les durées de vie de référence, dans des audits ou des revues
relatives à la conception prenant en compte la durée de vie, comme informations dans les déclarations
environnementales de produits, comme données d’entrée pour la prévision de la durée de vie des biens
et des installations pour le calcul en coût global, etc.
NOTE Pour que la présente partie de l’ISO 15686 puisse être utilisée pour l’évaluation de la durée de vie de produits
complexes ou d’ouvrages de construction, un document-guide peut être nécessaire.
Pour mieux comprendre le contexte de la présente partie de l’ISO 15686, il est recommandé de lire les autres
parties de cette série, notamment l’ISO 15686-1, qui est le document chapeau de la série ISO 15686.
Les données obtenues selon la méthodologie décrite dans la présente partie de l’ISO 15686 peuvent être
utilisées dans tout contexte, lorsque cela est approprié, et en particulier pour obtenir des données relatives à
la durée de vie de référence ou estimée comme décrit dans l’ISO 15686-8.
Les prévisions peuvent reposer sur des preuves tirées d’une utilisation antérieure, sur des comparaisons
avec la durée de vie connue de composants similaires, sur des essais de dégradation dans des conditions
spécifiques ou sur une combinaison de ces éléments. Idéalement, une prévision sera faite en termes de durée
de vie en fonction des conditions d’utilisation. Dans tous les cas, l’influence des conditions d’utilisation sur
la durée de vie sera quantifiée de manière appropriée. La fiabilité de la durée de vie prévue d’un composant
(PSLC, predicted service life of a component) dépendra de la preuve sur laquelle elle repose.
Les méthodes décrites dans la série ISO 15686 reposent sur des travaux réalisés dans de nombreux pays.
D’une manière générale, il s’agit d’une évolution des normes actuelles relatives à la durabilité publiées par
l’Institut d’architecture du Japon, l’organisme de normalisation britannique (BSI), l’association canadienne de
normalisation (CSA) et l’organisme de normalisation italien (UNI). Plus spécifiquement, la présente partie de
l’ISO 15686 représente une extension et une modification de la recommandation 64 de la RILEM, «Méthodologie
1)
systématique pour la prévision de la durée de vie», élaborée par le TC 71-PSL et le TC 100-TSL de la RILEM .
2)
Elle tient également compte des travaux réalisés par le CIB W080.
1) Réunion internationale des laboratoires d’essais et de recherches sur les matériaux et les constructions.
2) Conseil international du bâtiment pour la recherche, l’étude et la documentation.
NORME INTERNATIONALE ISO 15686-2:2012(F)
Bâtiments et biens immobiliers construits — Conception
prenant en compte la durée de vie —
Partie 2:
Procédures pour la prévision de la durée de vie
1 Domaine d’application
La présente partie de l’ISO 15686 décrit des procédures qui facilitent les prévisions de la durée de vie des
composants de bâtiments, reposant sur la performance technique et fonctionnelle. Elle fournit un cadre général,
des principes et des exigences pour réaliser ces études et établir les rapports correspondants.
Elle ne traite pas de la limitation de la durée de vie en raison de l’obsolescence ou d’autres états de performances
non mesurables ou imprévisibles.
2 Références normatives
Les documents de référence suivants sont indispensables à l’application du présent document. Pour les
références datées, seule l’édition citée s’applique. Pour les références non datées, la dernière édition du
document de référence s’applique.
ISO 6241:1984, Normes de performance dans le bâtiment — Principes d’établissement et facteurs à considérer
ISO 6707-1, Bâtiment et génie civil — Vocabulaire — Partie 1: Termes généraux
ISO 15686-1, Bâtiments et biens immobiliers construits — Conception prenant en compte la durée de vie —
Partie 1: Principes généraux et cadre
ISO 15686-7, Bâtiments et biens immobiliers construits — Prévision de la durée de vie — Partie 7: Évaluation
de la performance de l’information en retour relative à la durée de vie, issue de la pratique
ISO 15686-8, Bâtiments et biens immobiliers construits — Prévision de la durée de vie — Partie 8: Durée de
vie documentée et estimation de la durée de vie
3 Termes, définitions et termes abrégés
3.1 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans l’ISO 6707-1 et l’ISO 15686-1
ainsi que les suivants s’appliquent.
