ISO 15686-2:2001
(Main)Buildings and constructed assets - Service life planning - Part 2: Service life prediction procedures
Buildings and constructed assets - Service life planning - Part 2: Service life prediction procedures
Bâtiments et biens immobiliers construits — Prévision de la durée de vie — Partie 2: Procédures pour la prévision de la durée de vie
Vgrajene konstrukcijske lastnosti - Načrtovanje dobe trajanja - 2. del: Postopek napovedovanja dobe trajanja
General Information
Relations
Frequently Asked Questions
ISO 15686-2:2001 is a standard published by the International Organization for Standardization (ISO). Its full title is "Buildings and constructed assets - Service life planning - Part 2: Service life prediction procedures". This standard covers: Buildings and constructed assets - Service life planning - Part 2: Service life prediction procedures
Buildings and constructed assets - Service life planning - Part 2: Service life prediction procedures
ISO 15686-2:2001 is classified under the following ICS (International Classification for Standards) categories: 91.040.01 - Buildings in general. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO 15686-2:2001 has the following relationships with other standards: It is inter standard links to ISO 15686-2:2012. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase ISO 15686-2:2001 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.
Standards Content (Sample)
SLOVENSKI STANDARD
01-december-2002
9JUDMHQHNRQVWUXNFLMVNHODVWQRVWL1DþUWRYDQMHGREHWUDMDQMDGHO3RVWRSHN
QDSRYHGRYDQMDGREHWUDMDQMD
Buildings and constructed assets -- Service life planning -- Part 2: Service life prediction
procedures
Bâtiments et biens immobiliers construits -- Prévision de la durée de vie -- Partie 2:
Procédures pour la prévision de la durée de vie
Ta slovenski standard je istoveten z: ISO 15686-2:2001
ICS:
91.010.01 Gradbeništvo na splošno Construction industry in
general
91.040.01 Stavbe na splošno Buildings in general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 15686-2
First edition
2001-03-01
Buildings and constructed assets —
Service life planning —
Part 2:
Service life prediction procedures
Bâtiments et biens immobiliers construits — Prévision de la durée de vie —
Partie 2: Procédures pour la prévision de la durée de vie
Reference number
©
ISO 2001
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 2001 – All rights reserved
Contents Page
Foreword.iv
Introduction.v
1 Scope .1
2 Normative references .1
3 Terms and definitions .1
3.1 Service life and performance.1
3.2 Service life forecasting .2
3.3 Environment and environmental characterization.3
3.4 Acts and actors.3
4 Abbreviated terms .3
5 Methodology.4
5.1 Brief description of SLP.4
5.2 Connection to ISO 15686-1 .4
6 Methodological framework .6
6.1 Range of SLP and problem definition.6
6.2 Preparation.7
6.3 Pretesting .9
6.4 Ageing exposure programmes.10
6.5 Analysis and interpretation .12
7 Critical review.13
7.1 General description of critical review.13
7.2 Need and requirements for critical review .13
7.3 Process of critical review.13
8 Reporting.14
Annex A (informative) Guidance on process of SLP.16
Bibliography.23
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this part of ISO 15686 may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
International Standard ISO 15686-2 was prepared by Technical Committee ISO/TC 59, Building construction,
Subcommittee SC 14, Design life.
ISO 15686 consists of the following parts, under the general title Buildings and constructed assets — Service life
planning:
� Part 1: General principles
� Part 2: Service life prediction procedures
� Part 3: Performance audits and reviews
� Part 4: Data requirements
� Part 5: Life cycle costing
� Part 6: Life cycle assessment
Annex A of this part of ISO 15686 is for information only.
iv © ISO 2001 – All rights reserved
Introduction
The ISO 15686 series on “Buildings and constructed assets — Service life planning” is an essential contribution to
the development of a policy for design life. A major impetus for the preparation of the ISO 15686 series is the
current concern over the industry’s inability to predict costs of ownership and maintenance of buildings. A
secondary objective of service life planning is to reduce the likelihood of obsolescence and/or to maximize the
reuse value of the obsolete building components.
The purpose of this part of ISO 15686 is to describe the principles for service life predictions (SLPs) of building
components, considering various service environments. The SLP methodology is developed to be generic, i.e.
applicable to all types of building components, and is meant to serve as a guide to all kinds of prediction processes.
The methodology may be used in the planning of SLP studies regarding new and innovative components of which
the knowledge of their performance is limited, or be the guiding document in the assessment of already performed
investigations in order to appraise their value as knowledge bases for SLP and reveal where complimentary studies
are necessary.
This part of ISO 15686 is intended primarily for
� manufacturers who may wish to provide data on performance in use of their products,
� test houses, technical approval organizations, etc., and
� those who develop or draft product standards.
While this part of ISO 15686 could be used as a stand-alone document, for an improved understanding of its
context it is recommended to read the other parts of ISO 15686, in particular ISO 15686-1, which is the umbrella
document of the ISO 15686 series.
Data obtained in accordance with the methodology described in this part of ISO 15686 can be used in any context
where appropriate, and specifically to obtain a forecast service life for a specific object via the factor method (or
directly), as described in ISO 15686-1. The factor method aims to find an estimated service life of a component
(ESLC) in the specific planning case, taking all case-specific conditions affecting the service life into consideration.
Accordingly, this part of ISO 15686 interfaces with ISO 15686-1 as a crucial means of attaining the knowledge
necessary for the service life planning process as described in ISO 15686-1.
This part of ISO 15686 will also interface with ISO 15686-4, which will specify in detail the way SLP data are
formatted, stored and presented.
The SLP methodology does not cover estimation of service life limited by obsolescence or other non-measurable or
unpredictable performance states. The methodology also does not cover prediction of the economic service life, but
will yield data needed as input for such evaluations.
Predictions can be based on evidence from previous use, on comparisons with the known service life of similar
components, on tests of degradation in specific conditions or on a combination of these. Ideally a prediction will be
given in terms of the service life as a function of the in-use condition. In any case, the dependence of the service
life on the in-use condition will be quantified in a suitable way. The reliability of the predicted service life of a
component (PSLC) will depend on the evidence it is based on.
The methods described in the ISO 15686 series are based on work carried out in many countries. In general terms
they are a development of the current standards on durability published by the Architectural Institute of Japan, the
British Standards Institution and the Canadian Standards Authority. Specifically, this part of ISO 15686 is an
extension and modification of the RILEM recommendation 64, “Systematic Methodology for Service Life
1) 2)
Prediction”, developed by RILEM TC 71-PSL and TC 100-TSL working jointly with CIB W80.
1) The International Union of Testing and Research Laboratories for Materials and Structures.
2) International Council for Building Research, Studies and Documentation.
vi © ISO 2001 – All rights reserved
INTERNATIONAL STANDARD ISO 15686-2:2001(E)
Buildings and constructed assets — Service life planning —
Part 2:
Service life prediction procedures
1 Scope
This part of ISO 15686 describes procedures that facilitate service life predictions of building components. It
provides a general framework, principles and requirements for conducting and reporting such studies. This part of
ISO 15686 does not describe the techniques of service life prediction of building components in detail.
2 Normative references
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this part of ISO 15686. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO 15686 are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.
ISO 6241:1984, Performance standards in building — Principles for their preparation and factors to be considered.
ISO 6707-1:1989, Building and civil engineering — Vocabulary — Part 1: General terms.
ISO 15686-1:2000, Buildings and constructed assets — Service life planning — Part 1: General principles.
3 Terms and definitions
For the purposes of this part of ISO 15686, the terms and definitions given in ISO 6707-1 and ISO 15686-1 and the
following apply. The terms are ordered by concepts for the assistance of users of this part of ISO 15686.
3.1 Service life and performance
3.1.1
ageing
degradation due to long-term influence of agents related to use
3.1.2
degradation indicator
deficiency which shows when a performance characteristic fails to meet a requirement
EXAMPLE When gloss is a performance characteristic, gloss loss is the corresponding degradation indicator. When mass
(or thickness) is a performance characteristic, mass loss is the corresponding degradation indicator.
3.1.3
terminal critical property
in an established set of critical properties for a building or a part, the critical property that first fails to maintain the
corresponding performance requirement when subjected to exposure in a particular service environment
3.1.4
performance characteristic
quantity that is a measure of a critical property, or a magnitude of that quantity
EXAMPLE A performance characteristic can be the same as the critical property, for instance gloss. On the other hand, if
the critical property is strength, thickness or mass may in certain cases be utilized as a performance characteristic.
3.2 Service life forecasting
3.2.1
accelerated short-term exposure
short-term exposure in which the intensity of the agents is raised above the levels expected in service
3.2.2
ageing exposure
procedure in which a building product is exposed to agents believed or known to cause degradation for the purpose
of service life prediction (or comparison of relative performance)
3.2.3
control sample
sample retained in an environment that is believed or known not to induce degradation for the purpose of
comparison between exposed and non-exposed samples
3.2.4
feedback from practice
inspection of buildings
performance evaluation or assessment of residual service life of building parts in actual buildings
3.2.5
long-term exposure
ageing exposure under in-use conditions and with a duration of the same order as the service life
3.2.6
predicted service life distribution
probability distribution function of the predicted service life
3.2.7
reference sample
sample of known performance which are exposed simultaneously and under identical conditions as a sample under
study for the purpose of comparison
3.2.8
service life prediction
generic methodology which, for a particular or any appropriate performance requirement, facilitates a prediction of
the service life distribution of a building or its parts for the use in a particular or in any appropriate environment
3.2.9
short-term exposure
ageing exposure with a duration considerably shorter than the service life anticipated
NOTE A term sometimes used and related to this type of exposure programme is “predictive service life test”. A predictive
service life test is a combination of a specifically designed short-term exposure and a performance evaluation procedure.
2 © ISO 2001 – All rights reserved
3.3 Environment and environmental characterization
3.3.1
agent intensity
measure of the extent to or level at which an agent is present
NOTE In this part of ISO 15686 the term “agent intensity” refers figuratively to any quantity that meets the requirements for
a measure as specified in the definition above, i.e. not only to UV radiation and rain intensity, etc., but also to relative humidity,
SO concentration, freeze-thaw rate and mechanical pressure, etc.
3.3.2
building context
description of a building and its parts in terms of influences from design, service environment and usage
3.3.3
dose
agent dose
mean of the agent intensity during a time period multiplied by the length of this time period
3.3.4
dose-response function
function that relates the dose(s) of a degradation agent to a degradation indicator
3.3.5
in-use condition
environmental condition under normal use
3.4 Acts and actors
3.4.1
commissioned specialist
person or organization capable of conducting a service life prediction study
3.4.2
commissioning client
person or organization that orders the service life prediction study
4 Abbreviated terms
ESLC estimated service life of a component
PSLDC predicted service life distribution of a component
PSLC predicted service life of a component
RSLC reference service life of a component
SLP service life prediction
5 Methodology
5.1 Brief description of SLP
The methodology described is intended to be generic and aims, for a particular or any appropriate set of
performance requirements, to facilitate an SLP of any kind of building components for the use in a particular or
range of in-service environment.
NOTE In practice an SLP is usually restricted to cover a few typical service environments or a single reference environment
complemented by an analysis on the sensitivity of intensity variations of degradation agents.
The term “prediction” of an SLP study refers to one of four ways, or any combinations of these, to assess the
service life, as follows:
� speeding-up of the time dimension (at accelerated short-term exposures);
� interpolation/extrapolation using data of similar components;
� interpolation/extrapolation using data from similar service environments;
� extrapolation in the time dimension (at short-term in-use exposures).
The systematic approach or methodology for SLP of building components described includes the identification of
needed information, the selection or development of test procedures (exposure programmes and evaluation
methods), testing (exposure and evaluation), interpretation of data, and reporting of results. The essential steps in
an SLP process are outlined in Figure 1. The methodology employs an iterative research or decision-making
process which permits improved predictions to be made as the base of knowledge grows, as illustrated by the
outermost loop in Figure 1. It is often not necessary to perform every step, for instance the pretesting procedure
can often be excluded or shortened due to already available knowledge of the component under study. While not
illustrated, sub-loops between steps within a cycle may be necessary. In any case, it is of the greatest importance
to account for all assumptions and judgements made.