3.1.1
exposition accélérée de courte durée
exposition de courte durée (3.1.19) dans laquelle l’intensité des agents (3.1.5) est supérieure aux niveaux
prévus en service
3.1.2
vieillissement
dégradation due à l’influence à long terme des agents (3.1.4) liés à l’utilisation
3.1.3
exposition au vieillissement
procédure suivant laquelle un produit est exposé à des agents (3.1.4) connus ou présumés être à l’origine
du vieillissement, dans le but d’entreprendre/de réaliser une prévision de la durée de vie (3.1.18) ou une
comparaison des performances relatives
3.1.4
agent
agent de dégradation
élément qui détériore les performances d’un bâtiment ou de ses diverses parties
EXEMPLE Une personne, l’eau, une charge, la chaleur.
3.1.5
intensité d’un agent
intensité d’un agent de dégradation
mesure de l’étendue ou du niveau d’action d’un agent (3.1.4)
NOTE Dans la présente partie de l’ISO 15686, l’expression «intensité d’un agent» se rapporte figurativement à toute
grandeur qui satisfait aux exigences d’une mesure, c’est-à-dire non seulement au rayonnement UV et à l’intensité des
précipitations, etc., mais aussi à l’humidité relative, à la concentration de SO , à la vitesse de gel-dégel, à la pression
mécanique, etc.
3.1.6
composant
produit fabriqué comme unité distincte pour remplir une ou plusieurs fonctions spécifiques
[ISO 6707-1:2004, définition 6.1.3]
3.1.7
dégradation
processus par lequel toute action exercée sur un élément entraîne une détérioration d’une ou de plusieurs propriétés
NOTE Les propriétés affectées sont par exemple des propriétés physiques, mécaniques ou électriques.
[ISO 15686-8:2008, définition 3.4].
3.1.8
indicateur de dégradation
déficience apparaissant lorsqu’une caractéristique de performance (3.1.14) n’est plus conforme à une exigence
EXEMPLE Si la brillance est une caractéristique de performance, la perte de brillance est alors l’indicateur de
dégradation correspondant. Si la masse (ou l’épaisseur) est une caractéristique de performance, la perte de masse est
alors l’indicateur de dégradation correspondant.
3.1.9
fonction dose-réponse
fonction mettant en relation la (les) dose(s) d’un agent (3.1.4) de dégradation (3.1.7) avec un indicateur de
dégradation (3.1.8)
3.1.10
inspection des bâtiments
évaluation des performances ou de la durée de vie résiduelle des parties de bâtiments présentes dans des
bâtiments existants
3.1.11
condition d’utilisation
toute circonstance pouvant avoir un effet sur les performances d’un bâtiment ou autre bien immobilier construit,
ou sur les performances d’une partie de ces derniers dans des conditions d’utilisation normales
2 © ISO 2012 – Tous droits réservés
3.1.12
exposition de longue durée
exposition au vieillissement (3.1.3) dans les conditions d’utilisation (3.1.11), pendant une durée du même
ordre que la durée de vie estimée
3.1.13
mécanisme
mécanisme de dégradation
processus entraînant des modifications dans le temps de la composition ou de la microstructure d’un composant
ou d’un matériau pouvant provoquer leur dégradation
3.1.14
caractéristique de performance
grandeur physique constituant la mesure d’une propriété critique
EXEMPLE Une caractéristique de performance peut être identique à la propriété critique, par exemple la réflexion.
En revanche, si la propriété critique est la résistance, il est alors permis, dans certains cas, d’utiliser l’épaisseur ou la
masse comme caractéristique de performance.
3.1.15
exigence de performance
critère de performance
niveau minimal acceptable d’une propriété critique
3.1.16
durée de vie prévue
durée de vie prévue à partir de performances enregistrées dans le temps
EXEMPLE Telle que dans les modèles de durée de vie ou dans les essais de vieillissement.
3.1.17
distribution de la durée de vie prévue
fonction probabiliste de répartition de la durée de vie prévue (3.1.16)
3.1.18
prévision de la durée de vie
SLP
méthodologie générique qui, pour une exigence particulière ou pour toute exigence de performance appropriée,
facilite la prévision de la distribution de la durée de vie d’un bâtiment ou de ses parties pour une utilisation dans
un environnement particulier ou dans tout environnement approprié
NOTE Le terme abrégé SLP est dérivé de l’anglais service life prediction.
3.1.19
exposition de courte durée
exposition au vieillissement (3.1.3) pendant une durée nettement plus courte que la durée de vie estimée
NOTE L’expression «essai de prévision de la durée de vie» est parfois employée pour faire référence à ce type de
programme d’exposition. Cet essai combine une exposition de courte durée spécifique avec une procédure d’évaluation
des performances.
3.1.20
propriété critique déterminante
dans un ensemble donné de propriétés critiques se rapportant à un bâtiment ou à l’une de ses parties, propriété
critique qui est la première à ne plus satisfaire à l’exigence de performance correspondante lorsqu’elle est
soumise à une exposition dans un environnement de service particulier
3.1.21
facteur de temps d’accélération
nombre ou fonction utilisé(e) pour transformer les résultats de vieillissement d’un (de) composant(s) dérivés
d’essais de courte durée d’exposition en une durée de vie prévue ou une distribution de la durée de vie
3.2 Termes abrégés
ESLC durée de vie estimée d’un composant (estimated service life of a component)
PSLDC distribution de la durée de vie prévue d’un composant (predicted service life distribution of a
component)
PSLC durée de vie prévue d’un composant (predicted service life of a component)
RSLC durée de vie de référence d’un composant (reference service life of a component)
SLP prévision de la durée de vie (service life prediction)
4 Méthodologie
4.1 Brève description de la prévision de la durée de vie
La méthodologie décrite vise à être générique et à faciliter, pour un ensemble particulier ou pour tout ensemble
approprié d’exigences de performance, la prévision de la durée de vie (SLP) de tout type de composants
de bâtiments destinés à être utilisés dans un environnement de service particulier ou dans une gamme
d’environnements de service.
NOTE Dans la pratique, la SLP se limite généralement à un petit nombre d’environnements de service type ou à un seul
environnement de référence complété par une analyse de la sensibilité aux variations d’intensité des agents de dégradation.
Dans le cadre de l’étude de SLP, le terme «prévision» fait référence à l’une des quatre méthodes d’évaluation
de la durée de vie ou à une combinaison de celles-ci:
— raccourcissement de la dimension temporelle (expositions accélérées de courte durée);
— interpolation/extrapolation à l’aide de données relatives à des composants similaires;
— interpolation/extrapolation à l’aide de données provenant d’environnements de service similaires;
— extrapolation de la dimension temporelle (expositions de courte durée en service).
L’approche ou la méthodologie systématique qui est décrite pour la SLP des composants de bâtiments
comprend l’identification des informations nécessaires, le choix ou la mise au point des modes opératoires
d’essai (programmes d’exposition et méthodes d’évaluation), la réalisation des essais, l’interprétation des
données et le compte rendu des résultats. La Figure 1 illustre les étapes essentielles d’un processus de
SLP. Cette méthodologie fait appel à une recherche itérative ou à un processus de prise de décisions qui
permet d’améliorer les prévisions effectuées au fur et à mesure que la base de connaissances s’étoffe,
comme illustré par la boucle extérieure sur la Figure 1. Il n’est souvent pas nécessaire d’effectuer toutes les
étapes. Le mode opératoire d’essais préliminaires peut par exemple souvent être omis ou raccourci du fait des
connaissances déjà acquises sur le composant à l’étude. Bien que non illustrées, des boucles secondaires
peuvent être nécessaires entre les étapes d’un cycle. Normalement, pour un ensemble particulier d’exigences
de performance, la durée de vie n’est pas prévue sous forme de valeur unique (PSLC), mais sous forme d’une
distribution de la durée de vie prévue d’un composant (PSLDC). La PSLDC est décrite par au moins deux
paramètres: l’espérance mathématique et l’écart-type. Toutefois, lorsque les essais sont très onéreux, il est
permis de limiter l’objectif à la PSLC.