Normally the service life for a particular set of performance requirements is not predicted as a single value – a
PSLC. Instead a predicted service life distribution of a component (PSLDC) is determined. The PSLDC is described
by at least two parameters, the expectation value and the standard deviation. For very costly tests, however, the
aim may be limited to find a PSLC only.
SeealsoA.1.1.
5.2 Connection to ISO 15686-1
This part of ISO 15686 refers to ISO 15686-1 and aims, in this context, to describe a tool to achieve a reference
service life of the component (RSLC) as accurately as possible (or, alternatively, to achieve a forecast service life
directly). An RSLC is required when an estimated service life of the component (ESLC) for a specific design object
is to be assessed in accordance with the factor method as described in ISO 15686-1. Thus, the RSLC can be
obtained from the PSLDC as established in accordance with this part of ISO 15686. The condition at which the
PSLDC has been established then becomes the reference condition, which is compared to the specific condition
prevailing at the design object in order to estimate the factors of the factor method.
The choice of the single value RSLC from the distribution established depends on the safety margin required for
the component. For replaceable, non-structural components, in most cases the expectation value (i.e. the mean)
PSLC of the distribution could be employed as the RSLC. However, requirements on scheduled maintenance
plans, interlocking with other replaceable components or other circumstances, may suggest a more conservative
choice. For non-replaceable and/or structural components, for which a safety margin is required, a more, and
frequently a significantly more conservative choice has to be made. In such cases, though, normally the safety
margin is directly or indirectly regulated by standards or codes specifically applicable for the component.
4 © ISO 2001 – All rights reserved
Figure 1 — Systematic methodology for SLP of building components
When the SLP utilized to obtain the RSLC for the specific design object has been carried out under various
conditions, the PSLDC obtained under the condition which deviates the least from the specific condition is used for
that purpose. An SLP carried out under various conditions also implies a means to estimate factors of the factor
method, in most cases particularly the one taking into account the difference between the specific and the
reference outdoor environment. This can be accomplished by interpolation/extrapolation techniques.
6 Methodological framework
6.1 Range of SLP and problem definition
6.1.1 General
Initially, the problem to be solved shall be defined and the range of the study established, including identification or
specification of essential data.
NOTE These issues may vary from case to case depending on the aim and ambition of the SLP and on the level of existing
knowledge of the component.
Two extreme ranges are as follows.
a) Specific study: this is intended to focus on a rather specific application of the component tested in terms of
service environment and usage with a specified set of performance requirements. The aim is to establish the
PSLDC (or PSLC) and determine the sensitivity of the PSLDC (or PSLC) on moderate variations from these
presumptions.
b) General study: this is intended to cover a broad application of the component tested in terms of service
environment and usage with an unspecified or a loosely specified set of performance requirements. The aim is
to establish performance-over-time functions for the performance characteristics chosen in the whole range of
applications.
6.1.2 Definition of a specific study
6.1.2.1 Identification of service environment and usage
A reference building context (see ISO 6241 and CIB Master List) shall be identified according to the information
given on the specific case. This shall account for the specific use of the component, covering the design
consequences, and comprise a description of the environment, including static and dynamic mechanical stress, at
the site where a building is planned to be located. A description on the effects of occupancy (such as water vapour,
heat or abrasion) and the principles on which the building is operated (e.g. high or low thermal inertia) shall also be
included if appropriate.
6.1.2.2 Quantification of the set of performance requirements
The set of performance characteristics shall be identified and the corresponding requirements quantified according
to critical properties specified.
NOTE This may take the form, for example, of a failure mode and effect analysis (FMEA).
The set of performance requirements shall conform to the information obtained in accordance with 6.1.2.1.
6.1.3 Definition of a general study
6.1.3.1 Specification of ranges of service environment and usage
All types of environments where the component is intended to be used or being within the range of the study shall
be specified, including static and dynamic mechanical stress.
The various types of environments may be grouped into a discrete number of classes, each class being
representative for certain ranges of agent intensities.
Care shall be taken regarding the effect of various usages and positions of the component, as this can strongly
govern the in-use conditions and possible synergistic effects of the degradation agents (see 6.2.3).
6 © ISO 2001 – All rights reserved
NOTE The actual in-use condition relevant to materials degradation is the microenvironment, i.e. the prevailing
environmental condition in a layer adjacent to or at a component surface (e.g. pollutant concentration and driving rain), and
within the component (e.g. mechanical stress).
6.1.3.2 Quantification of the set of performance requirements
First, a set of performance characteristics shall be identified from critical properties specified. Next, in order to limit
the performance range to be covered by the service life analysis, the set of the lowest appropriate performance
requirements for the component shall be quantified.
NOTE The set of performance requirements can include specifications on, for example, strength, optical transmission,
acoustical insulation and æsthetical qualities.
The performance requirements shall conform to the information obtained in accordance with 6.1.3.1.
6.1.4 Characterization of the component
The component to be evaluated shall be characterized as thoroughly as relevant in terms of structure, physical
properties and chemical composition.
6.1.5 Critical review considerations
Critical review is a technique to verify whether or not an SLP study has met the requirements in this part of
ISO 15686 of methodology and reporting. Whether, how and by whom the critical review is to be conducted shall
be planned and confirmed when defining the study.
A critical review of an SLP shall be conducted where the results are to be disclosed to the public.
For other applications, for example for company-internal product development, critical review may be omitted.
The process of critical reviewing is described in clause 7.
6.2 Preparation
6.2.1 General
After the range of the study has been defined, in accordance with 6.1, degradation agents, possible degradation
mechanisms and how degradation can be accelerated or induced within ageing exposure programmes shall be
identified and postulated.
6.2.2 Identification of degradation agents and their intensities
The type and intensity distribution of the expected degradation agents based on the knowledge as compiled in
accordance with 6.1.2.1 or 6.1.3.1 shall be identified.
NOTE 1 It can be difficult to quantify the in-use intensity of biological agents and agents originating from the occupancy, but
upper limits within the normal range can usually be established by professional judgement.
One or several reference environments shall be considered, the number depending on the range of the study. A list
of relevant degradation agents is presented in Table 1.
NOTE 2 The agents are classified according to their nature. In general, external to the building the origin of the agents is
either the atmosphere or the ground, whereas internal to the building the origin is related to occupancy or design and
installations. However, although not stated in ISO 6241, an agent acting externally while originating as a design consequence
can also occur, for instance from an incompatible neighbouring component. Furthermore, the influence of agents originating
from the atmosphere to internal degradation should not be disregarded.
a
Table 1 — Degradation agents affecting the service life of building components
Nature Class
Mechanical agents Gravitation
Forces and imposed or restrained deformations
Kinetic energy
Vibrations and noises
Electromagnetic agents Radiation
Electricity
Magnetism
Thermal agents Extreme levels or fast alterations of temperature
Chemical agents Water and solvents
Oxidizing agents
Reducing agents
Acids
Bases
Salts
Chemically neutral
Biological agents Vegetable and microbial
Animal
a
Condensed from ISO 6241:1984, Table 4.
SeealsoA.2.1.1to A.2.1.3.
6.2.3 Agents related to occupancy and significance of installation and maintenance practices
Although agents related to occupancy are not often included in ageing exposure programmes, as they can affect
the service life of building components, they shall be evaluated if deemed critical. Such a measure should be
carried out either by means of inspection of buildings or in-use exposure, or both; see 6.4.3.3 and 6.4.3.5,
respectively.
NOTE However, abuse is usually considered beyond the scope of test methods.
Normally, installation and possible maintenance undertaken for samples of the ageing exposure programme should
follow practices recommended by the manufacturer or good practice if such are not given.
Evaluation of effects imposed by variations in installation and maintenance procedures may be included as a part
of the study.
It is of crucial importance not to exaggerate any maintenance procedure, which may lead to erroneous PSLC
compared to real use.
6.2.4 Identification of possible degradation mechanisms
All possible mechanisms by which the identified degradation agents are known or believed to induce changes in
the properties of the component shall be identified.
8 © ISO 2001 – All rights reserved
NOTE The mechanisms can be identified at various levels. If, for instance, the chemistry of the component is well
documented, it may be possible to identify mechanisms based upon specific chemical reactions, such as hydrolysis and photo-
oxidation. If less is known about the chemical, mechanical, physical and biological reactions of the component, mechanisms
may be defined in more general terms as, for example, thermal decomposition, volatilization of constituents, constituent
diffusion, corrosion, fatigue, wear, shrinking/swelling and rotting. See also A.2.1.4.
6.2.5 Identification of possible effects of degradation
Possible effects of degradation on performance characteristics of the component shall be identified on the basis of
data obtained in accordance with 6.2.2 and 6.2.4.
6.2.6 Choice of performance characteristics and performance evaluation techniques
The critical properties, corresponding to the set of performance requirements quantified in accordance with 6.1.2.2
or 6.1.3.2, shall be interpreted in terms of any of the performance characteristics found to be afflicted with
degradation in accordance with 6.2.5.
For each of the performance characteristics selected, appropriate measurement and/or inspection techniques shall
be chosen. To be able to perform an SLP in accordance with this part of ISO 15686, quantitative data shall be
obtained. The initial values of performance characteristics selected shall be determined before the ageing exposure
programme starts. (See also A.2.1.5.)
6.2.7 Feedback from other studies
Information from other studies, concluded or running, should always be sought.
NOTE Useful information can come from general knowledge of similar components, measurement techniques and
exposure programme design to detailed data on performance-over-time functions of cases closely related to the case to be
studied. In the latter case, in favourable circumstances, this can reduce the test volume and range required and/or reduce the
test period considerably.
6.2.8 Postulations regarding ageing exposure programmes
With the information obtained in accordance with 6.2.2 to 6.2.7, postulations shall be made regarding specific
procedures for inducing the identified mechanisms of degradation using the degradation agents identified.
When accelerated short-term exposure is used, care shall be taken to ensure that extreme intensity levels of
degradation agents do not result in degradation mechanisms that would not be experienced in service.
NOTE The postulations that are made in this step lay the groundwork for selecting or designing preliminary exposure
programmes.
6.3 Pretesting
6.3.1 General
Pretesting shall be based upon the postulates made in accordance with 6.2.8. A pretest shall provide for the
selected performance characteristics to be evaluated before and after exposure to the degradation agents to which
the component will be exposed in service, or at least to all degradation agents suspected to be of any significance.
This shall, when properly performed
� establish the primary degradation agents and their order of importance,
� support or rule out the previously identified mechanisms by which property changes occur,
� establish the agent intensity levels needed to induce property changes and demonstrate how rapid changes in
the selected performance characteristics can be induced by exposure to extreme intensities,
� contribute to a better understanding of the nature of the primary degradation agents leading to property
changes and indicate additional or substitutional property changes that are likely to be relevant and useful as
performance characteristics, and
� verify the adaptability of the measurement and inspection techniques chosen for the performance evaluation.
SeealsoA.2.2
6.3.2 Intensities of degradation agents employed in pretests
Intensities shall be levelled in relation to the quantitative in-use distributions or ranges identified in accordance with
6.2.2.
EXAMPLE Weather and climatological data for the most extreme climates in which the component will be used can form
the basis for the choice of intensities of these agents in the pretests.
6.4 Ageing exposure programmes
6.4.1 General
The full exposure programme shall be carefully designed so as to provide data required in accordance with the
range and aim of the study, considering the information and data obtained by the procedures described above.
Although evident from the definitions of agent (see ISO 15686-1:2000, 3.10) and ageing exposure (see 3.2.2), it
should be emphasized that ageing exposure in this context should be regarded in a broad sense, i.e. ageing
exposure refers to any kind of set-up when samples are subjected to degradation agents according to Table 1. For
instance, when applying mechanical loads, samples are exposed to mechanical agents.
6.4.2 Design and performance of exposure programmes
As component properties and environmental characteristics are stochastic variables, i.e. they are represented by
statistical distributions, the exposure programme, irrespective of the type, shall be designed, if feasible, to comprise
a multiplicity of specimens or test objects, enabling a statistical treatment of test data.
This may be difficult to follow in some cases when dealing with experimental building and in-use-exposure, see
6.4.3.4 and 6.4.3.5, respectively, or when tests are very costly. In such cases distribution widths or ranges should,
if possible, be estimated from other sources of information.
For all kind of exposure programmes, the conditions shall be recorded continuously or at sufficiently short intervals,
for the following reasons (partially depending on the type of exposure programme):
� to enable establishment of performance-over-time or dose-response functions, see A.2.4.2 and A.2.4.3;
� to provide a relationship between different exposure periods and sites (for exposure programmes with
uncontrolled conditions); see 6.4.3.2 a) and b);
� to check that the actual environmental conditions are representative for the environmental type (for exposure
programmes with uncontrolled conditions);
� to verify that the intended degradation agent intensities are achieved (for exposure programmes with
controlled conditions).
NOTE 1 The sources of recording may vary from official environmental data bases to detailed measurements of degradation
agent intensities at or in the vicinity of the test samples.
NOTE 2 In the field of environmental characterization a strong development occurs, e.g. towards standardized measurement
techniques and improved dispersion models, hosted in GIS (Geographical Information Systems) software environments,
facilitating mapping of environmental data from meso/local levels to micro levels.
10 © ISO 2001 – All rights reserved
6.4.3 Long-term exposures
6.4.3.1 Range and type
The exposure programme shall either consist of an actual in-use exposure of a complete system in which feedback
information on the performance of the components included is obtained over time, or involve exposure of selected
components. An exposure programme shall be designed so that all agents of importance are considered.
Even for a specific study, the exposure should preferably take place in more than one type of service environment.
The different ways of generating data from long-term exposures are described in the following four categories:
� field exposure, see 6.4.3.2;
� inspection of buildings, see 6.4.3.3;
� exposure in experimental buildings, see 6.4.3.4;
� in-use exposure, see 6.4.3.5.
6.4.3.2 Field exposure
Standardized ways of performing atmospheric field exposures have been in operation for some time, see A.2.3.1.1.
It is essential to note that
a) the results of a field exposure relate to the specific exposure site and that the transformation of data to relate
to another geographic location requires knowledge of performance-over-time or dose-response and
environmental characteristics,
b) care should be taken when drawing conclusions from one exposure period to another, especially if the time of
exposure is short, and
c) exposing component samples to the environment may be regarded as an accelerated exposure (for instance
at exposure racks with inclination 45� and directed towards the sun) with the degree of acceleration varying
with the type of component under exposure.
6.4.3.3 Inspection of buildings
The service life of building components may be evaluated through inspection of buildings. As many buildings as
feasible should be included in the study by means of statistical sampling methods.
SeealsoA.2.3.1.2.
6.4.3.4 Exposure in experimental buildings
Durability evaluations of building components may be carried out by exposing the component in dedicated
experimental test buildings.
Similar difficulties may apply as outlined under field exposure, see 6.4.3.2.
SeealsoA.2.3.1.3.
6.4.3.5 In-use exposure
In-use exposure is an intentional use of a component in a full-scale building or structure under normal use, in order
to evaluate the service life of the component.
SeealsoA.2.3.1.4.
6.4.4 Short-term exposures
6.4.4.1 Accelerated short-term exposures
Accelerated short-term exposures should normally be designed from information obtained in pretests and/or from
long-term exposure of the same or similar components. In general the intensity of agents in these exposure
programmes should be less than in pretests to reduce the likelihood of causing degradation by mechanisms that
are not encountered in service. The properties measured before and after ageing shall be those that have been
identified as most useful or most important for indicating degradation. The possibility of synergistic effects between
degradation agents shall be considered.
It shall be confirmed that degradation mechanisms and the relative reaction rates induced by accelerated short-
term exposures are the same or at least similar to those observed in service.
SeealsoA.2.3.2.
6.4.4.2 Short-term in-use exposures
Short-term exposures are usually, but not always, based upon accelerated ageing. In cases when property
changes leading to degradation can be detected at early stages (typically by means of high-sensitive surface
analysis instruments), an exposure set-up employing in-use conditions, i.e. designs similar to those for long-term
exposures, can be utilized.
6.4.5 Performance evaluation
6.4.5.1 Evaluation scheme
During exposure the performance shall be evaluated in terms of the selected performance characteristics by means
of the measurement and inspection techniques chosen, see 6.2.6. The evaluation shall take place at sufficiently
narrow intervals, in accordance with the range and aim of the study. In order to verify that the degradation
mechanisms do not change with time of exposure, the exposure programme shall permit the most important
degradation mechanisms to be identified in a relatively short period of time.
The exposure shall, except for a short-term in-use exposure, be run such that at least one of the performance
characteristics, i.e. the one corresponding to the terminal critical property, retained at the end of exposure has
declined to a level equal to or below the corresponding performance requirement for a statistically satisfactory
number of samples.
SeealsoA.2.3.3.
6.4.5.2 Comparison of types of degradation
The types and range of degradation obtained from accelerated short-term exposures shall be compared with those
from in-use conditions. If mechanisms are induced, not being representative of those obtained under the in-use
conditions, the ageing exposure programmes shall be altered after reassessing the information obtained in
accordance with 6.1 to 6.3.
6.5 Analysis and interpretation
Degradation models in terms of the PSLDC (or PSLC) shall be established by processing the results of the
performance evaluations carried out at various ageing exposure programmes (long-term exposures, short-term
exposures or combinations thereof) in two or three steps.
a) From performance evaluation data, performance-over-time functions or dose-response functions for the
exposure conditions employed are established.
b) If the exposure conditions employed do not cover all exposure conditions in which the component is to be
assessed, by synthesizing, modelling and/or interpolating/extrapolating the performance-over-time or dose-
12 © ISO 2001 – All rights reserved
---------------------- Pag
...
INTERNATIONAL ISO
STANDARD 15686-2
First edition
2001-03-01
Buildings and constructed assets —
Service life planning —
Part 2:
Service life prediction procedures
Bâtiments et biens immobiliers construits — Prévision de la durée de vie —
Partie 2: Procédures pour la prévision de la durée de vie
Reference number
©
ISO 2001
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 2001 – All rights reserved
Contents Page
Foreword.iv
Introduction.v
1 Scope .1
2 Normative references .1
3 Terms and definitions .1
3.1 Service life and performance.1
3.2 Service life forecasting .2
3.3 Environment and environmental characterization.3
3.4 Acts and actors.3
4 Abbreviated terms .3
5 Methodology.4
5.1 Brief description of SLP.4
5.2 Connection to ISO 15686-1 .4
6 Methodological framework .6
6.1 Range of SLP and problem definition.6
6.2 Preparation.7
6.3 Pretesting .9
6.4 Ageing exposure programmes.10
6.5 Analysis and interpretation .12
7 Critical review.13
7.1 General description of critical review.13
7.2 Need and requirements for critical review .13
7.3 Process of critical review.13
8 Reporting.14
Annex A (informative) Guidance on process of SLP.16
Bibliography.23
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this part of ISO 15686 may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
International Standard ISO 15686-2 was prepared by Technical Committee ISO/TC 59, Building construction,
Subcommittee SC 14, Design life.
ISO 15686 consists of the following parts, under the general title Buildings and constructed assets — Service life
planning:
� Part 1: General principles
� Part 2: Service life prediction procedures
� Part 3: Performance audits and reviews
� Part 4: Data requirements
� Part 5: Life cycle costing
� Part 6: Life cycle assessment
Annex A of this part of ISO 15686 is for information only.
iv © ISO 2001 – All rights reserved
Introduction
The ISO 15686 series on “Buildings and constructed assets — Service life planning” is an essential contribution to
the development of a policy for design life. A major impetus for the preparation of the ISO 15686 series is the
current concern over the industry’s inability to predict costs of ownership and maintenance of buildings. A
secondary objective of service life planning is to reduce the likelihood of obsolescence and/or to maximize the
reuse value of the obsolete building components.
The purpose of this part of ISO 15686 is to describe the principles for service life predictions (SLPs) of building
components, considering various service environments. The SLP methodology is developed to be generic, i.e.
applicable to all types of building components, and is meant to serve as a guide to all kinds of prediction processes.
The methodology may be used in the planning of SLP studies regarding new and innovative components of which
the knowledge of their performance is limited, or be the guiding document in the assessment of already performed
investigations in order to appraise their value as knowledge bases for SLP and reveal where complimentary studies
are necessary.
This part of ISO 15686 is intended primarily for
� manufacturers who may wish to provide data on performance in use of their products,
� test houses, technical approval organizations, etc., and
� those who develop or draft product standards.
While this part of ISO 15686 could be used as a stand-alone document, for an improved understanding of its
context it is recommended to read the other parts of ISO 15686, in particular ISO 15686-1, which is the umbrella
document of the ISO 15686 series.
Data obtained in accordance with the methodology described in this part of ISO 15686 can be used in any context
where appropriate, and specifically to obtain a forecast service life for a specific object via the factor method (or
directly), as described in ISO 15686-1. The factor method aims to find an estimated service life of a component
(ESLC) in the specific planning case, taking all case-specific conditions affecting the service life into consideration.
Accordingly, this part of ISO 15686 interfaces with ISO 15686-1 as a crucial means of attaining the knowledge
necessary for the service life planning process as described in ISO 15686-1.
This part of ISO 15686 will also interface with ISO 15686-4, which will specify in detail the way SLP data are
formatted, stored and presented.
The SLP methodology does not cover estimation of service life limited by obsolescence or other non-measurable or
unpredictable performance states. The methodology also does not cover prediction of the economic service life, but
will yield data needed as input for such evaluations.
Predictions can be based on evidence from previous use, on comparisons with the known service life of similar
components, on tests of degradation in specific conditions or on a combination of these. Ideally a prediction will be
given in terms of the service life as a function of the in-use condition. In any case, the dependence of the service
life on the in-use condition will be quantified in a suitable way. The reliability of the predicted service life of a
component (PSLC) will depend on the evidence it is based on.
The methods described in the ISO 15686 series are based on work carried out in many countries. In general terms
they are a development of the current standards on durability published by the Architectural Institute of Japan, the
British Standards Institution and the Canadian Standards Authority. Specifically, this part of ISO 15686 is an
extension and modification of the RILEM recommendation 64, “Systematic Methodology for Service Life
1) 2)
Prediction”, developed by RILEM TC 71-PSL and TC 100-TSL working jointly with CIB W80.
1) The International Union of Testing and Research Laboratories for Materials and Structures.
2) International Council for Building Research, Studies and Documentation.
vi © ISO 2001 – All rights reserved
INTERNATIONAL STANDARD ISO 15686-2:2001(E)
Buildings and constructed assets — Service life planning —
Part 2:
Service life prediction procedures
1 Scope
This part of ISO 15686 describes procedures that facilitate service life predictions of building components. It
provides a general framework, principles and requirements for conducting and reporting such studies. This part of
ISO 15686 does not describe the techniques of service life prediction of building components in detail.
2 Normative references
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this part of ISO 15686. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO 15686 are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.
ISO 6241:1984, Performance standards in building — Principles for their preparation and factors to be considered.
ISO 6707-1:1989, Building and civil engineering — Vocabulary — Part 1: General terms.
ISO 15686-1:2000, Buildings and constructed assets — Service life planning — Part 1: General principles.
3 Terms and definitions
For the purposes of this part of ISO 15686, the terms and definitions given in ISO 6707-1 and ISO 15686-1 and the
following apply. The terms are ordered by concepts for the assistance of users of this part of ISO 15686.
3.1 Service life and performance
3.1.1
ageing
degradation due to long-term influence of agents related to use
3.1.2
degradation indicator
deficiency which shows when a performance characteristic fails to meet a requirement
EXAMPLE When gloss is a performance characteristic, gloss loss is the corresponding degradation indicator. When mass
(or thickness) is a performance characteristic, mass loss is the corresponding degradation indicator.