Le choix de la valeur unique RSLC dans la distribution établie dépend de la marge de sécurité attendue pour
le composant. Pour les composants non structuraux remplaçables, l’espérance mathématique (c’est-à-dire la
moyenne) de la PSLC de la distribution peut être utilisée comme RSLC. Toutefois, des plans de maintenance
programmée interférant avec d’autres composants remplaçables ou d’autres circonstances peuvent suggérer
un choix plus prudent. Pour les composants non remplaçables et/ou structuraux, pour lesquels une marge
de sécurité est exigée, un choix plus prudent, et souvent nettement plus prudent, est à faire. Dans ce cas,
pourtant, la marge de sécurité est normalement régie directement ou indirectement par des normes ou des
codes spécifiquement applicables au composant.
4 © ISO 2012 – Tous droits réservés
Voir également A.1.1.
Définition
Besoins des utilisateurs, contexte du bâtiment, type et catégorie
d’agents, exigences de performance, caractérisation des matériaux
Préparation
Identification des agents de dégradation, de leurs mécanismes et de
leurs effets, choix des caractéristiques de performance et des
techniques d’évaluation, informations provenant d’autres études
Essais préliminaires
Vérification des mécanismes et des charges, et vérification du choix des
caractéristiques et des techniques par exposition de courte durée
Exposition (non
accélérée) dans les
conditions d’utilisation
Exposition et évaluation
Exposition de Exposition de
Exposition accélérée
Exposition de terrain
courte durée longue durée
Dégradation Inspection des
similaire ? bâtiments
Dose réponse
Bâtiments
expérimentaux
Exposition en service
Analyse / Interprétation
Dose (classes
Fonctions performances/temps ou
environnementales)
dose-réponse permettant d’établir
des modèles de prévision
Prévision de la durée de vie
Analyse critique, établissement de rapports
Figure 1 — Méthodologie systématique pour la prévision de la durée de vie
des composants de bâtiments
4.2 Relation avec l’ISO 15686-1 et l’ISO 15686-8
La présente partie de l’ISO 15686 se réfère à l’ISO 15686-1 et à l’ISO 15686-8 et vise à décrire, dans ce
contexte, un outil permettant d’obtenir une durée de vie de référence du composant (RSLC) aussi précise
que possible (ou directement la durée de vie prévue). Une RSLC est exigée si la durée de vie estimée du
composant (ESLC), pour un objet particulier, est à évaluer selon la méthode factorielle, comme décrit dans
l’ISO 15686-8. La RSLC peut ainsi être obtenue à partir de la PSLDC, conformément à la présente partie de
Classes de réponse
(indicateur de dégradation)
l’ISO 15686. La condition dans laquelle la PSLDC a été établie devient alors la condition de référence et elle
est comparée à la condition particulière présente au niveau de l’objet afin d’estimer les facteurs utilisés pour
la méthode factorielle.
Lorsque la SLP utilisée pour obtenir la RSLC pour un objet particulier a été réalisée dans différentes conditions,
la PSLDC obtenue dans la condition qui s’écarte le moins de la condition particulière est utilisée. Lorsque la
SLP est réalisée dans différentes conditions, il est également nécessaire de disposer d’un moyen d’estimer
les facteurs appliqués dans le cadre de la méthode factorielle et, dans la majorité des cas, en particulier celui
tenant compte de la différence entre l’environnement spécifique et l’environnement extérieur de référence.
Pour ce faire, des techniques d’interpolation/extrapolation peuvent être appliquées.
5 Cadre méthodologique
5.1 Portée de la SLP et description du problème
5.1.1 Généralités
Dans un premier temps, le problème à résoudre doit être défini et la portée de l’étude établie, y compris
l’identification ou la spécification des données essentielles.
NOTE Ces questions sont susceptibles de varier d’un cas à l’autre en fonction de l’objectif et de l’ambition de la SLP
et du niveau des connaissances existantes sur le composant.