3.1.3
terminal critical property
in an established set of critical properties for a building or a part, the critical property that first fails to maintain the
corresponding performance requirement when subjected to exposure in a particular service environment
3.1.4
performance characteristic
quantity that is a measure of a critical property, or a magnitude of that quantity
EXAMPLE A performance characteristic can be the same as the critical property, for instance gloss. On the other hand, if
the critical property is strength, thickness or mass may in certain cases be utilized as a performance characteristic.
3.2 Service life forecasting
3.2.1
accelerated short-term exposure
short-term exposure in which the intensity of the agents is raised above the levels expected in service
3.2.2
ageing exposure
procedure in which a building product is exposed to agents believed or known to cause degradation for the purpose
of service life prediction (or comparison of relative performance)
3.2.3
control sample
sample retained in an environment that is believed or known not to induce degradation for the purpose of
comparison between exposed and non-exposed samples
3.2.4
feedback from practice
inspection of buildings
performance evaluation or assessment of residual service life of building parts in actual buildings
3.2.5
long-term exposure
ageing exposure under in-use conditions and with a duration of the same order as the service life
3.2.6
predicted service life distribution
probability distribution function of the predicted service life
3.2.7
reference sample
sample of known performance which are exposed simultaneously and under identical conditions as a sample under
study for the purpose of comparison
3.2.8
service life prediction
generic methodology which, for a particular or any appropriate performance requirement, facilitates a prediction of
the service life distribution of a building or its parts for the use in a particular or in any appropriate environment
3.2.9
short-term exposure
ageing exposure with a duration considerably shorter than the service life anticipated
NOTE A term sometimes used and related to this type of exposure programme is “predictive service life test”. A predictive
service life test is a combination of a specifically designed short-term exposure and a performance evaluation procedure.
2 © ISO 2001 – All rights reserved
3.3 Environment and environmental characterization
3.3.1
agent intensity
measure of the extent to or level at which an agent is present
NOTE In this part of ISO 15686 the term “agent intensity” refers figuratively to any quantity that meets the requirements for
a measure as specified in the definition above, i.e. not only to UV radiation and rain intensity, etc., but also to relative humidity,
SO concentration, freeze-thaw rate and mechanical pressure, etc.
3.3.2
building context
description of a building and its parts in terms of influences from design, service environment and usage
3.3.3
dose
agent dose
mean of the agent intensity during a time period multiplied by the length of this time period
3.3.4
dose-response function
function that relates the dose(s) of a degradation agent to a degradation indicator
3.3.5
in-use condition
environmental condition under normal use
3.4 Acts and actors
3.4.1
commissioned specialist
person or organization capable of conducting a service life prediction study
3.4.2
commissioning client
person or organization that orders the service life prediction study
4 Abbreviated terms
ESLC estimated service life of a component
PSLDC predicted service life distribution of a component
PSLC predicted service life of a component
RSLC reference service life of a component
SLP service life prediction
5 Methodology
5.1 Brief description of SLP
The methodology described is intended to be generic and aims, for a particular or any appropriate set of
performance requirements, to facilitate an SLP of any kind of building components for the use in a particular or
range of in-service environment.
NOTE In practice an SLP is usually restricted to cover a few typical service environments or a single reference environment
complemented by an analysis on the sensitivity of intensity variations of degradation agents.
The term “prediction” of an SLP study refers to one of four ways, or any combinations of these, to assess the
service life, as follows:
� speeding-up of the time dimension (at accelerated short-term exposures);
� interpolation/extrapolation using data of similar components;
� interpolation/extrapolation using data from similar service environments;
� extrapolation in the time dimension (at short-term in-use exposures).
The systematic approach or methodology for SLP of building components described includes the identification of
needed information, the selection or development of test procedures (exposure programmes and evaluation
methods), testing (exposure and evaluation), interpretation of data, and reporting of results. The essential steps in
an SLP process are outlined in Figure 1. The methodology employs an iterative research or decision-making
process which permits improved predictions to be made as the base of knowledge grows, as illustrated by the
outermost loop in Figure 1. It is often not necessary to perform every step, for instance the pretesting procedure
can often be excluded or shortened due to already available knowledge of the component under study. While not
illustrated, sub-loops between steps within a cycle may be necessary. In any case, it is of the greatest importance
to account for all assumptions and judgements made.
Normally the service life for a particular set of performance requirements is not predicted as a single value – a
PSLC. Instead a predicted service life distribution of a component (PSLDC) is determined. The PSLDC is described
by at least two parameters, the expectation value and the standard deviation. For very costly tests, however, the
aim may be limited to find a PSLC only.
SeealsoA.1.1.
5.2 Connection to ISO 15686-1
This part of ISO 15686 refers to ISO 15686-1 and aims, in this context, to describe a tool to achieve a reference
service life of the component (RSLC) as accurately as possible (or, alternatively, to achieve a forecast service life
directly). An RSLC is required when an estimated service life of the component (ESLC) for a specific design object
is to be assessed in accordance with the factor method as described in ISO 15686-1. Thus, the RSLC can be
obtained from the PSLDC as established in accordance with this part of ISO 15686. The condition at which the
PSLDC has been established then becomes the reference condition, which is compared to the specific condition
prevailing at the design object in order to estimate the factors of the factor method.
The choice of the single value RSLC from the distribution established depends on the safety margin required for
the component. For replaceable, non-structural components, in most cases the expectation value (i.e. the mean)
PSLC of the distribution could be employed as the RSLC. However, requirements on scheduled maintenance
plans, interlocking with other replaceable components or other circumstances, may suggest a more conservative
choice. For non-replaceable and/or structural components, for which a safety margin is required, a more, and
frequently a significantly more conservative choice has to be made. In such cases, though, normally the safety
margin is directly or indirectly regulated by standards or codes specifically applicable for the component.
4 © ISO 2001 – All rights reserved
Figure 1 — Systematic methodology for SLP of building components
When the SLP utilized to obtain the RSLC for the specific design object has been carried out under various
conditions, the PSLDC obtained under the condition which deviates the least from the specific condition is used for
that purpose. An SLP carried out under various conditions also implies a means to estimate factors of the factor
method, in most cases particularly the one taking into account the difference between the specific and the
reference outdoor environment. This can be accomplished by interpolation/extrapolation techniques.
6 Methodological framework
6.1 Range of SLP and problem definition
6.1.1 General
Initially, the problem to be solved shall be defined and the range of the study established, including identification or
specification of essential data.
NOTE These issues may vary from case to case depending on the aim and ambition of the SLP and on the level of existing
knowledge of the component.
Two extreme ranges are as follows.
a) Specific study: this is intended to focus on a rather specific application of the component tested in terms of
service environment and usage with a specified set of performance requirements. The aim is to establish the
PSLDC (or PSLC) and determine the sensitivity of the PSLDC (or PSLC) on moderate variations from these
presumptions.
b) General study: this is intended to cover a broad application of the component tested in terms of service
environment and usage with an unspecified or a loosely specified set of performance requirements. The aim is
to establish performance-over-time functions for the performance characteristics chosen in the whole range of
applications.
6.1.2 Definition of a specific study
6.1.2.1 Identification of service environment and usage
A reference building context (see ISO 6241 and CIB Master List) shall be identified according to the information
given on the specific case. This shall account for the specific use of the component, covering the design
consequences, and comprise a description of the environment, including static and dynamic mechanical stress, at
the site where a building is planned to be located. A description on the effects of occupancy (such as water vapour,
heat or abrasion) and the principles on which the building is operated (e.g. high or low thermal inertia) shall also be
included if appropriate.
6.1.2.2 Quantification of the set of performance requirements
The set of performance characteristics shall be identified and the corresponding requirements quantified according
to critical properties specified.
NOTE This may take the form, for example, of a failure mode and effect analysis (FMEA).
The set of performance requirements shall conform to the information obtained in accordance with 6.1.2.1.
6.1.3 Definition of a general study
6.1.3.1 Specification of ranges of service environment and usage
All types of environments where the component is intended to be used or being within the range of the study shall
be specified, including static and dynamic mechanical stress.
The various types of environments may be grouped into a discrete number of classes, each class being
representative for certain ranges of agent intensities.
Care shall be taken regarding the effect of various usages and positions of the component, as this can strongly
govern the in-use conditions and possible synergistic effects of the degradation agents (see 6.2.3).
6 © ISO 2001 – All rights reserved
NOTE The actual in-use condition relevant to materials degradation is the microenvironment, i.e. the prevailing
environmental condition in a layer adjacent to or at a component surface (e.g. pollutant concentration and driving rain), and
within the component (e.g. mechanical stress).
6.1.3.2 Quantification of the set of performance requirements
First, a set of performance characteristics shall be identified from critical properties specified. Next, in order to limit
the performance range to be covered by the service life analysis, the set of the lowest appropriate performance
requirements for the component shall be quantified.
NOTE The set of performance requirements can include specifications on, for example, strength, optical transmission,
acoustical insulation and æsthetical qualities.
The performance requirements shall conform to the information obtained in accordance with 6.1.3.1.
6.1.4 Characterization of the component
The component to be evaluated shall be characterized as thoroughly as relevant in terms of structure, physical
properties and chemical composition.
6.1.5 Critical review considerations
Critical review is a technique to verify whether or not an SLP study has met the requirements in this part of
ISO 15686 of methodology and reporting. Whether, how and by whom the critical review is to be conducted shall
be planned and confirmed when defining the study.
A critical review of an SLP shall be conducted where the results are to be disclosed to the public.
For other applications, for example for company-internal product development, critical review may be omitted.
The process of critical reviewing is described in clause 7.
6.2 Preparation
6.2.1 General
After the range of the study has been defined, in accordance with 6.1, degradation agents, possible degradation
mechanisms and how degradation can be accelerated or induced within ageing exposure programmes shall be
identified and postulated.
6.2.2 Identification of degradation agents and their intensities
The type and intensity distribution of the expected degradation agents based on the knowledge as compiled in
accordance with 6.1.2.1 or 6.1.3.1 shall be identified.
NOTE 1 It can be difficult to quantify the in-use intensity of biological agents and agents originating from the occupancy, but
upper limits within the normal range can usually be established by professional judgement.
One or several reference environments shall be considered, the number depending on the range of the study. A list
of relevant degradation agents is presented in Table 1.
NOTE 2 The agents are classified according to their nature. In general, external to the building the origin of the agents is
either the atmosphere or the ground, whereas internal to the building the origin is related to occupancy or design and
installations. However, although not stated in ISO 6241, an agent acting externally while originating as a design consequence
can also occur, for instance from an incompatible neighbouring component. Furthermore, the influence of agents originating
from the atmosphere to internal degradation should not be disregarded.
a
Table 1 — Degradation agents affecting the service life of building components
Nature Class
Mechanical agents Gravitation
Forces and imposed or restrained deformations
Kinetic energy
Vibrations and noises
Electromagnetic agents Radiation
Electricity
Magnetism
Thermal agents Extreme levels or fast alterations of temperature
Chemical agents Water and solvents
Oxidizing agents
Reducing agents
Acids
Bases
Salts
Chemically neutral
Biological agents Vegetable and microbial
Animal
a
Condensed from ISO 6241:1984, Table 4.
SeealsoA.2.1.1to A.2.1.3.
6.2.3 Agents related to occupancy and significance of installation and maintenance practices
Although agents related to occupancy are not often included in ageing exposure programmes, as they can affect
the service life of building components, they shall be evaluated if deemed critical. Such a measure should be
carried out either by means of inspection of buildings or in-use exposure, or both; see 6.4.3.3 and 6.4.3.5,
respectively.
NOTE However, abuse is usually considered beyond the scope of test methods.
Normally, installation and possible maintenance undertaken for samples of the ageing exposure programme should
follow practices recommended by the manufacturer or good practice if such are not given.
Evaluation of effects imposed by variations in installation and maintenance procedures may be included as a part
of the study.
It is of crucial importance not to exaggerate any maintenance procedure, which may lead to erroneous PSLC
compared to real use.