Deux cas extrêmes peuvent se présenter:
a) Étude spécifique: Elle est destinée à se concentrer sur une application plutôt spécifique du composant
soumis à l’essai en termes d’environnement de service et d’usage avec un ensemble d’exigences de
performance spécifiées. Elle a pour objectif d’établir la PSLDC (ou la PSLC) et de déterminer la sensibilité
de la PSLDC (ou de la PSLC) à des variations modérées par rapport à ces hypothèses.
b) Étude générale: Elle est destinée à couvrir une application très large du composant soumis à l’essai
en termes d’environnement de service et d’usage avec un ensemble d’exigences de performance non
spécifiées ou spécifiées de façon vague. L’objectif est d’établir les fonctions performances/temps pour les
caractéristiques de performance choisies dans toute la gamme des applications.
5.1.2 Définition d’une étude spécifique
5.1.2.1 Spécification de l’environnement de la durée de vie
Lors de la présentation des prévisions de la durée de vie des produits ou des composants, un ensemble
spécifique ou générique de conditions d’utilisation doit être identifié en vue de documenter l’étude spécifique.
Il doit tenir compte de l’utilisation spécifique du composant, y compris les conséquences de la conception, et
doit comprendre une description de l’environnement, notamment les sollicitations mécaniques statiques et
dynamiques sur le site sur lequel il est prévu de construire le bâtiment. Une description des effets de l’utilisation
du bâtiment (comme la vapeur d’eau, la chaleur ou l’abrasion) et les principes selon lesquels le bâtiment est
exploité (par exemple inertie thermique faible ou élevée) doivent être également inclus, le cas échéant.
5.1.2.2 Quantification de l’ensemble des exigences de performance
Toutes les caractéristiques de performance doivent être identifiées et les exigences correspondantes
quantifiées en fonction des propriétés critiques spécifiées.
NOTE Cela peut, par exemple, prendre la forme d’une analyse des modes de défaillance et de leurs effets
(AMDE). Voir 5.6.
L’ensemble des exigences de performance doit être conforme aux informations obtenues conformément à 5.1.2.1.
6 © ISO 2012 – Tous droits réservés
5.1.3 Définition d’une étude générale
5.1.3.1 Spécification des types d’environnements
Tous les types d’environnements dans lesquels le composant est destiné à être utilisé ou qui sont inclus dans
la portée de l’étude doivent être décrits, y compris les sollicitations mécaniques statiques et dynamiques.
Les différents types d’environnements peuvent être regroupés en un nombre discret de classes, chacune
d’elles étant représentative de certaines gammes d’intensité des agents.
L’effet des différents usages et positions du composant doit être pris en compte car il régit fortement les
conditions d’utilisation et les effets synergiques éventuels des agents de dégradation. Voir 5.2.4.
NOTE La condition d’utilisation effective concernant la dégradation des matériaux est le microenvironnement, c’est-à-dire
les éléments de l’environnement régnant dans une couche adjacente à la surface du composant ou à son niveau (par exemple
la concentration des polluants et la pluie battante) et à l’intérieur du composant (par exemple les sollicitations mécaniques).
5.1.3.2 Quantification de l’ensemble des exigences de performance
Dans un premier temps, un ensemble de caractéristiques de performance doit être identifié à partir des
propriétés critiques spécifiées. Ensuite, afin de limiter la gamme de performances que l’analyse de la durée de
vie doit couvrir, l’ensemble des exigences de performance appropriées minimales pour le composant étudié
doit être précisé.
NOTE L’ensemble des exigences de performance peut comprendre la spécification, par exemple, de la résistance,
de la transmission optique, de l’isolation acoustique et des qualités esthétiques.
Les exigences de performance doivent être conformes à 5.1.3.1.
5.1.4 Caractérisation du composant
Le composant à évaluer doit être caractérisé de manière détaillée en termes de structure, de propriétés
physiques et de composition chimique.
5.1.5 Considérations relatives à l’analyse critique
L’analyse critique est une technique permettant de vérifier si une étude de SLP satisfait ou non aux exigences de
la présente partie de l’ISO 15686 en matière de méthodologie et de compte rendu. Lors de la définition de l’étude,
il est nécessaire de prévoir et de vérifier si le processus d’analyse critique doit être réalisé, comment et par qui.
Une analyse critique d’une SLP doit être réalisée lorsque les résultats doivent être divulgués au public.
Pour d’autres applications, par exemple pour le développement d’un produit interne à l’entreprise, l’analyse
critique peut être omise.
Le processus d’analyse critique est décrit à l’Article 6.
5.2 Préparation
5.2.1 Généralités
Une fois la portée de l’étude définie conformément à 5.1, il est nécessaire d’identifier et d’établir les agents de
dégradation, les mécanismes de dégradation possibles et la façon dont la dégradation peut être accélérée ou
induite dans le cadre de programmes d’exposition au vieillissement.
5.2.2 Identification des agents de dégradation et de leurs intensités
Le type et la distribution d’intensité des agents de dégradation attendus en fonction des connaissances
acquises recueillies conformément à 5.1.2.1 ou 5.1.3.1 doivent être identifiés.
NOTE Il peut être difficile de quantifier l’intensité en service des agents biologiques et des agents liés à l’utilisation,
mais des limites supérieures peuvent généralement être fixées dans la plage normale sur avis d’expert.
Un ou plusieurs environnements de référence, dont le nombre dépend de la portée de l’étude, doivent être
envisagés. Le Tableau 1 donne une liste des agents de dégradation pertinents.
Les agents sont classés en fonction de leur nature. En général, à l’extérieur du bâtiment, l’origine des agents est
soit l’atmosphère, soit le sol, tandis qu’à l’intérieur du bâtiment, l’origine est liée à l’utilisation ou à la conception
et aux installations. Toutefois, bien que ceci ne soit pas précisé dans l’ISO 6241, il est possible qu’un agent
agissant à l’extérieur soit une conséquence de la conception, par exemple en raison d’un composant voisin
incompatible. En outre, il convient de ne pas négliger l’influence des agents provenant de l’atmosphère sur une
dégradation interne.
a
Tableau 1 — Agents de dégradation influant sur la durée de vie des composants de bâtiments
Nature Classe
Agents mécaniques Pesanteur
Forces et déformations imposées ou maîtrisées
Énergie cinétique
Vibrations et bruits
Agents électromagnétiques Rayonnement
Électricité
Magnétisme
Agents thermiques Niveaux extrêmes ou variations rapides de température
Agents chimiques Eau et solvants
Agents oxydants
Agents réducteurs
Acides
Bases
Sels
Matières chimiquement neutres
Agents biologiques Végétaux et micro-organismes
Animaux
a
Résumé de l’ISO 6241:1984, Tableau 4.
Voir également A.2.1.1 à A.2.1.3.
5.2.3 Agents liés à l’utilisation et importance des pratiques de mise en œuvre et de maintenance
Bien que les agents liés à l’utilisation ne soient pas souvent inclus dans les programmes d’exposition au
vieillissement étant donné qu’ils peuvent influer sur la durée de vie des composants des bâtiments, il convient
de les évaluer s’ils sont jugés critiques. Une telle mesure doit être mise en œuvre soit en ayant recours à une
inspection des bâtiments, soit par exposition en service (voir 5.4.3.3 et 5.4.3.5, respectivement), ou les deux.
NOTE Toutefois, les abus sont généralement considérés comme sortant du domaine d’application de ces
méthodes d’essai.
8 © ISO 2012 – Tous droits réservés
Normalement, il convient que la mise en œuvre et la maintenance éventuelle des échantillons utilisés pour
le programme d’exposition au vieillissement respectent les pratiques recommandées par le fabricant ou, si
celles-ci ne sont pas définies, les bonnes pratiques.
L’évaluation des effets dus à des modifications des procédures de mise en œuvre et de maintenance peut être
incluse dans l’étude.
Il est indispensable de ne pas exagérer une procédure de maintenance car cela peut conduire à une PSLC
erronée par rapport à l’utilisation réelle.
5.2.4 Identification des mécanismes de dégradation possibles
Tous les mécanismes possibles selon lesquels on sait ou on présume que les agents de dégradation identifiés
induisent des changements dans les propriétés du composant doivent être identifiés. Il s’agit d’une étape
essentielle de la préparation.