6.2.4 Identification of possible degradation mechanisms
All possible mechanisms by which the identified degradation agents are known or believed to induce changes in
the properties of the component shall be identified.
8 © ISO 2001 – All rights reserved
NOTE The mechanisms can be identified at various levels. If, for instance, the chemistry of the component is well
documented, it may be possible to identify mechanisms based upon specific chemical reactions, such as hydrolysis and photo-
oxidation. If less is known about the chemical, mechanical, physical and biological reactions of the component, mechanisms
may be defined in more general terms as, for example, thermal decomposition, volatilization of constituents, constituent
diffusion, corrosion, fatigue, wear, shrinking/swelling and rotting. See also A.2.1.4.
6.2.5 Identification of possible effects of degradation
Possible effects of degradation on performance characteristics of the component shall be identified on the basis of
data obtained in accordance with 6.2.2 and 6.2.4.
6.2.6 Choice of performance characteristics and performance evaluation techniques
The critical properties, corresponding to the set of performance requirements quantified in accordance with 6.1.2.2
or 6.1.3.2, shall be interpreted in terms of any of the performance characteristics found to be afflicted with
degradation in accordance with 6.2.5.
For each of the performance characteristics selected, appropriate measurement and/or inspection techniques shall
be chosen. To be able to perform an SLP in accordance with this part of ISO 15686, quantitative data shall be
obtained. The initial values of performance characteristics selected shall be determined before the ageing exposure
programme starts. (See also A.2.1.5.)
6.2.7 Feedback from other studies
Information from other studies, concluded or running, should always be sought.
NOTE Useful information can come from general knowledge of similar components, measurement techniques and
exposure programme design to detailed data on performance-over-time functions of cases closely related to the case to be
studied. In the latter case, in favourable circumstances, this can reduce the test volume and range required and/or reduce the
test period considerably.
6.2.8 Postulations regarding ageing exposure programmes
With the information obtained in accordance with 6.2.2 to 6.2.7, postulations shall be made regarding specific
procedures for inducing the identified mechanisms of degradation using the degradation agents identified.
When accelerated short-term exposure is used, care shall be taken to ensure that extreme intensity levels of
degradation agents do not result in degradation mechanisms that would not be experienced in service.
NOTE The postulations that are made in this step lay the groundwork for selecting or designing preliminary exposure
programmes.
6.3 Pretesting
6.3.1 General
Pretesting shall be based upon the postulates made in accordance with 6.2.8. A pretest shall provide for the
selected performance characteristics to be evaluated before and after exposure to the degradation agents to which
the component will be exposed in service, or at least to all degradation agents suspected to be of any significance.
This shall, when properly performed
� establish the primary degradation agents and their order of importance,
� support or rule out the previously identified mechanisms by which property changes occur,
� establish the agent intensity levels needed to induce property changes and demonstrate how rapid changes in
the selected performance characteristics can be induced by exposure to extreme intensities,
� contribute to a better understanding of the nature of the primary degradation agents leading to property
changes and indicate additional or substitutional property changes that are likely to be relevant and useful as
performance characteristics, and
� verify the adaptability of the measurement and inspection techniques chosen for the performance evaluation.
SeealsoA.2.2
6.3.2 Intensities of degradation agents employed in pretests
Intensities shall be levelled in relation to the quantitative in-use distributions or ranges identified in accordance with
6.2.2.
EXAMPLE Weather and climatological data for the most extreme climates in which the component will be used can form
the basis for the choice of intensities of these agents in the pretests.
6.4 Ageing exposure programmes
6.4.1 General
The full exposure programme shall be carefully designed so as to provide data required in accordance with the
range and aim of the study, considering the information and data obtained by the procedures described above.
Although evident from the definitions of agent (see ISO 15686-1:2000, 3.10) and ageing exposure (see 3.2.2), it
should be emphasized that ageing exposure in this context should be regarded in a broad sense, i.e. ageing
exposure refers to any kind of set-up when samples are subjected to degradation agents according to Table 1. For
instance, when applying mechanical loads, samples are exposed to mechanical agents.
6.4.2 Design and performance of exposure programmes
As component properties and environmental characteristics are stochastic variables, i.e. they are represented by
statistical distributions, the exposure programme, irrespective of the type, shall be designed, if feasible, to comprise
a multiplicity of specimens or test objects, enabling a statistical treatment of test data.
This may be difficult to follow in some cases when dealing with experimental building and in-use-exposure, see
6.4.3.4 and 6.4.3.5, respectively, or when tests are very costly. In such cases distribution widths or ranges should,
if possible, be estimated from other sources of information.
For all kind of exposure programmes, the conditions shall be recorded continuously or at sufficiently short intervals,
for the following reasons (partially depending on the type of exposure programme):
� to enable establishment of performance-over-time or dose-response functions, see A.2.4.2 and A.2.4.3;
� to provide a relationship between different exposure periods and sites (for exposure programmes with
uncontrolled conditions); see 6.4.3.2 a) and b);
� to check that the actual environmental conditions are representative for the environmental type (for exposure
programmes with uncontrolled conditions);
� to verify that the intended degradation agent intensities are achieved (for exposure programmes with
controlled conditions).
NOTE 1 The sources of recording may vary from official environmental data bases to detailed measurements of degradation
agent intensities at or in the vicinity of the test samples.
NOTE 2 In the field of environmental characterization a strong development occurs, e.g. towards standardized measurement
techniques and improved dispersion models, hosted in GIS (Geographical Information Systems) software environments,
facilitating mapping of environmental data from meso/local levels to micro levels.
10 © ISO 2001 – All rights reserved
6.4.3 Long-term exposures
6.4.3.1 Range and type
The exposure programme shall either consist of an actual in-use exposure of a complete system in which feedback
information on the performance of the components included is obtained over time, or involve exposure of selected
components. An exposure programme shall be designed so that all agents of importance are considered.
Even for a specific study, the exposure should preferably take place in more than one type of service environment.
The different ways of generating data from long-term exposures are described in the following four categories:
� field exposure, see 6.4.3.2;
� inspection of buildings, see 6.4.3.3;
� exposure in experimental buildings, see 6.4.3.4;
� in-use exposure, see 6.4.3.5.
6.4.3.2 Field exposure
Standardized ways of performing atmospheric field exposures have been in operation for some time, see A.2.3.1.1.
It is essential to note that
a) the results of a field exposure relate to the specific exposure site and that the transformation of data to relate
to another geographic location requires knowledge of performance-over-time or dose-response and
environmental characteristics,
b) care should be taken when drawing conclusions from one exposure period to another, especially if the time of
exposure is short, and
c) exposing component samples to the environment may be regarded as an accelerated exposure (for instance
at exposure racks with inclination 45� and directed towards the sun) with the degree of acceleration varying
with the type of component under exposure.
6.4.3.3 Inspection of buildings
The service life of building components may be evaluated through inspection of buildings. As many buildings as
feasible should be included in the study by means of statistical sampling methods.
SeealsoA.2.3.1.2.
6.4.3.4 Exposure in experimental buildings
Durability evaluations of building components may be carried out by exposing the component in dedicated
experimental test buildings.
Similar difficulties may apply as outlined under field exposure, see 6.4.3.2.
SeealsoA.2.3.1.3.
6.4.3.5 In-use exposure
In-use exposure is an intentional use of a component in a full-scale building or structure under normal use, in order
to evaluate the service life of the component.
SeealsoA.2.3.1.4.
6.4.4 Short-term exposures
6.4.4.1 Accelerated short-term exposures
Accelerated short-term exposures should normally be designed from information obtained in pretests and/or from
long-term exposure of the same or similar components. In general the intensity of agents in these exposure
programmes should be less than in pretests to reduce the likelihood of causing degradation by mechanisms that
are not encountered in service. The properties measured before and after ageing shall be those that have been
identified as most useful or most important for indicating degradation. The possibility of synergistic effects between
degradation agents shall be considered.
It shall be confirmed that degradation mechanisms and the relative reaction rates induced by accelerated short-
term exposures are the same or at least similar to those observed in service.
SeealsoA.2.3.2.
6.4.4.2 Short-term in-use exposures
Short-term exposures are usually, but not always, based upon accelerated ageing. In cases when property
changes leading to degradation can be detected at early stages (typically by means of high-sensitive surface
analysis instruments), an exposure set-up employing in-use conditions, i.e. designs similar to those for long-term
exposures, can be utilized.
6.4.5 Performance evaluation
6.4.5.1 Evaluation scheme
During exposure the performance shall be evaluated in terms of the selected performance characteristics by means
of the measurement and inspection techniques chosen, see 6.2.6. The evaluation shall take place at sufficiently
narrow intervals, in accordance with the range and aim of the study. In order to verify that the degradation
mechanisms do not change with time of exposure, the exposure programme shall permit the most important
degradation mechanisms to be identified in a relatively short period of time.
The exposure shall, except for a short-term in-use exposure, be run such that at least one of the performance
characteristics, i.e. the one corresponding to the terminal critical property, retained at the end of exposure has
declined to a level equal to or below the corresponding performance requirement for a statistically satisfactory
number of samples.
SeealsoA.2.3.3.
6.4.5.2 Comparison of types of degradation
The types and range of degradation obtained from accelerated short-term exposures shall be compared with those
from in-use conditions. If mechanisms are induced, not being representative of those obtained under the in-use
conditions, the ageing exposure programmes shall be altered after reassessing the information obtained in
accordance with 6.1 to 6.3.
6.5 Analysis and interpretation
Degradation models in terms of the PSLDC (or PSLC) shall be established by processing the results of the
performance evaluations carried out at various ageing exposure programmes (long-term exposures, short-term
exposures or combinations thereof) in two or three steps.
a) From performance evaluation data, performance-over-time functions or dose-response functions for the
exposure conditions employed are established.
b) If the exposure conditions employed do not cover all exposure conditions in which the component is to be
assessed, by synthesizing, modelling and/or interpolating/extrapolating the performance-over-time or dose-
12 © ISO 2001 – All rights reserved
response functions established in step a), a performance-over-time or dose-response function for a
hypothetical condition may be established.
c) A PSLDC (or PSLC) is resolved from performance-over-time or dose-response functions established in step a)
or b) by inserting the quantified set of performance requirements to be fulfilled by the component tested,
expressed in terms of the performance characteristics or degradation indicators employed in the exposure
programmes. The PSLDC is determined by the performance-over-time function or dose-response function of
the critical property found to be the terminal critical property. (When dealing with proper dose-response
functions the dose variable(s) is separated into time and intensity variables in order to obtain the time
dimension and, finally, the service life in an explicit form.)
Extra caution shall be taken with all extrapolations (see A.2.4.1); support from mechanisms-based models is
strongly recommended.
In addition to interpolation/extrapolation in exposure conditions, interpolation/extrapolation in time and material
properties (for similar components) may be utilized.
NOTE In a specific study (see 6.1.2), the analysis may be limited to the PSLDC (or PSLC) at the speci
...
NORME ISO
INTERNATIONALE 15686-2
Première édition
2000-03-01
Bâtiments et biens immobiliers
construits — Prévision de la durée de vie —
Partie 2:
Procédures pour la prédiction de la durée
de vie
Buildings and constructed assets — Service life planning —
Part 2: Service life prediction procedures
Numéro de référence
©
ISO 2001
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier peut
être imprimé ou visualisé, mais ne doit pas être modifiéà moins que l'ordinateur employéà cet effet ne bénéficie d'une licence autorisant
l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées acceptent de fait la
responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute responsabilité en la
matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la créationduprésent fichier PDF sont disponibles dans la rubrique General Info du
fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir l'exploitation de
ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation, veuillez en informer le
Secrétariat central à l'adresse donnée ci-dessous.