Les mécanismes peuvent être identifiés à différents niveaux. Si, par exemple, la chimie du composant est
bien connue, il peut être possible d’identifier des mécanismes basés sur des réactions chimiques spécifiques,
comme l’hydrolyse et la photo-oxydation. Si l’on en sait moins sur les réactions chimiques, mécaniques,
physiques et biologiques du composant, les mécanismes peuvent être définis en termes plus généraux
comme, par exemple, la décomposition thermique, la volatilisation de constituants, la diffusion de constituants,
la corrosion, la fatigue, l’usure, le retrait/gonflement et la putréfaction. Voir également A.2.1.4.
5.2.5 Identification des effets possibles de la dégradation
Les effets possibles de la dégradation des caractéristiques de performance du composant doivent être
identifiés en se basant sur les données obtenues conformément à 5.2.2 et 5.2.4.
5.2.6 Choix des caractéristiques de performance et techniques d’évaluation des performances
Les propriétés critiques correspondant à l’ensemble des exigences de performance quantifiées conformément
à 5.1.2.2 ou 5.1.3.2 doivent être interprétées en considérant toutes les caractéristiques de performance
identifiées comme pouvant subir une dégradation conformément à 5.2.5.
Pour chacune des caractéristiques de performance retenues, des techniques de mesurage et/ou d’inspection
appropriées doivent être choisies. Pour pouvoir effectuer une SLP conformément à la présente partie de
l’ISO 15686, des données quantitatives doivent être obtenues. Les valeurs initiales des caractéristiques de
performance retenues doivent être déterminées avant le début du programme d’exposition au vieillissement.
Voir également A.2.1.4.
5.2.7 Informations provenant d’autres études
Il convient de toujours rechercher les informations provenant d’autres études, qu’elles soient terminées ou en cours.
NOTE Les connaissances générales acquises sur des composants, des techniques de mesurage et des programmes
d’exposition similaires peuvent fournir des informations utiles, tout comme les données détaillées issues des fonctions
performances/temps dans des cas ayant un lien étroit avec celui à étudier. Dans ce dernier cas, lorsque les circonstances
sont favorables, cela peut permettre de réduire le volume d’essai et la plage exigée et/ou de raccourcir considérablement
la durée de l’essai.
5.2.8 Établissement de programmes d’exposition au vieillissement
Les informations obtenues conformément à 5.2.2 à 5.2.7 aident à établir des procédures pour mettre en œuvre
les mécanismes de dégradation identifiés avec les agents de dégradation identifiés.
En cas d’exposition accélérée de courte durée, il faut s’assurer que les niveaux d’intensité extrêmes des agents
de dégradation ne conduisent pas à des mécanismes de dégradation qui ne seraient pas rencontrés en service.
NOTE Le choix ou la conception des programmes d’exposition préliminaires reposent sur les postulats faits au cours
de cette étape.
5.3 Essais préliminaires
5.3.1 Généralités
Les essais préliminaires doivent découler de ce qui est indiqué en 5.2.8. Un essai préliminaire doit être réalisé
pour les caractéristiques de performance retenues, qui sont à évaluer avant et après l’exposition aux agents
de dégradation (ou, au moins, à tous les agents de dégradation jugés importants) auxquels le composant sera
exposé en service. Lorsqu’il est exécuté correctement, cet essai doit:
— déterminer les agents de dégradation primaires et leur ordre d’importance;
— confirmer ou exclure les mécanismes précédemment identifiés conduisant à des changements de propriétés;
— établir les niveaux d’intensité des agents nécessaires pour induire des changements de propriétés et
démontrer comment des changements rapides des caractéristiques de performance retenues peuvent
être induits par une exposition à des intensités extrêmes;
— aider à mieux comprendre la nature des agents de dégradation primaires conduisant à des changements
de propriétés et indiquer les changements de propriétés supplémentaires ou de substitution susceptibles
d’être adaptés et utiles en tant que caractéristiques de performance; et
— vérifier l’adaptabilité des techniques de mesurage et d’inspection choisies pour l’évaluation des
performances.
Voir également A.2.2.
5.3.2 Intensités des agents de dégradation employés lors des essais préliminaires
Les intensités doivent être calibrées en fonction des distributions ou des plages quantitatives d’utilisation
identifiées en 5.2.2.
EXEMPLE Le choix des intensités de ces agents au cours des essais préliminaires peut reposer sur les données
météorologiques et climatologiques se rapportant aux climats les plus extrêmes dans lesquels le composant sera utilisé.
5.4 Programmes d’exposition au vieillissement
5.4.1 Généralités
Le programme d’exposition complet doit être conçu avec soin afin de fournir les données nécessaires en
fonction de la portée et de l’objectif de l’étude, en tenant compte des informations et des données obtenues au
moyen des procédures décrites ci-dessus.
Bien que cela soit évident d’après les définitions d’agent (voir 3.1.4) et d’exposition au vieillissement (voir 3.1.3),
il convient d’insister sur le fait qu’il est recommandé de prendre l’exposition au vieillissement au sens large
dans ce contexte, c’est-à-dire que l’exposition au vieillissement se rapporte à tout type de dispositif dans lequel
des échantillons sont soumis à des agents de dégradation conformément au Tableau 1. Par exemple, lorsque
des charges mécaniques sont appliquées, les échantillons sont exposés à des agents mécaniques.
5.4.2 Conception et exécution des programmes d’exposition
Étant donné que les propriétés des composants et les caractéristiques environnementales sont des variables
stochastiques, c’est-à-dire qu’elles sont représentées par des distributions statistiques, le programme
d’exposition, quel qu’il soit, doit être conçu de façon à comprendre, si possible, une multitude d’échantillons ou
d’objets d’essai, pour permettre un traitement statistique des données d’essai.
Cette recommandation risque toutefois d’être difficilement applicable dans certains cas lorsqu’il s’agit d’un
bâtiment expérimental ou d’une exposition en service (voir 5.4.3.4 et 5.4.3.5, respectivement) ou lorsque les
essais sont très onéreux. Dans de tels cas, il convient d’estimer les largeurs ou les plages de distribution
d’après d’autres sources d’informations, si possible.
10 © ISO 2012 – Tous droits réservés
Quel que soit le programme d’exposition, les conditions doivent être enregistrées en continu ou à des intervalles
suffisamment courts pour les raisons suivantes (qui dépendent en partie du type de programme d’exposition):
— permettre l’établissement des fonctions performances/temps ou dose-réponse, voir A.2.4.2 et A.2.4.3);
— fournir une relation entre différentes durées et différents sites d’exposition, et notamment comparer les
résultats avec les données de terrain, ainsi que des programmes d’exposition dans des conditions non
maîtrisées; voir 5.4.3.2;
— vérifier que les conditions environnementales réelles sont représentatives des conditions environnementales
de référence (pour les programmes d’exposition dans des conditions non maîtrisées);
— vérifier que les intensités prévues des agents de dégradation sont atteintes (pour les programmes
d’exposition dans des conditions maîtrisées).
NOTE 1 Les sources d’enregistrement peuvent varier entre les bases de données environnementales officielles et les
mesurages détaillés des intensités des agents de dégradation au niveau des échantillons en essai ou dans leur voisinage.
NOTE 2 Le domaine de la caractérisation de l’environnement évolue énormément, par exemple vers des techniques
de mesurage normalisées et des modèles de dispersion améliorés, hébergés dans des environnements logiciels SIG
(systèmes d’information géographique) facilitant la cartographie des données environnementales depuis les niveaux
moyens/locaux jusqu’aux niveaux micro.
5.4.3 Expositions de longue durée
5.4.3.1 Plage et type
Le programme d’exposition doit soit consister en l’exposition réelle en service d’un système complet, qui
fournit en retour des informations sur les performances dans le temps des composants inclus, soit impliquer
l’exposition de composants sélectionnés. Un programme d’exposition doit être conçu pour prendre en compte
tous les agents importants.
Même pour une étude spécifique, il convient d’effectuer l’exposition de préférence dans plusieurs types
d’environnements de service.
Les quatre catégories suivantes correspondent aux différentes méthodes utilisées pour générer des données
à partir d’expositions de longue durée:
— exposition de terrain, voir 5.4.3.2;
— inspection des bâtiments, voir 5.4.3.3;
— exposition dans des bâtiments expérimentaux, voir 5.4.3.4;
— exposition en service, voir 5.4.3.5.
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...