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque
forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l’ISO à
l’adresse ci-aprèsouducomité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax. + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Imprimé en Suisse
ii © ISO 2001 – Tous droits réservés
Sommaire Page
Avant-propos.iv
Introduction.v
1 Domaine d'application.1
2Références normatives .1
3Termesetdéfinitions.1
3.1 Durée de vie et performance .1
3.2 Prévision de la durée de vie .2
3.3 Environnement et caractérisation de l'environnement.3
3.4 Actions et acteurs.3
4Termesabrégés .3
5 Domaine d'application.4
5.1 Description sommaire de la SLP.4
5.2 Liaison avec l'ISO 15686-1.4
6Plantypeméthodologique.6
6.1 Plage de SLP et définition du problème.6
6.2 Préparation.7
6.3 Essais préliminaires .9
6.4 Programmes d'exposition de vieillissement.10
6.5 Analyse et interprétation.13
7Vérification .14
7.1 Description générale du processus de vérification .14
7.2 Nécessité d'une vérification et moyens nécessaires.14
7.3 Processus de vérification .14
8 Rapport .14
Annexe A (informative) Ligne directrice sur le processus de la prédiction deladurée de vie .17
Bibliographie .25
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiéeaux
comités techniques de l'ISO. Chaque comité membre intéressé par une étude aledroit de fairepartie ducomité
technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en
liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission
électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI, Partie 3.
Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour
vote. Leur publication comme Normes internationales requiert l'approbation de 75 % au moins des comités
membres votants.
L’attention est appelée sur le fait que certains des éléments delaprésente partie de l’ISO 15686 peuvent faire
l’objet de droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable de
ne pas avoir identifié de tels droits de propriété et averti de leur existence.
La Norme internationale ISO 15686-2 a étéélaborée par le comité technique ISO/TC 59, Construction immobilière,
sous-comité SC 14, Duréedevieprévue lors de la conception.
L'ISO 15686 comprend les parties suivantes, présentées sous le titre général Bâtiments et biens immobiliers
construits — Prévision de la duréedevie:
� Partie 1: Principes généraux
� Partie 2: Procédures pour la prédictiondeladuréedevie
� Partie 3: Audits et revues de performance
� Partie 4: Prescriptions relatives aux données
� Partie 5: Coûtdeladuréede vie
� Partie 6: Évaluation de la duréedevie
L’annexe A de la présente partie de l’ISO 15686 est donnée uniquement à titre d’information.
iv © ISO 2001 – Tous droits réservés
Introduction
La série de Normes internationales ISO 15686, Bâtiments et biens immobiliers construits — Prévision de la durée
de vie, est une contribution essentielle à la mise en place d'une politique de précision de duréedevie. Cette série
ISO 15686 a étéélaborée avec le souci majeur de corriger l'inaptitude des industriels à prédire les coûts de
maîtrise d'ouvrage et de maintenance des bâtiments. La prévision de la durée de vie a pour objectif secondaire de
réduire la probabilité d'obsolescence et/ou de maximiser la valeur de réutilisation des éléments obsolètes d'un
bâtiment.
La présente partie de l’ISO 15686 a pour but d'exposer les principes pour les prédictions de la duréede vie (SLPs)
des composants des bâtiments en tenant compte des divers environnements de service. La méthodologie de la
prédiction de durée de vie est mise au point pour être générique, c'est-à-dire applicable à tous les types de
composants des bâtiments et elle est destinée à servir de guide à tous les genres de processus de prédiction. Il est
permis d'utiliser la méthodologie dans le plan des travaux d'études de prédictiondeladurée de vie des nouveaux
composants novateurs dont on connaît peu les performances ou comme guide dans l'évaluation des études déjà
effectuées afin d'estimer leur valeur comme bases de connaissance pour les prédictions de la duréede vie et de
révéler les points nécessitant des études complémentaires.
La présente partie de l’ISO 15686 est principalement destinée
� aux fabricants susceptibles de vouloir fournir des données sur les performances de leurs produits en
utilisation,
� aux laboratoires d'essai, aux organismes d'évaluations techniques, etc., et
� à ceux qui développent ou rédigent des normes de produits.
Bien que la présente partie de l’ISO 15686 puisse être utilisée comme un document isolé, pour une meilleure
compréhension de son contexte, il est recommandé de se reporter aux autres parties, en particulier à
l’ISO 15686-1, qui est le document de base de la série ISO 15686.
Les données obtenues selon la méthodologie décritedans laprésente partie de l’ISO 15686 peuvent être utilisées
dans n'importe quel contexte le cas échéant et, en particulier, pour obtenir une duréedevie prévue pour un objet
particulier par l'intermédiaire de la méthode des facteurs (ou directement) comme décrit dans l’ISO 15686-1. La
méthode des facteurs vise à trouver la duréedevie estimée d'un composant (ESLC) dans le cas précis de la
prévision en tenant compte de toutes les conditions particulières au cas influant sur la duréedevie.En
conséquence, la présente partie de l’ISO 15686 s’articule avec l’ISO 15686-1 comme un moyen crucial pour
obtenir les connaissances nécessaires au processus de prévision de duréedevie comme décrit dans
l’ISO 15686-1.
La présente partie de l’ISO 15686 s'articulera également avec l'ISO 15686-4, qui spécifiera en détail la façon dont
les données de prévision de durée de vie produites doivent être formatées, stockées et présentées.
La méthodologie de prédiction deladurée de vie ne couvre pas l'estimation de la durée de vie limitée par
l'obsolescence ou d'autres états de performances non mesurables ou imprévisibles. Par ailleurs, la méthodologie
ne couvre pas la prédictionde laduréedevie économique mais elle donnera les données d'entréenécessaires
pour ces évaluations.
Des prédictions peuvent reposer sur des preuves tirées d'une utilisation antérieure, sur des comparaisons avec la
durée de vie connue de composants similaires, sur des essais de dégradation dans des conditions particulières ou
une combinaison de ces éléments. De façon idéale, il convient de donner une prédictionentermes deduréede vie
en fonction des conditions d'utilisation. En tout cas, l'influence des conditions d'usage sur la durée de vie doit être
quantifiée d'une manière appropriée. La fiabilité de la duréede vie prédite d'un composant (PSLC) dépendra de la
preuve sur laquelle elle repose.
Les méthodes décrites dans la série ISO 15686 sont basées sur les travaux réalisés dans de nombreux pays. En
termes généraux, elles constituent un développement des normes actuelles concernant la durabilité publiées par
l'Institut d'architecture du Japon, l'Institution de normalisation britannique (British Standard Institution) et
l'organisme de normalisation canadien. En particulier, la présentepartiede l’ISO 15686 est une extension et une
modification de la recommandation RILEM 64 «Méthodologie systématique pour la prédictiondeladuréede vie
1)
des matériaux et composants de bâtiment»,développéepar RILEM , TC 71-PSL et TC 100-TSL, travaillant en
2)
commun avec CIB W80.
1) Union internationale des laboratoires d'essai et de recherche pour les matériaux et les structures.
2) Conseil international pour la recherche, les études et la documentation dans la construction.
vi © ISO 2001 – Tous droits réservés
NORME INTERNATIONALE ISO 15686-2:2001(F)
Bâtiments et biens immobiliers construits — Prévision de la durée
de vie —
Partie 2:
Procédures pour la prédiction de la duréede vie
1 Domaine d'application
La présente partie de l’ISO 15686 décrit les procédures qui facilitent les prédictions de la duréedevie des
composants des bâtiments. Elle fournit un plan type, des principes et des prescriptions générales pour la conduite
de ces études et l'établissement de leur rapport. La présentepartiedel’ISO 15686 ne décrit pas en détail les
techniques de prédictiondeladurée de vie des composants des bâtiments.
2Références normatives
Les documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite,
constituent des dispositions valables pour la présente partie de l'ISO 15686. Pour les références datées, les
amendements ultérieurs ou les révisions de ces publications ne s’appliquent pas. Toutefois, les parties prenantes
aux accords fondés sur la présente partie de l'ISO 15686 sont invitées à rechercher la possibilité d'appliquer les
éditions les plus récentes des documents normatifs indiqués ci-après. Pour les références non datées, la dernière
édition du document normatif en référence s’applique. Les membres de l'ISO et de la CEI possèdent le registre des
Normes internationales en vigueur.
ISO 6241:1984, Normes de performance dans le bâtiment — Principes d'établissement et facteurs à considérer.
ISO 6707-1:1989, Bâtiment et génie civil — Vocabulaire — Partie 1: Termes généraux.
ISO 15686-1:2000, Bâtiments et biens immobiliers construits — Prévision de la duréede vie — Partie 1: Principes
généraux.
3 Termes et définitions
Pour les besoins de la présente partie de l'ISO 15686, les termes et définitions donnés dans l’ISO 6707-1 et
l’ISO 15685-1 ainsi que les suivants s'appliquent. Les termes sont classés par concepts afin d'aider les utilisateurs
de la présente partie de l’ISO 15686.
3.1 Durée de vie et performance
3.1.1
vieillissement
dégradation due à l'influence à long terme d'agents liés à l'utilisation
3.1.2
indicateur de dégradation
déficience apparaissant lorsqu'une caractéristique de performance ne répond plus à une prescription
EXEMPLE Si le brillant est une caractéristique de performance, la perte de brillant est alors l'indicateur de dégradation
correspondant. Si la masse (ou l'épaisseur) est une caractéristique de performance, la perte de masse est alors l'indicateur de
dégradation correspondant.
3.1.3
propriété critique déterminante
élément d’un ensemble reconnu de propriétés critiques d'une construction ou d'une de ses parties, dont le défaut
de performance se manifeste en premier en cours de service
3.1.4
caractéristique de performance
quantité constituant la mesure d'une propriété critique ou la grandeur de cette quantité
EXEMPLE Une caractéristique de performance peut être identique à la propriété critique, par exemple le brillant. D'autre
part, si la propriété critique est la résistance, il est permis, dans certains cas, d'utiliser l'épaisseur ou la masse comme
caractéristique de performance.
3.2 Prévision de la duréedevie
3.2.1
exposition accélérée de courte durée
exposition de courte durée pendant laquelle l'intensité desagentsest élevée au-dessus des niveaux prévus en
service
3.2.2
exposition au vieillissement
mode opératoire suivant lequel un produit de construction est exposéà des agents censés provoquer une
dégradation dans le but d’évaluer la durée de vie (ou de comparer aux performances correspondantes)
3.2.3
échantillons de contrôle
échantillons conservés dans un environnement supposé ne pas induire de dégradation, ou connu comme tel, dans
un but de comparaison entre des échantillons exposés et non exposés
3.2.4
retour d'expérience
inspection des bâtiments
évaluationdelaperformanceouappréciationdeladurée de vie restante des parties de bâtiments existantes
3.2.5
exposition de longue durée
exposition au vieillissement dans des conditions d'utilisation, pour une duréedumême ordre que la duréede vie
3.2.6
distribution de duréedevieprédite
fonction de distribution des probabilités deladuréedevieprédite
3.2.7
échantillons de référence
échantillons ayant des performances connues qui sont exposéssimultanément et dans des conditions identiques à
celles des échantillons en étude pour obtenir des données comparatives
3.2.8
prédiction de la duréede vie
méthodologie générique qui facilite, pour une prescription particulière ou pour une prescription de performance
appropriée, une prédiction de la distribution des durées de vie d'un bâtiment ou de ses parties pour une utilisation
dans un environnement particulier ou dans un environnement quelconque approprié
2 © ISO 2001 – Tous droits réservés
3.2.9
exposition de courte durée
exposition de vieillissement d'une durée nettement plus courte que la duréedevieprévue
NOTE Un terme utilisé parfois en rapport avec ce type de programme d'exposition est «essai de duréedevie
prévisionnelle». Un essai de duréede vie prévisionnelle est la combinaison d’une exposition de courte duréespécifiquement
ordonnéeetd’une procédure.
3.3 Environnement et caractérisation de l'environnement
3.3.1
intensité d'un agent
mesurage de la plage ou du niveau d’action d’un agent
NOTE Dans la présente partie de l’ISO 15686, le terme «intensité d'un agent» se rapporte figurativement à une quantité
qui remplit les conditions pour une mesure selon la définition ci-dessus, c'est-à-dire non seulement le rayonnement ultraviolet ,
la forte pluie, etc., mais aussi l'hygrométrie, la concentration de SO , la vitesse de gel-dégel et contrainte, etc.
3.3.2
contexte du bâtiment
description d'un bâtiment et de ses parties en termes d'influences de la conception, de l'environnement en service
et d'usage
3.3.3
dose
dose d'agent
moyenne de l'intensité de l'agent pendant une duréemultipliée par la longueur de cette durée
3.3.4
fonction dose-réponse
fonction qui lie la(les) dose(s) d'un agent de dégradation à un indicateur de dégradation
3.3.5
condition en utilisation
conditions ambiantes en utilisation normale
3.4 Actions et acteurs
3.4.1
spécialiste mandaté
personne ou organisme capable de mener une étude de prédiction de duréedevie
3.4.2
client mandatant
personne ou organisme ordonnant l'étude de prédictiondeduréedevie
4 Termes abrégés
ESLC duréedevieestimée d'un composant
PSLDC distribution des durées de vie prédites d'un composant
PSLC duréedevieprédite d'un composant
RSLC duréedeviederéférence d'un composant
SLP prédictiondeladuréede vie
5 Domaine d'application
5.1 Description sommaire de la SLP
La méthodologie décrite est destinée àêtre générique et vise à faciliter, pour un ensemble particulier ou un
ensemble quelconque approprié de prescriptions de performances, une prédiction deladurée de vie de n'importe
quel genre de composants de bâtiment destinés àêtre utilisés dans un environnement de service particulier ou
dans une gamme d'environnements de service.
NOTE Dans la pratique, une prédiction de la duréede vie estgénéralement limitée à la couverture de quelques
environnements de service types ou un seul environnement de référence complété par une analyse de la sensibilité des
variations d'intensité des agents de dégradation.
Le terme «prédiction» d'une étude de prédictionde ladurée de vie se rapporte à l'une des quatre manières ou à
une combinaison de celles-ci pour évaluer la duréedevie:
� raccourcissement de la dimension temporelle (à des expositions accélérées de courte durée);
� interpolation/extrapolation à l'aide de données de composants similaires;
� interpolation/extrapolation à l'aide de données provenant d'environnements de service similaires;
� extrapolation de la dimension temporelle (à des expositions de courte durée en utilisation).
L'approche ou méthodologie systématique pour la prédictiondeladurée de vie des composants de bâtiments
comprend l'identification des informations nécessaires, la sélection ou la mise au point de modes opératoires
d'essais (programmes d'exposition et méthodes d'évaluation), essais (exposition et évaluation), interprétation des
données et compte rendu des résultats. La Figure 1 décrit les étapes essentielles d'un processus de prédiction de
la duréedevie. La méthodologie emploie une recherche itérative ou un processus de prise de décision qui permet
d'améliorer les prévisions effectuées au fur et à mesure que la base de connaissance grandit, comme illustré par la
boucle extérieure sur la Figure 1. Il est souvent inutile d'effectuer la totalité des opérations, par exemple le mode
opératoire des essais préliminaires peut être souvent exclu ou raccourci du fait des connaissances déjà acquises
sur le composant à l'étude. Bien que non illustrées, des sous-boucles entre opérations sont susceptibles d'être
nécessaires à l'intérieur d'un cycle. En tout cas, il est de la plus haute importance que toutes les hypothèses et les
jugements soient pris en compte.
Normalement, la duréedevie n’est pas prédite, pour un ensemble particulier de prescriptions de performances,
comme une valeur simple – une PSLC (duréedevie en service prédite d'un composant). Au contraire, une
distribution de duréedevie prédite pour un composant (PSLDC) est déterminée. La PSLDC est décrite par au
moins deux paramètres, la valeur prévisionnelle et l'écart standard. Pour les essais trèsonéreux, toutefois, il est
permis de limiter l'objectif à la seule duréedevieenserviceprédite du composant.
Voir aussi A.1.1.
5.2 Liaison avec l'ISO 15686-1
La présente partie de l’ISO 15686 se réfère à l'ISO 15686-1 et vise à décrire, dans ce contexte, un outil permettant
d'obtenir une duréede vie de référence du composant (RSLC) aussi précise que possible (ou, sinon, à obtenir
directement une duréede vie prévue). Une RSLC est exigée si la duréede vie estimée du composant (ESLC) pour
un objet de conception particulier est àévaluer selon la méthode des facteurs comme décrit dans l'ISO 15686-1.
Ainsi, la RSLC peut être obtenue d'aprèsla PSLDC comme établi conformément à la présente norme. La condition
dans laquelle la PSLDC a étéétablie devient alors la condition de référence qu'il convient de comparer à la
condition particulière régnant au niveau de l'objet de conception afin d'estimer les facteurs de la méthode des
facteurs.
4 © ISO 2001 – Tous droits réservés
Figure 1 — Méthodologie systématique pour la prédiction de la durée de vie des composants de bâtiments
Le choix de la valeur unique RSLC dans la distribution établie dépend de la marge de sécurité prescrite pour le
composant. Pour des composants non structuraux remplaçables, on pourrait employer dans la plupart des cas la
valeur prévisionnelle (c'est-à-dire moyenne) PSLC de la distribution comme RSLC. Toutefois, des exigences sur
les plans de maintenance programmée interférant avec d'autres composants remplaçables ou d'autres
circonstances peuvent suggérer un choix plus prudent. Pour des composants non remplaçables et/ou structuraux,
pour lesquels une marge de sécurité est prescrite, un choix plus prudent, et souvent nettement plus prudent, est à
faire. Dans ce cas, pourtant, la marge de sécurité est normalement régie directement ou indirectement par des
normes ou des codes spécifiquement applicables au composant.
Lorsque la SLP utilisée pour obtenir la RSLC pour l'objet de conception particulier a été réalisée dans différentes
conditions, la PSLDC obtenue dans la condition qui s'écarte le moins de la condition particulière est utilisée à cet
effet. Une SLP réalisée dans différentes conditions implique également un moyen d'estimer les facteurs de la
méthode des facteurs et, dans la majorité des cas, en particulier celui tenant compte de la différence entre
l'environnement particulier et l'environnement extérieur de référence. Le résultat peut être obtenu par des
techniques d'interpolation/extrapolation.
6Plantypeméthodologique
6.1 Plage de SLP et définition du problème
6.1.1 Généralités
Initialement, le problème à traiter doit être défini et la plage de l'étude établie. Cela comprend également
l'identification ou la spécification des données essentielles.
NOTE Ces questions sont susceptibles de varier d'un cas à l'autre en fonction du but et de l'ambition de la SLP et du
niveau des connaissances existantes sur le composant.
Deux domaines extrêmes suivants peuvent être signalés.
a) Étude spécifique. Elle est destinée à se concentrer sur une application plutôt particulière du composant en
essai en termes d'environnement d'utilisation et d'usage avec un ensemble de prescriptions de performances
spécifiées. Son but est de fixer la PSLDC (ou PSLC) et de déterminer la sensibilité de la PSLDC (ou PSLC) à
des variations modérées par rapport à ces hypothèses.
b) Étude générale. Elle est destinée à couvrir une application très large du composant en essai en termes
d'environnement d'utilisation et d'usage avec un ensemble de prescriptions de performances non spécifiées ou
spécifiées de façon vague. Le but est de définir des performances en fonction du temps pour les performances
choisies dans la gamme entière des applications.
6.1.2 Définition d'une étude spécifique
6.1.2.1 Identification de l'environnement de service et de l'usage
Un contexte de bâtiment de référence (voir ISO 6241 et la liste de référence CIB) doit être défini en fonction des
informations données sur le cas particulier. Il doit tenir compte de l'utilisation particulière du composant en couvrant
les conséquences de la conception et comprendre une description de l'environnement, y compris les sollicitations
mécaniques statiques et dynamiques sur le site où un bâtiment est prévu. Une description des effets de
l'occupation (comme la vapeur d'eau, la chaleur ou l'abrasion) et les principes selon lesquels le bâtiment est
exploité (par exemple grande ou petite inertie thermique) doivent être également inclus le cas échéant.
6.1.2.2 Quantification de l'ensemble des prescriptions de performances
L'ensemble des performances doit être identifié et les prescriptions correspondantes quantifiées selon les
propriétés critiques spécifiées.
NOTE Ceci peut prendre, par exemple, la forme d'un certain type de défaillance et d'analyse des effets (FMEA).
L'ensemble des prescriptions de performances doit être conforme aux informations obtenues conformément
à 6.1.2.1.
6 © ISO 2001 – Tous droits réservés
6.1.3 Définition d'une étude générale
6.1.3.1 Spécification des domaines d'environnement de service et d'usage
Tous les types d'environnements où le composant est destinéà être utilisé ou compris dans le domaine de l'étude
doivent être spécifiés, y compris les sollicitations mécaniques statiques dynamiques.
Il est permis de regrouper les différents types d'environnements en un nombre discret de catégories, chacune
d'elles étant représentative de certaines plages d'intensités des agents.
Il faut faire attention aux effets des différents usages et positions du composant car cela régit fortement les
conditions d'utilisation et les effets synergiques éventuels des agents de dégradation (voir 6.2.3).
NOTE La condition d'utilisation effective concernant la dégradation des matériaux est le micro-environnement, c'est-à-dire
la condition d'environnement régnant dans une couche adjacente à une surface du composant ou à son niveau (par exemple la
concentration des polluants et la pluie battante) et à l'intérieur du composant (par exemple les sollicitations mécaniques).
6.1.3.2 Quantification de l'ensemble des prescriptions de performances
Premièrement, un ensemble de performances doit être identifié d'après des propriétés critiques spécifiques.
Ensuite, afin de limiter la gamme des performances à couvrir avec l'analyse de la vie en service, il convient de
quantifier l'ensemble des performances appropriées les plus basses du composant.
NOTE L'ensemble des performances peut comprendre des caractéristiques, par exemple, de résistance, de transmission
optique, d'isolation acoustique et des qualitésesthétiques.
Les prescriptions de performances doivent être conformes aux informations obtenues conformément à 6.1.3.1.
6.1.4 Caractérisation du composant
Le composant àévaluer doit être caractérisé de la manière la plus utilisable en termes de structure, de propriétés
physiques et de composition chimique.
6.1.5 Considérations sur l'étude critique
La vérification est une technique permettant de vérifier si une étude de SLP a répondu ou non aux prescriptions de
la présente partie de l’ISO 15686 de méthodologie et de compte rendu. Lors de la définition de l'étude, il faut
prévoir et confirmer si le processus de vérification est à conduire, comment et par qui.
Il y a lieu de conduire la vérification d'une SLP lorsque les résultats sont à divulguer au public.
Pour d'autres applications, par exemple, pour le développement d'un produit interne à l'entreprise, on peut omettre
la vérification.
Le processus de vérification est décrit dans l'article 7.
6.2 Préparation
6.2.1 Généralités
Aprèsla définition de l’étude conformément à 6.1, il faut identifier et postuler les agents de dégradation, les
mécanismes de dégradation possibles et la façon dont la dégradation peut être accélérée ou induite dans les
programmes d'exposition de vieillissement.
6.2.2 Identification des agents de dégradation et de leurs intensités
La distribution des types et intensités des agents de dégradation prévus d'après les connaissances acquises
conformément à 6.1.2.1 ou 6.1.3.1 doit être identifiée.
NOTE 1 Il peut être difficile de quantifier l'intensité en utilisation des agents biologiques et des agents provenant de
l'occupation, mais des limites supérieures peuvent être fixées dans la plage normale grâce au jugement professionnel.
Il faut considérer un ou plusieurs environnements, le nombre dépendant de la portéedel'étude. Le Tableau 1
donne une liste des agents de dégradation concernés.
NOTE 2 Les agents sont classés en fonction de leur nature. En général, à l'extérieur du bâtiment, l'origine des agents se
trouve soit dans l'atmosphère soit dans le sol, tandis qu'à l'intérieur du bâtiment, l'origine est liée à l'occupation ou à la
conception et aux installations. Toutefois, bien que l'ISO 6241 ne le mentionne pas, un agent agissant extérieurement bien que
provenant d'une conséquence de la conception peut également intervenir, par exemple à caused'uncomposant voisin
incompatible. En outre, il convient de ne pas omettre l'influence des agents provenant de l'atmosphère sur une dégradation
interne.
a
Tableau 1 — Agents de dégradation influant sur la durée de vie des composants de bâtiments
Nature Classe
Agents mécaniques Pesanteur
Forces et déformations imposées ou restreintes
Energie cinétique
Vibrations et bruits
Agents Rayonnement
électromagnétiques
Electricité
Magnétisme
Agents thermiques Niveaux extrêmes ou modifications rapides de la température
Agents chimiques Eau et solvants
Agents oxydants
Agents réducteurs
Acides
Bases
Sels
Chimiquement neutre
Agents biologiques Végétal et microbien
Animal
a
Résumé de l'ISO 6241:1984, Tableau 4.
Voir aussi A.2.1.1 à A.2.1.3.
6.2.3 Agents liés à l'occupation et importance des pratiques d'installation et d'entretien
Bien que les agents liés à l'occupation ne fassent pas souvent partie des programmes d'exposition de
vieillissement, comme ils peuvent influer sur la durée de vie des composants des bâtiments, ils doivent être
évaluéss’ils sont jugé critiques Une telle mesure doit être effectuée par les moyens d’inspection de bâtiments ou
par l’exposition en service, ou par les deux. Voir respectivement 6.4.3.3 et 6.4.3.5.
NOTE Toutefois, les abus sont considérésen général comme sortant du domaine des méthodes d'essais.
Normalement, l'installation et l'entretien éventuel entrepris pour des échantillons du programme d'exposition de
vieillissement devraient suivre les pratiques recommandées par le fabricant ou une pratique reconnue si ce n’est
pas le cas.
Il est permis d'inclure une évaluation des effets imposés par des variantes dans les modes opératoires comme une
partiedel'étude.
Il est d’une importance primordiale de ne pas pousser une procédure d’entretien qui conduise à un PSLC erroné
face à l’utilisation normale.
8 © ISO 2001 – Tous droits réservés
6.2.4 Identification des mécanismes de dégradation possibles
Il faut identifier tous les mécanismes possibles selon lesquels on sait ou on présume que les agents de
dégradation identifiés induisent des changements dans les propriétés du composant.
NOTE Les mécanismes peuvent être identifiés à différents niveaux. Si, par exemple, la chimie du composant est bien
connue, il peut être possible d'identifier des mécanismes baséssur des réactions chimiques particulières comme l'hydrolyse et
la photo-oxydation. Si l'on en sait moins sur les réactions chimiques, mécaniques, physiques et biologiques du composant, il est
permis de définir des mécanismes en termes plus généraux comme, par exemple, la décomposition thermique, la volatilisation
de constituants, la diffusion de constituants, la corrosion, la fatigue, l'usure, le rétrécissement/gonflement et la putréfaction. Voir
aussi A.2.1.4.
6.2.5 Identification des effets possibles de la dégradation
Il faut identifier les effets possibles de la dégradation des performances du composant en se basant sur les
données obtenues selon 6.2.2 et 6.2.4.
6.2.6 Choix des performances et techniques d'évaluation des performances
Les propriétés critiques, correspondant à l'ensemble des prescriptions de performances quantifiées selon 6.1.2.2
ou 6.1.3.2, doivent être interprétées en fonction des performances qui se sont avérées être touchées par une
dégradation selon 6.2.5.
Pour chacune des performances retenues, des techniques de mesurage et/ou de contrôle doivent être choisies.
Afin de pouvoir effectuer une SLP selon la présente partie de l’ISO 15686, on doit disposer de données
quantitatives. Les valeurs initiales des performances choisies doivent être déterminées avant le début du
programme d'exposition de vieillissement. (Voir aussi A.2.1.5.)
6.2.7 Acquisitions des autres études
Il convient de toujours rechercher les informations provenant d'autres études, terminées ou en cours.
NOTE On peut tirer des informations utiles de la connaissance générale de composants, de techniques de mesurage et de
programmes d'exposition similaires conçus suivant les données détaillées de fonctions performances/temps de cas ayant un
lien étroit avec celui àétudier. Dans ce dernier cas, dans des circonstances favorables, on peut réduire le volume d'essai et la
plage exigéeet/ou réduire considérablement la période d'essai.
6.2.8 Postulats concernant les programmes d'exposition de vieillissement
Avec les informations obtenues selon 6.2.2 à 6.2.7, des postulats doivent être faits en ce qui concerne les modes
opératoires spécifiques pour induire les mécanismes de dégradation identifiés en utilisant les agents de
dégradation identifiés.
En cas d'utilisation de l'exposition accélérée de courte durée, un soin doit être apportéà s'assurer que les niveaux
d'intensité extrême des agents de dégradation ne se traduisent pas en mécanismes de dégradation qui ne seraient
pas rencontrésenservice.
NOTE Les postulats faits dans cette opération établissent le canevas pour la sélection ou la conception de programmes
d'exposition préliminaires.
6.3 Essais préliminaires
6.3.1 Généralités
Les essais préliminaires doivent reposer sur les postulats faits conformément à 6.2.8. Un essai préliminaire doit
couvrir les performances sélectionnées àévaluer avant et après l'exposition aux agents de dégradation auxquels le
composant sera exposé en service ou, au moins, à tous les agents de dégradation soupçonnésd'avoir une
importance quelconque. Lorsqu'il est exécuté correctement, cet essai doit
� fixer les agents de dégradation primaires et leur ordre d'importance;
� appuyer ou exclure les mécanismes identifiésprécédemment suivant lesquels des changements de propriété
se produisent;
� fixer les niveaux d'intensité des agents nécessaires pour induire des changements de propriété et démontrer
la façon dont des changements rapides peuvent être induits dans les performances sélectionnées par une
exposition à des intensitésextrêmes;
� faciliter une meilleure compréhension de la nature des agents de dégradation primaires conduisant à des
changements de propriété et indiquera des changements de propriété supplémentaires ou de substitution
susceptibles d'être adaptés et utiles en tant que performances; et
� vérifier l'adaptation des techniques de mesurage et de contrôle choisies pour l'évaluation des performances.
Voir aussi A.2.2.
6.3.2 Intensités des agents de dégradation employés dans les essais préliminaires
Les intensités doivent être calibrées en fonction des distributions ou des plages quantitatives d'utilisation identifiées
selon 6.2.2.
EXEMPLE Les données météorologiques et climatologiques pour les climats les plus extrêmes dans lesquels le
composant sera utilisé peuvent constituer la base du choix des intensités de ces agents dans les essais préliminaires.
6.4 Programmes d'exposition de vieillissement
6.4.1 Généralités
Le programme d'exposition complet doit être conçu avec soin afin de fournir les données nécessaires
conformément au domaine et au but de l'étude, en tenant compte des informations et données obtenues au moyen
des modes opératoires décrits ci-dessus.
Bien que cela soit évident d'aprèsles définitions d'agents (voir 3.10 dans l'ISO 15686-1:2000) et d'exposition
(voir 3.2.2), il convient d'insister sur le fait qu'il convient de prendre l'exposition de vieillissement dans un sens
large,
c'est-à-dire que l'exposition de vieillissement se rapporte à n'importe quel genre de dispositif quand des
échantillons sont soumis à des agents de dégradation selon le Tableau 1. Par exemple, lors de l'application de
charges mécaniques, des échantillons sont exposés à des agents mécaniques.
6.4.2 Conception et exécution des programmes d'exposition
Etant donné que les propriétés des composants ainsi que les caractéristiques de l'environnement sont des
variables stochastiques, c'est-à-dire qu'elles sont représentées par des distributions statistiques, le programme
d'exposition doit être conçude façon à comprendre, si possible, une multitude de corps d'épreuve ou d'objets
d'essai, ce qui permet un traitement statistique des données d'essai.
Cette recommandation risque, toutefois, de s'avérer difficile à suivre dans certains cas lors du traitement d'un
bâtiment expérimental et d'une exposition en service (voir respectivement 6.4.3.4 et 6.4.3.5) ou si les essais sont
trèsonéreux. Dans ce cas, il convient d'estimer les largeurs ou plages de distribution d'après d'autres sources
d'informations.
Pour toutes les sortes de programmes d'exposition, les conditions doivent être enregistrées en continu ou à des
intervalles suffisamment courts pour les raisons suivantes (partiellement en fonction du type de programme
d'exposition):
� permettre l'établissement de fonctions performances/temps ou dose-réponse, voir A.2.4.2 et A.2.4.3;
10 © ISO 2001 – Tous droits réservés
� fournir une relation entre les différentes durées et sites d'exposition (pour les programmes d'exposition dans
des conditions incontrôlées) (voir 6.4.3.2), a) et b);
� vérifier que les conditions ambiantes réelles sont représentatives du type d'environnement (pour des
programmes d'exposition dans des conditions incontrôlées);
� vérifier que les intensitésprévues des agents de dégradation sont atteintes (pour des programmes
d'exposition dans des conditions contrôlées).
NOTE 1 Les sources d'enregistrement sont susceptibles de varier depuis des bases de données d'environnement officielles
jusqu'à un mesurage détaillé des intensités des agents de dégradation au niveau des échantillons pour essai ou dans leur
voisinage.
NOTE 2 Dans le domaine de la caractérisation de l'environnement, un fort développement se produit, par exemple en
direction de techniques de mesurage normalisées et des modèles de dispersion améliorés, hébergées dans des
environnements logiciels GIS (systèmes d'information géographique) en facilitant le mappage de toutes les données
d'environnement depuis les niveaux méso/locaux jusqu'aux niveaux micro.
6.4.3 Expositions de longue durée
6.4.3.1 Plage et type
Le programme d'exposition se compose d'une exposition en service réelle d'un système complet qui fournit en
retour des informations sur les performances dans le temps des composants inclus ou implique une exposition de
composants sélectionnés. Un programme d'exposition de façon à prendre en compte tous les agents d'importance.
Même dans une étude spécifique, il convient d'effectuer l'exposition de préférence dans plusieurs types
d'environnements d'exploitation.
Les différentes manières de générer des données d'après des expositions de longue durée sont décrites dans
quatre catégories:
� exposition sur le terrain, voir 6.4.3.2;
� inspection des bâtiments, voir 6.4.3.3;
� exposition dans des bâtiments expérimentaux, voir 6.4.3.4;
� exposition en service, voir 6.4.3.5.
6.4.3.2 Exposition sur le terrain
Les différentes manières pour effectuer des expositions atmosphériques sur le terrain ont été en utilisation pendant
un certain temps (voir A.2.3.1.1).
Il est essentiel de noter que
a) les résultats d'une exposition sur le terrain se rapportent au site d'exposition particulier et que la transformation
des données pour un autre emplacement géographique exige de connaître les fonctions performances/temps
et dose-réponse et les caractéristiques de l'environnement;
b) l'on tire prudemment les conclusions d'une période d'exposition à l'autre, en particulier si la durée d'exposition
est courte; et
c) il est permis de considérer l'exposition d'échantillons de composants à l'environnement comme une exposition
accélérée – par exemple, l'exposition d'étagèresavecune inclinaisonde 45° dirigées vers le soleil avec le
degré d'accélération variant en fonction du type de composant en exposition.
6.4.3.3 Inspection des bâtiments
Il est permis d'évaluer la durée de vie des composants de bâtiments au moyen d'une inspection de bâtiments. Il
convient d'inclure dans l'étude le plus grand nombre possible de bâtiments au moyen de méthodes
d'échantillonnage statistiques.
Voir aussi A.2.3.1.2.
6.4.3.4 Exposition dans les bâtiments expérimentaux
Il est permis de réaliser des évaluations de durabilité de composants de bâtiments en les exposant dans des
bâtiments d'essai expérimentaux prévus à cet effet.
Des difficultés semblables sont susceptibles de s'appliquer comme décrit en 6.4.3.2.
V
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...